


Automata and Logic 25W LVA 703026 + 703027

Lecture 11 January 9, 2026

Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. The (strict) deadline is 7 am on January 9.

Exercises

- (3) 1. Consider the language $L = \{x \in \{a,b\}^{\omega} \mid |x|_a = \infty \text{ and } |x|_b = \infty\}$ from slide 9.
 - (a) Show that no DBA with only two states accepts L.
 - (b) Give a minimal deterministic generalized Büchi automaton (GBA) accepting L.
 - (c) Apply the construction on slide 11 to transform your GBA of (b) into an NBA.
- (2) 2. Determine which of the following equivalences hold. For every equivalence that does not hold give a counterexample.
 - (a) $G \varphi \equiv X G \varphi$
 - (b) $F \neg (\varphi R \psi) \equiv \neg G \varphi U \neg G \psi$
 - (c) $(\varphi \to \psi) W \chi \equiv \neg \varphi W \chi \lor \psi W \chi$
- $\langle 2 \rangle$ 3. Consider the following model \mathcal{M} :

- (a) For each of the LTL formulas $\phi_1 = X(p \cup q)$, $\phi_2 = G F p \wedge G F q \wedge G F r$, and $\phi_3 = G(X r \rightarrow q)$, find a path π_i starting at state 1 such that $\pi_i \models \phi_i$ for each $i \in \{1, 2, 3\}$.
- (b) Give an LTL formula that distinguishes states 2 and 4 of \mathcal{M} .
- 4. Let $\mathcal{V} \in \{F, G\}^*$ be a sequence consisting of the temporal operators F and G. Show that $FG\varphi \equiv \mathcal{V}FG\varphi$ and $GF\varphi \equiv \mathcal{V}GF\varphi$.

Bonus Exercise

5. Implement an algorithm that decides whether a given (hardcoded) DBA accepts a specific word $u \cdot v^{\omega}$, where $u, v \in \Sigma^*$. The submission should include the source code and a short description of how to run it.