

- [1]** (a) The set $A = \{xay \mid x, y \in \{a\}^* \text{ and } x \neq y\}$ is regular since it consists of all strings over $\{a\}^*$ having at least two a 's, so $A = L(aaa^*)$.
 (b) The set $\{xy \mid x, y \in \Sigma^* \text{ and } x \neq y\}$ consists of all non-empty strings over Σ since we can take $x = \epsilon$. Since the empty string belongs to $\{xy \mid x, y \in \Sigma^* \text{ and } x = y\}$, it follows that the set B consists of all strings over Σ , which is obviously regular.

- [2]** (a) $\psi = \exists \ell. \neg P_a(\ell) \wedge \neg P_b(\ell) \wedge (\forall x. \neg P_a(x) \wedge \neg P_b(x) \rightarrow \ell \leq x)$
 $\wedge \exists X. X(0) \wedge (\forall x. \forall y. y = x + 1 \wedge y \leq \ell \rightarrow (X(x) \leftrightarrow \neg X(y))) \wedge X(\ell)$
 (b) First consider the subformula $\psi: y < x \vee Y(y)$ with $\text{FV}(\psi) = (x, y, Y)$. We have

$$L_a(y < x) = \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)^* \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)^* \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)^*$$

$$L_a(Y(y)) = \left[\left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right) + \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right)\right]^* \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right) \left[\left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right) + \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right)\right]^*$$

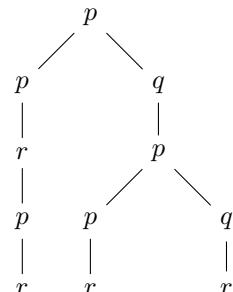
and compute

$$L_1 = \text{drop}_3^{-1}(L_a(y < x)) = \left(\begin{smallmatrix} 0 \\ 0 \\ * \end{smallmatrix}\right)^* \left(\begin{smallmatrix} 0 \\ 1 \\ * \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 \\ 0 \\ * \end{smallmatrix}\right)^* \left(\begin{smallmatrix} 1 \\ 0 \\ * \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 \\ 0 \\ * \end{smallmatrix}\right)^*$$

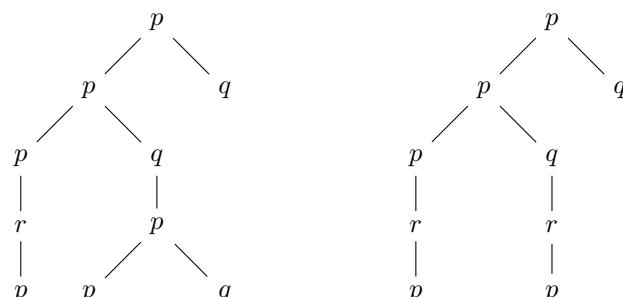
$$L_2 = \text{drop}_1^{-1}(L_a(Y(y))) = \left[\left(\begin{smallmatrix} * \\ 0 \\ 0 \end{smallmatrix}\right) + \left(\begin{smallmatrix} * \\ 0 \\ 1 \end{smallmatrix}\right)\right]^* \left(\begin{smallmatrix} * \\ 1 \\ 1 \end{smallmatrix}\right) \left[\left(\begin{smallmatrix} * \\ 0 \\ 0 \end{smallmatrix}\right) + \left(\begin{smallmatrix} * \\ 0 \\ 1 \end{smallmatrix}\right)\right]^*$$

We have $L_a(\psi) = (L_1 \cup L_2) \cap L(\mathcal{A}_{2,1})$. Here $\mathcal{A}_{2,1}$ is a DFA to check the admissibility condition. For φ we obtain $L_a(\varphi) = \text{stz}(\text{drop}_2(L_a(\psi)))$.

- [3]** (a) The string $bbab$ does not belong to $L(M)$ because after the first b the automaton is in state r but $\Delta(r, b) = \perp$.
 The string $abab$ belongs to $L(M)$ because of the accepting run



The string $aaba$ does not belong to $L(M)$ because the only runs



are not accepting.

- (b) The ABA $M = (Q, \{a, b\}, \Delta, s, \emptyset)$ with $Q = \{s\} \cup \{a\} \times \{1, 2, 3\} \cup \{b\} \times \{1, 2\}$ and

$$\Delta(s, a) = (a, 2) \wedge (b, 2)$$

$$\Delta(s, b) = (a, 3) \wedge (b, 1)$$

$$\Delta((a, 3), a) = (a, 2)$$

$$\Delta((a, 2), a) = (a, 1)$$

$$\Delta((a, 1), a) = \top$$

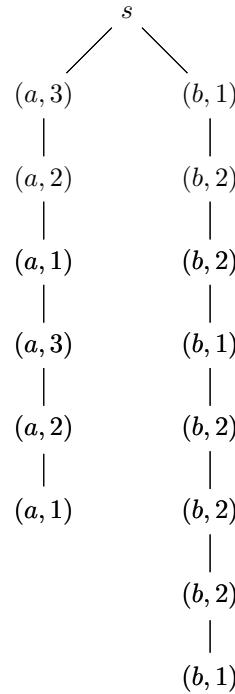
$$\Delta((a, 3), b) = \Delta((a, 2), b)) = \Delta((a, 1), b) = (a, 3)$$

$$\Delta((b, 2), b) = (b, 1)$$

$$\Delta((b, 1), b) = \top$$

$$\Delta((b,2),a) = \Delta((b,1),a)) = (b,2)$$

accepts the given set. The following is an accepting run of M on the string $baabaaaab^\omega$:



- 4