

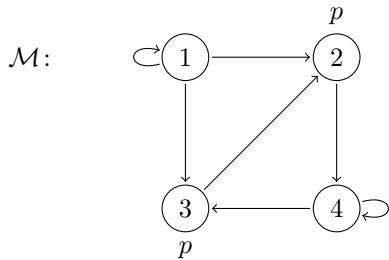
Solved exercises must be marked and solutions (as a single PDF file) uploaded in **OLAT**. The (strict) deadline is 7 am on January 16.

Exercises

(2) 1. Let $\text{AP} = \{r, y, g\}$ be the phases of a traffic light: red, yellow, and green. Give the requested specifications in LTL and provide example sequences in $(2^{\text{AP}})^\omega$ that satisfy and violate the formulas.

- Assuming that each phase lasts exactly one discrete unit of time, specify the phase changes of a traffic light. Do not use U, W, or R.
- Now, we drop the assumption that each phase lasts exactly one discrete time unit. Specify the correct phase changes of two independent traffic lights using $\text{AP} = \{r_1, r_2, y_1, y_2, g_1, g_2\}$. Can you reuse your strategy from part (a)? Does your solution scale up to k traffic lights?

(3) 2. Consider the LTL formula $\varphi = p R (\neg X p)$ and the model



- Construct a GBA $A_{\neg\varphi}$ accepting $L(\neg\varphi)$.
- Construct the GBA $A_{\mathcal{M},1}$.
- Construct a GBA $A_{\neg\varphi} \times A_{\mathcal{M},1}$ for the intersection $L(A_{\neg\varphi}) \cap L(A_{\mathcal{M},1})$.
- Check whether $L(A_{\neg\varphi} \times A_{\mathcal{M},1}) = \emptyset$ and hence $\mathcal{M}, 1 \not\models \varphi$. Provide the corresponding counterexample if $\mathcal{M}, 1 \not\models \varphi$.

(3) 3. Consider the LTL formula $\varphi = (X p) U q \wedge (\neg p \wedge q)$.

- Write down the set $\mathcal{C}(\varphi)$.
- Find an elementary set B which contains the subformula φ .
- Give all successor states of the state B in A_φ .

(2) 4. Extend the translation from LTL to Büchi automata to directly deal with the F and G connectives. Hint: Adapt the definition of elementary set (slide 13) as well as the transition function $\Delta(B, A)$ and acceptance condition F in the definition of A_φ (slide 14).