

Automata and Logic

Aart Middeldorp and Samuel Frontull

▶ Automata and Logic is elective module 1 in master program Computer Science

- ▶ Automata and Logic is elective module 1 in master program Computer Science
- master students must select 3 out of 6 elective modules

- ▶ Automata and Logic is elective module 1 in master program Computer Science
- master students must select 3 out of 6 elective modules:
 - Automata and Logic
 - ② Constraint Solving
 - 3 Cryptography
 - 4 High-Performance Computing
 - 5 Optimisation and Numerical Computation
 - Signal Processing and Algorithmic Geometry

- Automata and Logic is elective module 1 in master program Computer Science
- master students must select 3 out of 6 elective modules:
 - Automata and Logic
 - ② Constraint Solving (offered in 25S)
 - ③ Cryptography (offered in 25S)
 - 4 High-Performance Computing
 - ⑤ Optimisation and Numerical Computation
 - 6 Signal Processing and Algorithmic Geometry

- ▶ Automata and Logic is elective module 1 in master program Computer Science
- ▶ master students must select 3 out of 6 elective modules:
 - 1 Automata and Logic
 - ② Constraint Solving (offered in 25S)
 - 3 Cryptography (offered in 25S)
 - 4 High-Performance Computing
 - (5) Optimisation and Numerical Computation
 - Signal Processing and Algorithmic Geometry
- other master modules with theory content (Logic and Learning specialization):
 - ▶ Program and Resource Analysis (WM 8)
 - ► Selected Topics in Term Rewriting (WM 9)
 - ► Introduction to Complexity Theory (WM 20)

Outline

1. Introduction

Organisation Contents

- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

► LVA 703302 (VO 2) + 703303 (PS 2)

- ► LVA 703302 (VO 2) + 703303 (PS 2)
- ▶ http://cl-informatik.uibk.ac.at/teaching/ws25/al

- ► LVA 703302 (VO 2) + 703303 (PS 2)
- ▶ http://cl-informatik.uibk.ac.at/teaching/ws25/al
- online registration for VO required

- ► LVA 703302 (VO 2) + 703303 (PS 2)
- ▶ http://cl-informatik.uibk.ac.at/teaching/ws25/al
- online registration for VO required
- ▶ OLAT links for VO and PS

- ► LVA 703302 (VO 2) + 703303 (PS 2)
- ▶ http://cl-informatik.uibk.ac.at/teaching/ws25/al
- online registration for VO required
- OLAT links for VO and PS

Time and Place

VO Monday 8:15-10:00 HSB 9 (AM)

PS Friday 8:15-10:00 SR 12 (SF)

1. Introduction

- ► LVA 703302 (VO 2) + 703303 (PS 2)
- ▶ http://cl-informatik.uibk.ac.at/teaching/ws25/al
- online registration for VO required OLAT links for VO and PS.

Time and Place

VO Monday 8:15-10:00 HSB 9 (AM)

PS Friday 8:15-10:00 SR 12 (SF)

Automata and Logic

Consultation Hours

Aart Middeldorp 3M07 Wednesday 11:30-13:00 Samuel Frontull 2W04 Tuesday 14:00-15:30

06 10 & 10 10 10 11 & 14 11 12 01 & 16 01 week 1 week 6 week 11 week 2 13.10 week 7 17.11 & 21.11 week 12 19.01 & 23.01 20 10 & 24 10 26.01 & 30.01 week 3 week 8 24.11 & 28.11 week 13 week 4 27.10 & 31.10 week 9 01.12 & 05.12 & 12.12 week 14 02.02 week 5 03.11 & 07.11 week 10 15.12 & 09.01

Schedule

week 1 week 2

week 3

week 4

week 5

Schedule

13.10

06 10 & 10 10

20 10 & 24 10

27 10 & 31 10

03 11 & 07 11

first exam on February 2

Automata and Logic

Grading — Vorlesung

week 6

week 7

week 8

week 9

week 10

10 11 & 14 11

17.11 & 21.11

01 12 & 05 12 & 12 12 15 12 & 09 01

24 11 & 28 11

week 14

week 13

week 11

week 12

26 01 & 30 01

02 02

12 01 & 16 01

19.01 & 23.01

week 1

week 2 13.10 week 7 17.11 & 21.11 week 12 19.01 & 23.01 20 10 & 24 10 26.01 & 30.01 week 3 week 8 24 11 & 28 11 week 13 week 4 27 10 & 31 10 week 9 01 12 & 05 12 & 12 12 week 14 02 02 week 5 03 11 & 07 11 week 10 15 12 & 09 01

10 11 & 14 11

week 11

12 01 & 16 01

Grading — Vorlesung

06 10 & 10 10

- first exam on February 2
- registration starts 5 weeks and ends 2 weeks before exam

week 6

week 1

week 2 13.10 week 7 17.11 & 21.11 week 12 19.01 & 23.01 20 10 & 24 10 week 3 week 8 24 11 & 28 11 week 13 26 01 & 30 01 week 4 27 10 & 31 10 week 9 01 12 & 05 12 & 12 12 week 14 02 02 week 5 03 11 & 07 11 week 10 15 12 & 09 01

10 11 & 14 11

week 11

12 01 & 16 01

Grading — Vorlesung

06 10 & 10 10

first exam on February 2 registration starts 5 weeks and ends 2 weeks before exam

week 6

de-registration is possible until 10:00 on January 24

week 1 06 10 & 10 10 week 6 10 11 & 14 11 week 11 12 01 & 16 01 week 2 13.10 week 7 17.11 & 21.11 week 12 19.01 & 23.01 20 10 & 24 10 week 3 week 8 24 11 & 28 11 week 13 26 01 & 30 01 week 4 27 10 & 31 10 week 9 01 12 & 05 12 & 12 12 week 14 02 02 week 5 03 11 & 07 11 week 10 15.12 & 09.01

Grading — Vorlesung

- registration starts 5 weeks and ends 2 weeks before exam
- de-registration is possible until 10:00 on January 24
- second exam on February 26

first exam on February 2

week 1

week 2

week 3

week 4

week 5

first exam on February 2 de-registration is possible until 10:00 on January 24

06 10 & 10 10

20 10 & 24 10

27 10 & 31 10

03 11 & 07 11

13.10

Grading — Vorlesung

registration starts 5 weeks and ends 2 weeks before exam

second exam on February 26

week 6

week 7

week 8

week 9

week 10

third exam on September 25 (on demand)

10 11 & 14 11

17.11 & 21.11

24 11 & 28 11

15.12 & 09.01

01 12 & 05 12 & 12 12

week 11

week 12

week 13

week 14

12 01 & 16 01

19.01 & 23.01

26 01 & 30 01

02 02

score = min
$$\left(\frac{2}{3}(E+P)+B,100\right)$$

score = min $(\frac{2}{3}(E+P)+B,100)$ *E*: points for solved exercises (at most 130)

score = min $(\frac{2}{3}(E+P) + B, 100)$

E: points for solved exercises (at most 130)

score = $\min(\frac{2}{3}(E+P)+B,100)$

E: points for solved exercises (at most 130) B: points for bonus exercises (at most 20)

homework exercises are given on course web site

score = min
$$(\frac{2}{3}(E+P)+B,100)$$

E: points for solved exercises (at most 130)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT

score = min
$$(\frac{2}{3}(E+P) + B, 100)$$

E: points for solved exercises (at most 130)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday

score = min
$$(\frac{2}{3}(E+P) + B, 100)$$

E: points for solved exercises (at most 130)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- 10 points per PS

score = min
$$\left(\frac{2}{3}(E+P)+B,100\right)$$

E: points for solved exercises (at most 130)

B: points for bonus exercises (at most 20)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- 10 points per PS
- two presentations of solutions are mandatory

score = min
$$\left(\frac{2}{3}(E+P)+B,100\right)$$

E: points for solved exercises (at most 130)

B: points for bonus exercises (at most 20)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- ▶ 10 points per PS
- two presentations of solutions are mandatory
- ▶ 20 points for two presentations; additional presentations give bonus points

$$score = min(\frac{2}{3}(E+P)+B,100)$$

E: points for solved exercises (at most 130)

B: points for bonus exercises (at most 20)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- 10 points per PS
- two presentations of solutions are mandatory
- 20 points for two presentations: additional presentations give bonus points
- attendance is compulsory

$$score = min(\frac{2}{3}(E+P)+B,100)$$

E: points for solved exercises (at most 130)

B: points for bonus exercises (at most 20)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- ▶ 10 points per PS
- two presentations of solutions are mandatory
- ▶ 20 points for two presentations; additional presentations give bonus points
- ▶ attendance is compulsory; unexcused absence is allowed twice (resulting in 0 points)

score = min
$$(\frac{2}{3}(E+P)+B,100)$$
 E: points for solved exercises (at most 130)

B: points for bonus exercises (at most 20)

P: points for presentations of solutions (at most 20)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- ▶ 10 points per PS
- two presentations of solutions are mandatory
- 20 points for two presentations; additional presentations give bonus points
- attendance is compulsory; unexcused absence is allowed twice (resulting in 0 points)

25W

evaluation 24W

Literature

Dexter C Kozen
 Automata and Computability
 Springer-Verlag, 1997

Literature

- ► Dexter C Kozen Automata and Computability Springer-Verlag, 1997
- ► Javier Esparza and Michael Blondin Automata Theory: An Algorithmic Approach MIT Press, 2023

Literature

- Dexter C Kozen Automata and Computability Springer-Verlag, 1997
- ▶ Javier Esparza and Michael Blondin Automata Theory: An Algorithmic Approach MIT Press, 2023
- ► Christel Baier and Joost-Pieter Katoen **Principles of Model Checking** MIT Press. 2008

Literature

- Dexter C Kozen
 Automata and Computability
 Springer-Verlag, 1997
- Javier Esparza and Michael Blondin Automata Theory: An Algorithmic Approach MIT Press, 2023
- Christel Baier and Joost-Pieter Katoen Principles of Model Checking MIT Press. 2008
- additional resources will be linked from course website

Literature

Dexter C Kozen
 Automata and Computability
 Springer-Verlag, 1997

Online Material

▶ solutions to selected exercises are available after they have been discussed in PS

Outline

1. Introduction

Organisation Contents

- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

Automata

- ► (deterministic, nondeterministic, alternating) finite automata
- regular expressions
- ▶ (alternating) Büchi automata

Logic

- ► (weak) monadic second-order logic
- Presburger arithmetic
- ► linear-time temporal logic

Automata

- ▶ (deterministic, nondeterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata

Logic

- (weak) monadic second-order logic
- Presburger arithmetic
- ► linear-time temporal logic

Outline

1. Introduction

2. Basic Definitions

- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

▶ alphabet is finite set; its elements are called symbols or letters

- ▶ alphabet is finite set; its elements are called symbols or letters
- \triangleright string over alphabet Σ is finite sequence of elements of Σ

Examples

strings over $\Sigma = \{0, 1\}$: 0 0110

25W

- ► alphabet is finite set; its elements are called symbols or letters
- lacktriangle string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x

Examples

strings over $\, \Sigma = \{ 0, 1 \} \colon \quad 0 \quad \, 0110 \,$

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x
- ightharpoonup empty string is unique string of length 0 and denoted by ϵ

Examples

strings over $\Sigma = \{0,1\}$: 0 0110 ϵ

- ▶ alphabet is finite set; its elements are called symbols or letters
- lacktriangle string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x
- \blacktriangleright empty string is unique string of length 0 and denoted by ϵ
- ightharpoonup Σ^* is set of all strings over Σ $(\varnothing^* = \{\epsilon\})$

Examples

strings over $\Sigma = \{0,1\}$: 0 0110 ϵ

- ▶ alphabet is finite set; its elements are called symbols or letters
- \blacktriangleright string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x
- \blacktriangleright empty string is unique string of length 0 and denoted by ϵ
- $lackbox{} \Sigma^*$ is set of all strings over Σ $\left(\varnothing^*=\{\epsilon\}\right)$
- ▶ language over Σ is subset of Σ^*

Examples

strings over $\Sigma = \{0,1\}$: 0 0110 ϵ

- alphabet is finite set; its elements are called symbols or letters
- \blacktriangleright string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x
- \blacktriangleright empty string is unique string of length 0 and denoted by ϵ
- Σ^* is set of all strings over Σ ($\varnothing^* = \{\epsilon\}$)
- ▶ language over Σ is subset of Σ^*

Examples

strings over $\Sigma = \{0,1\}$: 0 0110 ϵ

languages over Σ :

 \triangleright { ϵ , 0, 1, 00, 01, 10, 11} (all strings having at most two symbols)

- alphabet is finite set; its elements are called symbols or letters
- \triangleright string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x
- \blacktriangleright empty string is unique string of length 0 and denoted by ϵ
- $ightharpoonup \Sigma^*$ is set of all strings over Σ ($\emptyset^* = \{\epsilon\}$)
- ▶ language over Σ is subset of Σ^*

Examples

strings over $\Sigma = \{0,1\}$: 0 0110 ϵ

languages over Σ :

- \triangleright { ϵ , 0, 1, 00, 01, 10, 11} (all strings having at most two symbols)
- \blacktriangleright {x | x is valid program in some machine language}

▶ string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz)$$
 for all $x, y, z \in \Sigma^*$

▶ string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz)$$
 for all $x, y, z \in \Sigma^*$

empty string is identity for concatenation:

$$\epsilon x = x \epsilon = x$$
 for all $x \in \Sigma^*$

▶ string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz)$$
 for all $x, y, z \in \Sigma^*$

empty string is identity for concatenation:

$$\epsilon x = x \epsilon = x$$
 for all $x \in \Sigma^*$

 \blacktriangleright x is substring (prefix, suffix) of y if y = uxv (y = xv, y = ux)

▶ string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz)$$
 for all $x, y, z \in \Sigma^*$

empty string is identity for concatenation:

$$\epsilon x = x \epsilon = x$$
 for all $x \in \Sigma^*$

- \blacktriangleright x is substring (prefix, suffix) of y if y = uxv (y = xv, y = ux)
- $\triangleright x^n (x \in \Sigma^*, n \in \mathbb{N})$:

$$x^0 = \epsilon$$
$$x^{n+1} = x^n x$$

▶ string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz)$$
 for all $x, y, z \in \Sigma^*$

empty string is identity for concatenation:

$$\epsilon x = x \epsilon = x$$
 for all $x \in \Sigma^*$

- \blacktriangleright x is substring (prefix, suffix) of y if y = uxv (y = xv, y = ux)
- $\blacktriangleright x^n (x \in \Sigma^*, n \in \mathbb{N})$:

$$x^0 = \epsilon$$
$$x^{n+1} = x^n x$$

 \blacktriangleright #a(x) (a $\in \Sigma$, x $\in \Sigma$ *) denotes number of a's in x

for $A, B \subseteq \Sigma^*$

universität

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

for $A, B \subseteq \Sigma^*$

▶ union

- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ ▶ intersection

for $A, B \subseteq \Sigma^*$

- ▶ union
- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- ▶ intersection

 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

complement

Automata and Logic

for $A, B \subseteq \Sigma^*$

▶ union

 $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

▶ intersection

 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

complement

 $\sim A = \Sigma^* - A = \{x \in \Sigma^* \mid x \notin A\}$

set concatenation

 $AB = \{xy \mid x \in A \text{ and } y \in B\}$

for $A, B \subseteq \Sigma^*$

- ▶ union
- ▶ intersection
- complement
- set concatenation
- ▶ powers A^n $(n \in \mathbb{N})$

- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
 - $\sim A = \Sigma^* A = \{x \in \Sigma^* \mid x \notin A\}$
 - $AB = \{xy \mid x \in A \text{ and } y \in B\}$
 - $A^0 = \{\epsilon\}$ $A^{n+1} = AA^n$

for $A, B \subseteq \Sigma^*$

- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ union
- intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- $\sim A = \Sigma^* A = \{x \in \Sigma^* \mid x \notin A\}$ complement
- set concatenation $AB = \{xy \mid x \in A \text{ and } y \in B\}$
- $A^0 = \{\epsilon\}$ $A^{n+1} = AA^n$ ightharpoonup powers A^n $(n \in \mathbb{N})$
- asterate A* is union of all finite powers of A

$$A^* = \bigcup_{n \geqslant 0} A^n = \{x_1 x_2 \cdots x_n \mid n \geqslant 0 \text{ and } x_i \in A \text{ for all } 1 \leqslant i \leqslant n\}$$

for $A, B \subseteq \Sigma^*$

- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ union
- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ intersection
- $\sim A = \Sigma^* A = \{x \in \Sigma^* \mid x \notin A\}$ complement
- set concatenation $AB = \{xy \mid x \in A \text{ and } y \in B\}$
- $A^0 = \{\epsilon\}$ $A^{n+1} = AA^n$ ightharpoonup powers A^n $(n \in \mathbb{N})$
- asterate A* is union of all finite powers of A

$$A^* = \bigcup_{n \geqslant 0} A^n = \{x_1 x_2 \cdots x_n \mid n \geqslant 0 \text{ and } x_i \in A \text{ for all } 1 \leqslant i \leqslant n\}$$

 $A^+ = AA^* = \bigcup A^n$

for $A, B \subseteq \Sigma^*$

union

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ intersection
- $\sim A = \Sigma^* A = \{x \in \Sigma^* \mid x \notin A\}$ complement
- set concatenation $AB = \{xy \mid x \in A \text{ and } y \in B\}$
- $A^0 = \{\epsilon\}$ $A^{n+1} = AA^n$ ightharpoonup powers A^n $(n \in \mathbb{N})$
- asterate A* is union of all finite powers of A

$$A^* = \bigcup_{n \geqslant 0} A^n = \{x_1 x_2 \cdots x_n \mid n \geqslant 0 \text{ and } x_i \in A \text{ for all } 1 \leqslant i \leqslant n\}$$

- $A^+ = AA^* = \bigcup A^n$
- $2^A = \{Q \mid Q \subseteq A\}$ power set

universität innsbruck

substrings of 011: 0, 1, 01, 11, 011

 \blacktriangleright substrings of 011: 0, 1, 01, 11, 011, ϵ

Automata and Logic

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ

Automata and Logic

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^0 = \epsilon$

- lacksquare substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^1 = 011$

Automata and Logic

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^2 = 011011$

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011$

Automata and Logic

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$

Automata and Logic

- lacksquare substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- ightharpoonup (011)³ = 011011011 \neq 011³
- \blacktriangleright #1(011011011) = 6 #0(ϵ) = 0

- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ϵ
- \triangleright suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- + #1(011011011) = 6 #0(ϵ) = 0
- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- \blacksquare #1(011011011) = 6 #0(ϵ) = 0
- $\qquad \qquad \blacktriangleright \ \{0,10,111\}\{1,11\} = \{01,101,1111,011,1011,11111\}$
- $\qquad \qquad \blacktriangleright \ \{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$

- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ϵ
- \triangleright suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- + #1(011011011) = 6 #0(ϵ) = 0
- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$
- $\ \ \, \{\,0,01,111\,\}\{\,1,11\,\} = \{\,01,011,1111,0111,11111\,\}$
- $\{1,01\}^0 = \{\epsilon\}$

- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ϵ
- \triangleright suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- + #1(011011011) = 6 #0(ϵ) = 0
- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$
- $\ \ \, \{\,0,01,111\,\}\{\,1,11\,\} = \{\,01,011,1111,0111,11111\,\}$

- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ϵ
- \triangleright suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- + #1(011011011) = 6 #0(ϵ) = 0
- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$
- $\{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$
- $\{1,01\}^2 = \{11,011,101,0101\}$

- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ϵ
- \triangleright suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- + #1(011011011) = 6 #0(ϵ) = 0
- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$
- $\{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$
- {1,01}³ = {111,0111,1011,01011,1101,01101,10101,010101}

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- \blacktriangleright prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- + #1(011011011) = 6 #0(ϵ) = 0
- $\{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$
- $\blacktriangleright \ \{1,01\}^* = \{\epsilon,1,01,11,011,101,0101,111,0111,1011,01011,\ldots\}$

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- + #1(011011011) = 6 #0(ϵ) = 0
- $\blacktriangleright \ \{0,10,111\}\{1,11\} = \{01,101,1111,011,1011,11111\}$

- $\qquad \qquad \mathbf{2}^{\{\,\mathbf{1},\mathbf{01}\,\}} \,=\, \{\,\varnothing,\{\,\mathbf{1}\,\},\{\,\mathbf{01}\,\},\{\,\mathbf{1},\mathbf{01}\,\}\,\}$

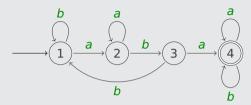
Some Useful Properties

- $\triangleright \varnothing A = A \varnothing = \varnothing$
- $ightharpoonup \sim (A \cup B) = (\sim A) \cap (\sim B)$
- $ightharpoonup \sim (A \cap B) = (\sim A) \cup (\sim B)$
- $\rightarrow A^{m+n} = A^m A^n$
- $A^*A^* = A^*$
- $A^{**} = A^*$
- $A^* = \{\epsilon\} \cup AA^* = \{\epsilon\} \cup A^*A$
- $\triangleright \varnothing^* = \{\epsilon\}$

Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

lecture 1

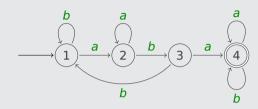


▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - ① Q: finite set of states

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
- ① Q: finite set of states
 - ② Σ : input alphabet

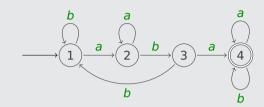
DFA
$$M = (Q, \Sigma, \delta, s, F)$$



- $Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - ① Q: finite set of states
 - **2** Σ: input alphabet
 - 3) $\delta: O \times \Sigma \to O$: transition function

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$

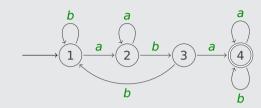
25W

- deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
- (1) O: finite set of states
 - **2** Σ: input alphabet
 - (3) $\delta: O \times \Sigma \to O$: transition function
 - 4 $s \in Q$: start state

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
- ① O: finite set of states
 - ② Σ : input alphabet
 - **3** $\delta: Q \times \Sigma \to Q$: transition function

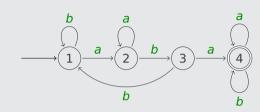
 - (5) $F \subseteq Q$: final (accept) states

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$
 $\delta \mid a \mid b$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

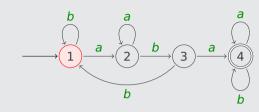
2 $\Sigma = \{a, b\}$
 $\delta \begin{vmatrix} a & b \\ \hline 1 & 2 & 1 \end{vmatrix}$

Automata and Logic

lecture 1

universität

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

lecture 1

4
$$s = 1$$
 3 4

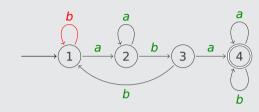
Automata and Logic

6
$$F = \{4\}$$

babaa

19/32

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

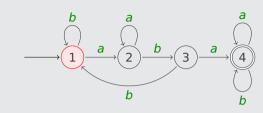
2 $\Sigma = \{a, b\}$
 $\delta \mid a \mid b$
 $1 \mid 2 \mid 1$

4
$$s = 1$$
 3 4 **4 4 5** $F = \{4\}$

Automata and Logic

lecture 1

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ \hline 1 & 2 & 1 \end{vmatrix}$

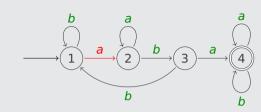
lecture 1

$$\begin{array}{c|cccc} \bullet & \delta \colon Q \times \Sigma \to Q & & 2 & 2 \\ \bullet & s = 1 & & 3 & 4 \end{array}$$

Automata and Logic

6
$$F = \{4\}$$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

lecture 1

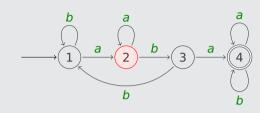
$$F = \{4\}$$

0 s = 1

19/32

Automata and Logic

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

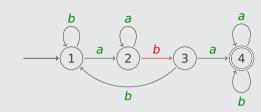
lecture 1

5
$$F = \{4\}$$

Automata and Logic

b a b a a 1 1 2

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

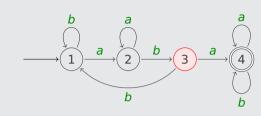
lecture 1

6
$$F = \{4\}$$

Automata and Logic

19/32

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

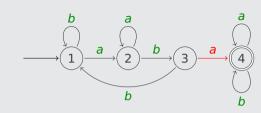
lecture 1

$$\begin{array}{c|cccc} \bullet & \delta \colon Q \times \Sigma \to Q & & 2 & 2 \\ \bullet & s = 1 & & 3 & 4 \end{array}$$

6
$$F = \{4\}$$

Automata and Logic

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

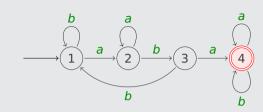
2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

lecture 1

6
$$F = \{4\}$$

Automata and Logic

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

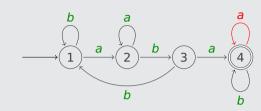
lecture 1

4
$$S = 1$$
 3 $A = 1$ **4** $A = 4$ **4** $A = 4$

Automata and Logic

19/32

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

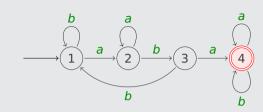
2 $\Sigma = \{a, b\}$
3 $A = b$

4
$$s = 1$$
 3 4 4 5 $F = \{4\}$

Automata and Logic

lecture 1

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A B B$
1 2 1

lecture 1

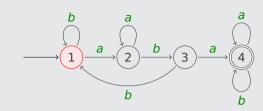
6
$$F = \{4\}$$

Automata and Logic

19/32

0 s = 1

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



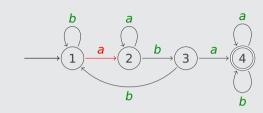
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

Automata and Logic

3. Deterministic Finite Automata 19/32

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



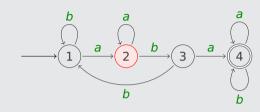
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

Automata and Logic

lecture 1

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



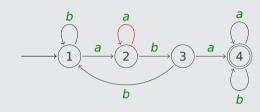
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

$$3 \quad \delta \colon Q \times \Sigma \to Q \qquad \qquad 2 \quad 2 \quad 3$$

4
$$S = 1$$
 5 $S = \{4\}$ **4** $A = \{4\}$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

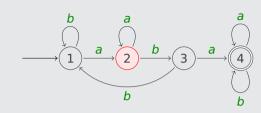
2 $\Sigma = \{a, b\}$
3 $A = b$

$$3 \quad \delta \colon Q \times \Sigma \to Q \qquad \qquad 2 \quad 2 \quad 3$$

4
$$S = 1$$
 3 $A = 1$ **4** $A = 4$ **4** $A = 4$

universität

DFA
$$M = (Q, \Sigma, \delta, s, F)$$

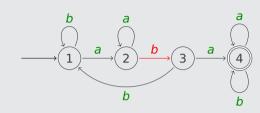


1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

6
$$F = \{4\}$$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

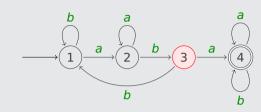
2 $\Sigma = \{a, b\}$
3 $A B B$

4
$$s = 1$$

6 $F = \{4\}$

6
$$F = \{4\}$$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

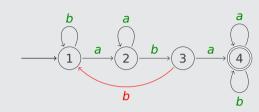
Automata and Logic

lecture 1

3. Deterministic Finite Automata

0 s = 1

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



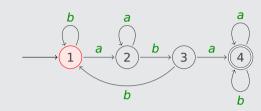
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

4
$$S = 1$$
 3 $A = 1$ **4** $A = 4$ **4** $A = 4$

25W

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



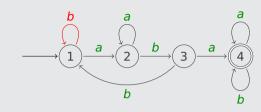
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A B B$

$$3 \quad \delta \colon Q \times \Sigma \to Q \qquad \qquad 2 \qquad 2 \qquad 3$$

4
$$S = 1$$
 3 $A = 1$ **4** $A = 4$ **4** $A = 4$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

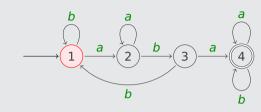
2 $\Sigma = \{a, b\}$
3 $A = b$

$$F = \{4\}$$

0 s = 1

$$F = \{4\}$$

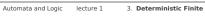
DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

universität innsbruck



- \blacktriangleright deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
- (1) O: finite set of states
 - Σ : input alphabet
 - (3) $\delta: O \times \Sigma \to O$: transition function
 - **4** $s \in Q$: start state
 - **5** $F \subseteq Q$: final (accept) states
- $ightharpoonup \hat{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q,\epsilon) = q$$

$$\widehat{\delta}(q,xa) = \delta(\widehat{\delta}(q,x),a)$$

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - (1) O: finite set of states
 - Σ : input alphabet
 - (3) $\delta: O \times \Sigma \to O$: transition function
 - **4** $s \in Q$: start state
 - **5** $F \subseteq Q$: final (accept) states
- $lackbrack \widehat{\delta} \colon Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q,\epsilon)=q$$

$$\widehat{\delta}(q,xa) = \delta(\widehat{\delta}(q,x),a)$$

▶ string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s,x) \in F$

- deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - (1) O: finite set of states
 - **2** Σ: input alphabet
 - (3) $\delta: O \times \Sigma \to O$: transition function
 - **4** $s \in Q$: start state
 - **5** $F \subseteq Q$: final (accept) states
- $lackbrack \widehat{\delta} \colon Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q,\epsilon) = q$$
 $\widehat{\delta}(q,xa) = \delta(\widehat{\delta}(q,x),a)$

- ▶ string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s,x) \in F$
- ▶ string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s,x) \notin F$

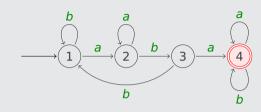
- deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
- (1) O: finite set of states
 - **2** Σ: input alphabet
 - (3) $\delta: O \times \Sigma \to O$: transition function
 - **4**) $s \in O$: start state
 - (5) $F \subset O$: final (accept) states
- lackbrace $\widehat{\delta}: O \times \Sigma^* \to O$ is inductively defined by

$$\widehat{\delta}(q,\epsilon)=q$$

- ▶ string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s,x) \in F$
- ▶ string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s,x) \notin F$
- ▶ language accepted by M: $L(M) = \{x \in \Sigma^* \mid \widehat{\delta}(s,x) \in F\}$

 $\widehat{\delta}(q,xa) = \delta(\widehat{\delta}(q,x),a)$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



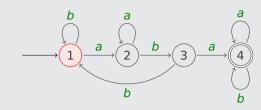
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

3
$$\delta: Q \times \Sigma \to Q$$
 2 2 3 4 1

6
$$F = \{4\}$$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$

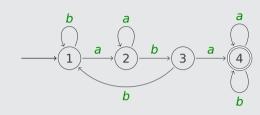


1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

4
$$S = 1$$
 3 $A = 1$ **4** $A = 4$ **4** $A = 4$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



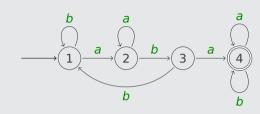
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

$$L(M) = \{x \in \Sigma^* \mid$$

 $\mathbf{3} \quad \delta \colon Q \times \Sigma \to Q$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
2 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

5
$$F = \{4\}$$

 $L(M) = \{x \in \Sigma^* \mid x \text{ contains } aba \text{ as substring} \}$

4 s = 1

- deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
- (1) O: finite set of states
 - **2** Σ: input alphabet
 - (3) $\delta: O \times \Sigma \to O$: transition function
 - **4**) $s \in O$: start state
 - **5** $F \subseteq Q$: final (accept) states

lackbrace $\widehat{\delta}: O \times \Sigma^* \to O$ is inductively defined by

$$\widehat{\delta}(q,\epsilon)=q$$

- ▶ string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s,x) \in F$
- ▶ string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s,x) \notin F$
- ▶ language accepted by M: $L(M) = \{x \in \Sigma^* \mid \widehat{\delta}(s,x) \in F\}$
- ▶ set $A \subseteq \Sigma^*$ is regular if A = L(M) for some DFA M

 $\widehat{\delta}(a, xa) = \delta(\widehat{\delta}(a, x), a)$

Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- **5. Closure Properties**
- 6. Further Reading

Question

What is the language accepted by the DFA given by the following transition table?

Here the arrow indicates the start state and $\it F$ marks the final states.

- $B \sim (\{a,b\}^*\{aa\})$
- **c** the set of all strings over $\{a,b\}$ not containing two consecutive a's
- **D** the set of all strings over $\{a,b\}$ with an odd number of a's and an even number of b's

Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

Theorem

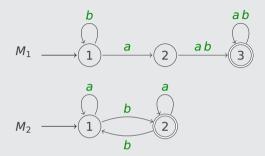
regular sets are effectively closed under intersection

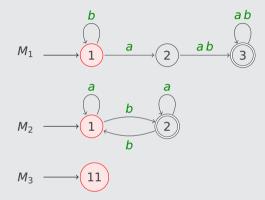
universität

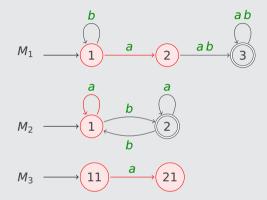
Theorem

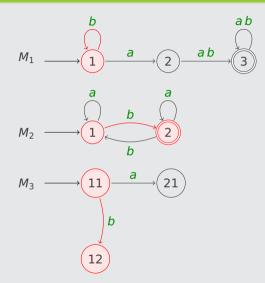
universität

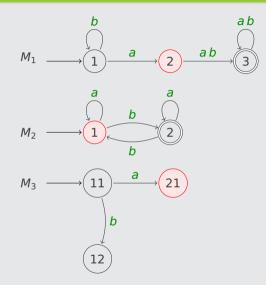
regular sets are effectively closed under intersection

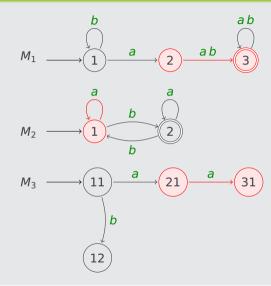


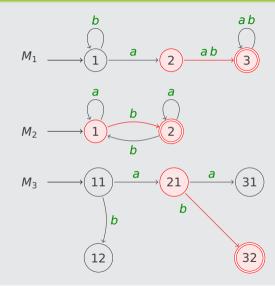


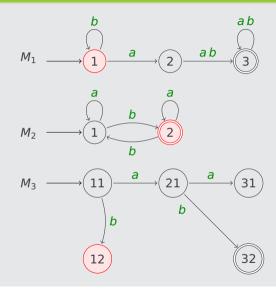


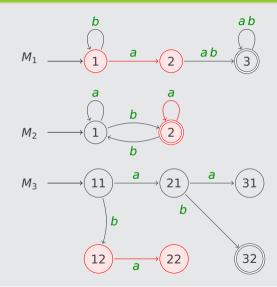


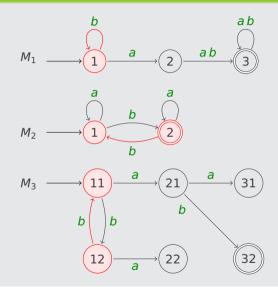


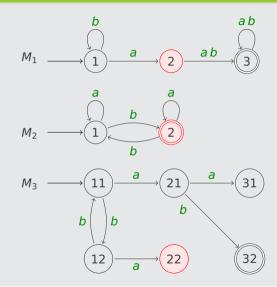


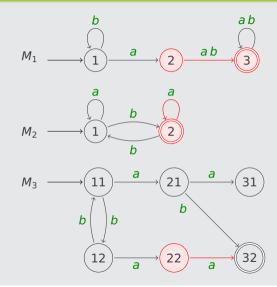


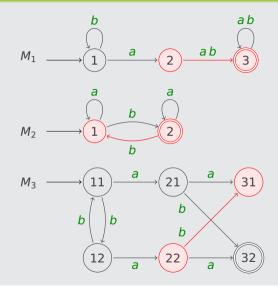


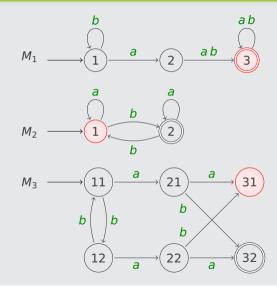


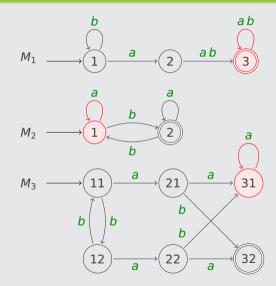


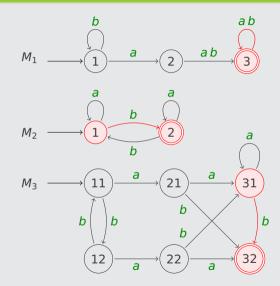


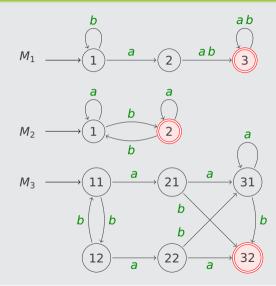


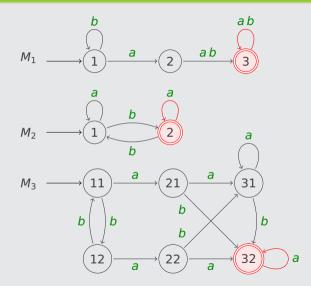


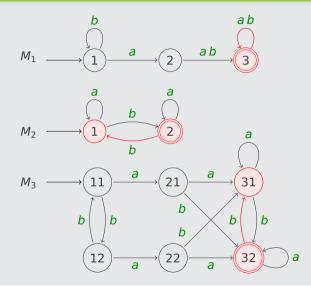


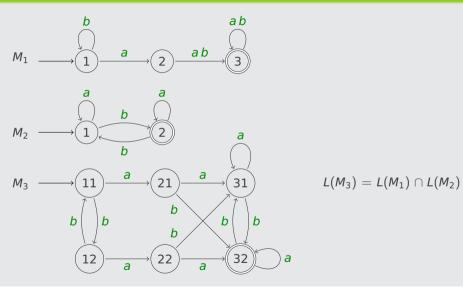












regular sets are effectively closed under intersection

Proof

$$lacksquare$$
 $A=L(M_1)$ for DFA $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$

$$B=L(M_2)$$
 for DFA $M_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$

Automata and Logic

regular sets are effectively closed under intersection

Proof

- $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- \blacktriangleright $A \cap B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with

5. Closure Properties

- ► $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- $lackbox{ A}\cap {\color{blue}B}={\color{blue}L(M_3)}$ for DFA $M_3=({\color{blue}Q_3},{\color{blue}\Sigma},{\color{blue}\delta_3},{\color{blue}s_3},{\color{blue}F_3})$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$

- ► $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- \blacktriangleright $A \cap B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$
 - ② $F_3 = F_1 \times F_2$

- $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
 - $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- $ightharpoonup A \cap B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$
 - **2** $F_3 = F_1 \times F_2$
 - $\mathbf{3}$ $s_3 = (s_1, s_2)$

regular sets are effectively closed under intersection

- $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
 - $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- \blacktriangleright $A \cap B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$
 - **2** $F_3 = F_1 \times F_2$
 - $\mathbf{3}$ $s_3 = (s_1, s_2)$
 - \bullet $\delta_3((p,q),a) = (\delta_1(p,a),\delta_2(q,a))$ for all $p \in Q_1, q \in Q_2, a \in \Sigma$

regular sets are effectively closed under intersection

- $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- \blacktriangleright $A \cap B = L(M_3)$ for DFA $M_3 = (O_3, \Sigma, \delta_3, S_3, F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$
 - (2) $F_3 = F_1 \times F_2$
 - $\mathbf{3}$ $s_3 = (s_1, s_2)$
 - \bullet $\delta_3((p,q),a) = (\delta_1(p,a),\delta_2(q,a))$ for all $p \in Q_1, q \in Q_2, a \in \Sigma$
- $\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x))$ for all $x \in \Sigma^*$ claim: proof of claim: easy induction on |x| (on next slide)

regular sets are effectively closed under intersection

Proof (product construction)

- ► $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- ightharpoonup $A\cap B=L(M_3)$ for DFA $M_3=(Q_3,\Sigma,\delta_3,s_3,F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$
 - ② $F_3 = F_1 \times F_2$
 - $\mathbf{3}$ $s_3 = (s_1, s_2)$
- roof of claim: $\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x))$ for all $x \in \Sigma^*$ proof of claim: easy induction on |x| (on next slide)

claim:
$$\widehat{\delta_3}((p,q),x)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$
 for all $x\in \Sigma^*$

▶ base case: |x| = 0

claim:
$$\widehat{\delta_3}((p,q),x)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$
 for all $x\in \Sigma^*$

▶ base case: |x| = 0 and thus $x = \epsilon$

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$
 for all $x \in \Sigma^*$

• base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

claim:
$$\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x))$$
 for all $x \in \Sigma^*$

• base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

▶ induction step: |x| > 0

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$
 for all $x \in \Sigma^*$

• base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

▶ induction step: |x| > 0 and thus x = ya with |y| = |x| - 1

claim:
$$\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x))$$
 for all $x \in \Sigma^*$

• base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

• induction step: |x| > 0 and thus x = ya with |y| = |x| - 1

$$\widehat{\delta}_{3}((p,q),x) = \delta_{3}(\widehat{\delta}_{3}((p,q),y),a)$$

(definition of $\widehat{\delta}_3$)

claim:
$$\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x))$$
 for all $x \in \Sigma^*$

▶ base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

• induction step: |x| > 0 and thus x = ya with |y| = |x| - 1

$$\widehat{\delta_3}((p,q),x) = \delta_3(\widehat{\delta_3}((p,q),y),a)$$
$$= \delta_3((\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y)),a)$$

(definition of $\widehat{\delta}_3$) (induction hypothesis)

claim:
$$\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x))$$
 for all $x \in \Sigma^*$

• base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

▶ induction step: |x| > 0 and thus x = ya with |y| = |x| - 1

$$\begin{split} \widehat{\delta}_{3}((p,q),x) &= \delta_{3}(\widehat{\delta}_{3}((p,q),y),a) \\ &= \delta_{3}((\widehat{\delta}_{1}(p,y),\widehat{\delta}_{2}(q,y)),a) \\ &= (\delta_{1}(\widehat{\delta}_{1}(p,y),a),\delta_{2}(\widehat{\delta}_{2}(q,y),a)) \end{split}$$

(definition of $\widehat{\delta}_3$) (induction hypothesis) (definition of δ_3)

claim:
$$\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x))$$
 for all $x \in \Sigma^*$

▶ base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

▶ induction step: |x| > 0 and thus x = ya with |y| = |x| - 1

$$\begin{split} \widehat{\delta_3}((p,q),x) &= \delta_3(\widehat{\delta_3}((p,q),y),a) \\ &= \delta_3((\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y)),a) \\ &= (\delta_1(\widehat{\delta_1}(p,y),a),\delta_2(\widehat{\delta_2}(q,y),a)) \\ &= (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \end{split}$$

- -,

(definition of $\widehat{\delta}_3$)

(definition of δ_3)

(induction hypothesis)

(definition of $\widehat{\delta_1}$ and $\widehat{\delta_2}$)

25W

regular sets are effectively closed under complement

regular sets are effectively closed under complement

$$lacksquare$$
 $A=L(M_1)$ for DFA $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$

regular sets are effectively closed under complement

- \blacktriangleright $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $ightharpoonup \sim A = \Sigma^* A = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ with

regular sets are effectively closed under complement

- lacksquare $A=L(M_1)$ for DFA $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$
- $ightharpoonup \sim A = \Sigma^* A = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ with
 - ① $Q_2 = Q_1$

regular sets are effectively closed under complement

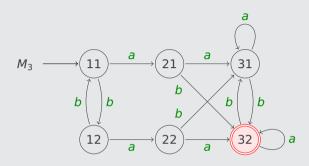
- lacksquare $A=L(M_1)$ for DFA $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$
- $ightharpoonup \sim A = \Sigma^* A = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ with
 - ① $Q_2 = Q_1$
 - ② $\delta_2(q,a) = \delta_1(q,a)$ for all $q \in Q_2$ and $a \in \Sigma$

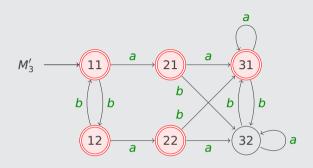
regular sets are effectively closed under complement

- lacksquare $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $ightharpoonup \sim A = \Sigma^* A = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ with
 - ① $Q_2 = Q_1$
 - ② $\delta_2(q,a) = \delta_1(q,a)$ for all $q \in Q_2$ and $a \in \Sigma$
 - 3 $s_2 = s_1$

regular sets are effectively closed under complement

- ightharpoonup $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $ightharpoonup \sim A = \Sigma^* A = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ with
 - ① $Q_2 = Q_1$
 - ② $\delta_2(q,a) = \delta_1(q,a)$ for all $q \in Q_2$ and $a \in \Sigma$
 - 3 $s_2 = s_1$





$$L(M_3') = \sim L(M_3)$$

regular sets are effectively closed under union

regular sets are effectively closed under union

Proof

$$A \cup B = \sim ((\sim A) \cap (\sim B))$$

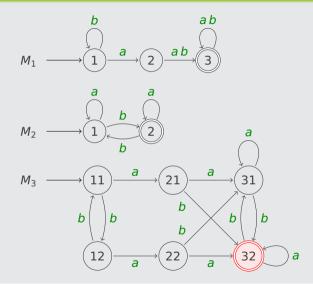
5. Closure Properties

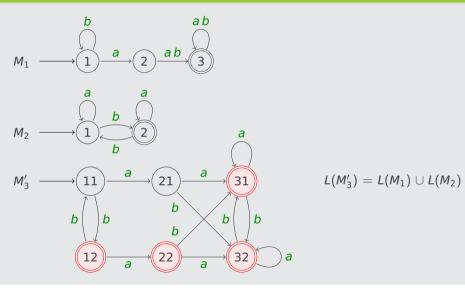
Proof (explicit construction)

• $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$

$$B = L(M_2)$$
 for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

- ightharpoonup $A \cup B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$
 - ② $F_3 = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
 - 3 $s_3 = (s_1, s_2)$
 - \bullet $\delta_3((p,q),a)=(\delta_1(p,a),\delta_2(q,a))$ for all $p\in Q_1$, $q\in Q_2$, $a\in \Sigma$





Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

▶ Lectures 1-4

▶ Lectures 1–4

Important Concepts

- alphabet
- closure properties
- ► DFA

- language
- product construction

- regular set
- string

▶ Lectures 1-4

Important Concepts

- alphabet
- closure properties
- DFA

- language
- product construction

- regular set
- string

homework for October 10

▶ Lectures 1-4

Important Concepts

- alphabet
- closure properties
- ► DFA

- language
- product construction

- regular set
- string

homework for October 10

Solutions

must be uploaded (PDF format) in OLAT before 7 am on Friday

▶ Lectures 1-4

Important Concepts

- alphabet
- closure properties
- DFA

- language
- product construction

- regular set
- string

homework for October 10

Solutions

- must be uploaded (PDF format) in OLAT before 7 am on Friday
- bonus exercises give bonus points