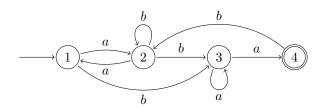


A., tamata and Lania	25///	11/4 702026 + 702027
Automata and Logic	25W	LVA 703026 + 703027


Lecture 2 + 3 October 24, 2025

Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. Solutions for bonus exercises must be submitted separately. The (strict) deadline is 7 am on October 24.

Exercises

- (2) 1. Construct NFAs for the following sets. Try to take advantage of nondeterminism as much as possible.
 - (a) The set of strings over $\Sigma = \{0, 1, \dots, 9\}$ such that the final digit has appeared before.
 - (b) The set of non-empty strings over $\Sigma = \{0, 1, \dots, 9\}$ such that the final digit has *not* appeared before.
- $\langle 2 \rangle$ 2. Consider the following NFA_{\(\epsilon\)} N:

- (a) Compute the ϵ -closure of each state.
- (b) List all strings in L(N) of length two or less.
- (c) Transform N into an equivalent DFA without inaccessible states.
- $\langle 2 \rangle$ 3. Give regular expressions for each of the following subsets of $\{a,b,c\}^*$:
 - (a) $\{x \mid x \text{ contains an even number of } b$'s $\}$
 - (b) $\{x \mid x \text{ contains an even number of } a \text{'s or an odd number of } b \text{'s} \}$
- (2) 4. Using the method on slide 10 of lecture 3, transform the following automaton into an equivalent regular expression:

- (2) 5. (a) Prove that regular sets are closed under string reversal.
 - (b) Prove that every regular set is accepted by an NFA with exactly one final state.

Bonus Exercise

- (5) 6. Given a set A of strings, define the set $MT(A) = \{y \mid xyz \in A \text{ and } |x| = |y| = |z| \text{ for some strings } x \text{ and } y\}.$
 - (a) Prove that MT(A) is regular whenever A is regular.
 - (b) Does the converse hold?