

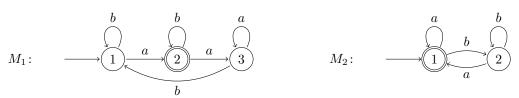
Automata and Logic 25W LVA 703026 + 703027

Lecture 8 November 28, 2025

Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. The (strict) deadline is 7 am on November 28.

Exercises

- $\langle 2 \rangle$ 1. Let $U_1, U_2, U_3 \subseteq \Sigma^*$. Determine whether the following equalities hold. Explain your answers.
 - (a) $(U_1 \cdot U_2)^{\omega} \cdot U_3^{\omega} = U_1^{\omega} \cdot (U_2 \cdot U_3)^{\omega}$
 - (b) $U_1^* \cdot (U_2 \cup U_3)^{\omega} = (U_1^* \cdot U_2^{\omega}) \cup (U_1^* \cdot U_3^{\omega})$
 - (c) $(U_1^* \cup U_2)^{\omega} = (U_1 \cup U_2)^{\omega}$
 - (d) $(U_1^* \cdot U_2^*)^{\omega} = (U_1 \cdot U_2)^{\omega}$
- $\langle 3 \rangle$ 2. Construct Büchi automata that accept the following ω -regular sets. Which of these are accepted by a DBA?
 - (a) $\{aab\}^{\omega}$
 - (b) $\{x \in \{a, b, c\}^{\omega} \mid x \text{ contains the substring } ba\}$
 - (c) $\{x \in \{a, b, c\}^{\omega} \mid \text{there is at least one } b \text{ between each } a \text{ and the next occurrence of } c \text{ in } x\}$
- $\langle 2 \rangle$ 3. Consider the following NBAs over $\Sigma = \{a, b\}$:



(a) Show that the following sets are non-empty:

$$L(M_1) - L(M_2)$$
 $L(M_2) - L(M_1)$ $L(M_1) \cap L(M_2)$

- (b) Apply the product construction from slide 26 to obtain an NBA M such that $L(M) = L(M_1) \cap L(M_2)$.
- $\langle 2 \rangle$ 4. Prove or disprove the following statement: For every Büchi automaton M there exists a Büchi automaton M' such that L(M) = L(M') and M' has a single accepting state.
- $\langle 1 \rangle$ 5. Prove that it is decidable whether $L(M) = \emptyset$ for a given Büchi automaton M.