

Automata and Logic 25W LVA 703026 + 703027

Lecture 4 October 31, 2025

Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. The (strict) deadline is 7 am on October 31.

Exercises

 $\langle 2 \rangle$ 1. Consider the following DFA M:

- (a) Determine which states are accessible.
- (b) Compute the equivalence classes of the indistinguishability relation \approx .
- (c) Compute the minimum-state DFA for L(M).
- $\langle 2 \rangle$ 2. Let M_{\cap} be the DFA obtained by applying the product construction on slide 25 of lecture 1 to minimum-state DFAs M_1 and M_2 .
 - (a) Show that M_{\cap} may contain inaccessible states.
 - (b) Let M'_{\cap} be obtained from M_{\cap} by removing all inaccessible states. Is M'_{\cap} minimal? Prove your answer.
- $\langle 2 \rangle$ 3. Consider the set $L = \{a^n b^n \mid n \ge 0\}$.
 - (a) For $A = \{a^n b^m c^k \mid n+m=k\}$ find a homomorphism h_A such that $h_A(A) = L$ or $h_A^{-1}(A) = L$.
 - (b) For $B = \{a^n b^m \mid 2n = m\}$ find a homomorphism h_B such that $h_B(B) = L$ or $h_B^{-1}(B) = L$.
 - (c) Assuming that L is not regular, why does the existence of the homomorphisms h_A and h_B show that A and B are not regular?
- 4. For each WMSO formula φ_i below either give a model α_i such that $\alpha_i \vDash \varphi_i$ and determine the size of α_i , or explain why φ_i is unsatisfiable:

$$\varphi_1 = \exists x. X(x) \land \exists y. X(y) \land x \neq y$$

$$\varphi_2 = (\forall x. x = 0 \to X(x)) \land (\forall x. X(x) \to z < x)$$

$$\varphi_3 = \varphi_1 \land \forall x. X(x) \to \exists y. Y(y) \land x < y$$

 $\langle 2 \rangle$ 5. Consider the WMSO formulas

$$\psi_1 = \exists x. x = 0 \land \forall y. x < y \rightarrow \neg P_a(y) \land \neg P_b(y)$$

$$\psi_2 = \forall x. P_b(x) \rightarrow \exists y. P_a(y) \land x < y \land \neg \exists z. x < z \land z < y$$

$$\psi_3 = \exists x. P_a(x) \land \forall y. x \neq y \rightarrow \neg P_a(y)$$

and the alphabet $\Sigma = \{a, b\}$. For each $i \in \{1, 2, 3\}$ find a string $x_i \in \Sigma^*$ such that $x_i \in L(\psi_i)$ and $x_i \notin L(\psi_j)$ for all $1 \leq j \leq 3$ with $i \neq j$.

¹In lecture 5 this will be proved.