


Automata and Logic 25W LVA 703026 + 703027

Lecture 5 November 7, 2025

Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. The (strict) deadline is 7 am on November 7.

Exercises

- (2) 1. Which of the following sets over $\Sigma = \{a, b\}$ are regular and which are not? Provide justification.
 - (a) $\{xax \mid x \in \{a\}^*\}$
 - (b) $\{xax \mid x \in \Sigma^*\}$
- (2) 2. Give WMSO formulas that define the following regular sets over $\Sigma = \{a, b, c\}$.
 - (a) $\{axbc \mid x \in \Sigma^*\}$
 - (b) $\Sigma^* L(a^*b^*)$
- $\langle 3 \rangle$ 3. Which of the following subsets of $\{a,b\}^*$ are regular and which are not? Provide justification.
 - (a) $A = \{x \mid \#a(x) = 2 \cdot \#b(x)\}$
 - (b) $B = \{x \mid \#a(x) \#b(x) < 10\}$
 - (c) $C = \{x \mid \#a(x) \cdot \#b(x) \text{ is even}\}\$
- $\langle 1 \rangle$ 4. Consider the following DFA M:

Construct a WMSO formula φ such that $L(\varphi) = L(M)$.

- $\langle 2 \rangle$ 5. Consider the regular expression $\alpha = (a+b)(a+b)^*a$.
 - (a) Compute the minimum-state DFA M for $L(\alpha)$.
 - (b) Give a regular expression for each of the equivalence classes of the Myhill–Nerode relation \equiv_M of M.