

Automata and Logic 25W LVA 703026 + 703027

Lecture 1 October 10, 2025

Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. The (strict) deadline is 7 am on October 10.

Exercises

- $\langle 2 \rangle$ 1. Design DFAs for the following sets.
 - (a) The set of strings in $\{a, b, c\}^*$ containing the substring cab.
 - (b) The set of strings $x \in \{0, 1, 2\}^*$ that are ternary representations, leading zeros permitted, of numbers that are not multiples of four. (The empty string represents zero.)
- $\langle 2 \rangle$ 2. Let $M = (Q, \Sigma, \delta, s, F)$ be an arbitrary DFA. Prove by induction on |y| that

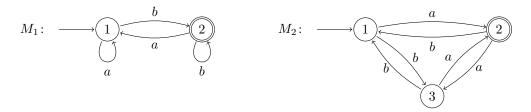
$$\widehat{\delta}(q, xy) = \widehat{\delta}(\widehat{\delta}(q, x), y)$$

for all strings $x, y \in \Sigma^*$ and states $q \in Q$.

- 3. A set $A \subseteq \Sigma^*$ is said to be reflexive if $\epsilon \in A$ and transitive if $AA \subseteq A$. Prove that A^* is the smallest reflexive and transitive set containing A, for any $A \subseteq \Sigma^*$.
- $\langle 3 \rangle$ 4. (a) Prove that regular sets are effectively closed under symmetric difference (\triangle) defined as:

$$A \triangle B = \{x \mid x \in A \text{ or } x \in B \text{ but not } x \in A \cap B\}$$

(b) Consider the DFAs



Construct a DFA M such that $L(M) = L(M_1) \triangle L(M_2)$.