


Solved exercises must be marked and solutions (as a single PDF file) uploaded in **OLAT**. The (strict) deadline is 7 am on January 30.

Exercises

(2) 1. Determine whether the following sets over $\Sigma = \{a, b\}$ are regular or not. Prove your answers.

- $\{xy \mid x, y \in \Sigma^* \text{ with } x \neq y \text{ and } |y| > 0\}$
- $\{xabx \mid x \in \Sigma^*\}$

(2) 2. Construct a WSMO formula φ such that $L(\varphi) = L(M)$ for the following DFA M :


```

graph LR
    2((2)) -- a --> 1((1))
    2 -- b --> 1
    1 -- a --> 1
    1 -- b --> 3((3))
    3 -- b --> 3
    3 -- a --> 1
  
```

(3) 3. Consider the Presburger arithmetic formula $\varphi = \neg \exists y. x - 3y = 1$.

- Which of the following strings belong to $L(\varphi)$?

- 00011
- 10101
- 11001

- Construct a finite automaton that accepts $L(x - 3y = 1)$
- Construct a finite automaton that accepts $L(\varphi)$.

(3) 4. Consider the set $A = \{x \in \{a, b\}^\omega \mid \text{every } a \text{ in } x \text{ is immediately followed by a } b\}$.

- Give an LTL formula φ that defines A .
- Use the procedure from the lecture to construct an alternating Büchi automaton M that accepts $L(\varphi)$.
- Use the procedure given by the proof on [slide 27 of lecture 13](#) to construct a nondeterministic Büchi automaton from M .

Bonus Exercise

(5) 5. This goal of the final (bonus) exercise is to implement a simplified LTL-based grammar checker that processes text input and flags violations of predefined grammatical rules. The grammar checker should verify the following three rules:

- φ_1 The **e** symbol can never occur without a preceding number.
- φ_2 If an auxiliary verb (**AUX**) occurs, it must eventually be followed by a past participle (**PART**) before the next end-of-sentence (**EOS**).
- φ_3 A finite verb (**VERB**) cannot immediately follow an auxiliary verb (**AUX**) without a participle or an end-of-sentence occurring first.

For the sake of simplicity, we focus on a limited set of tokens and rules. We model a document as a sequence of tokens. Each token is represented by exactly one symbol from the alphabet Σ defined as follows:

$$\Sigma = \{\text{NUMBER}, \text{EUR}, \text{AUX}, \text{PART}, \text{VERB}, \text{EOS}\}$$

The task is to implement this grammar checker using LTL formulas and automata in a language of your choice. You may hardcode the mapping of words to tokens in your implementation (e.g., 1 \rightarrow NUMBER, € \rightarrow EUR, *have* \rightarrow AUX, *eaten* \rightarrow PART, *apple* \rightarrow VERB, . \rightarrow EOS).

- (a) Formulate the rules φ_1 , φ_2 and φ_3 as LTL formulas over the alphabet Σ .
- (b) Combine the LTL formulas into a Büchi automaton that accepts exactly those sequences of tokens that satisfy all three grammatical rules (by using and implementing the procedures from the lecture or using available libraries).
- (c) Write a procedure that tests whether an input token sequence satisfies all grammar rules. If a violation occurs, the program should report which rule is violated.