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Definitions

▶ deterministic finite automaton (DFA) is quintuple M = (Q,Σ, δ, s, F) with

1 Q: finite set of states

2 Σ: input alphabet

3 δ : Q× Σ → Q: transition function

4 s ∈ Q: start state

5 F ⊆ Q: final (accept) states

▶ δ̂ : Q× Σ∗ → Q is inductively defined by

δ̂(q, ϵ) = q δ̂(q, xa) = δ(δ̂(q, x), a)

▶ string x ∈ Σ∗ is accepted by M if δ̂(s, x) ∈ F

▶ string x ∈ Σ∗ is rejected by M if δ̂(s, x) /∈ F

▶ language accepted by M: L(M) = {x ∈ Σ∗ | δ̂(s, x) ∈ F}
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Definition

set A ⊆ Σ∗ is regular if A = L(M) for some DFA M

Theorem

regular sets are effectively closed under intersection, union, and complement
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http://cl-informatik.uibk.ac.at/teaching/ws25/al
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Automata

▶ (deterministic, nondeterministic, alternating) finite automata

▶ regular expressions

▶ (alternating) Büchi automata

Logic

▶ (weak) monadic second–order logic

▶ Presburger arithmetic

▶ linear–time temporal logic
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Example

NFA M = (Q,Σ,∆,S, F)

1 2 3

ab

a

b

ab

a

1 Q = {1,2,3}

2 Σ = {a,b}

3 ∆: Q× Σ → 2Q

∆ a b

1 {1,2} {1}
2 {3} {1,3}
3 {3} ∅4 S = {1}

5 F = {3}
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Definitions

▶ nondeterministic finite automaton (NFA) is quintuple N = (Q,Σ,∆,S, F) with

1 Q: finite set of states

2 Σ: input alphabet

3 ∆: Q× Σ → 2Q : transition function

4 S ⊆ Q: set of start states

5 F ⊆ Q: final (accept) states

▶ ∆̂ : 2Q × Σ∗ → 2Q is inductively defined by

∆̂(A, ϵ) = A ∆̂(A, xa) =
⋃

q∈∆̂(A,x)

∆(q, a)

▶ x ∈ Σ∗ is accepted by N if ∆̂(S, x) ∩ F ̸= ∅

▶ L(N) = {x ∈ Σ∗ | ∆̂(S, x) ∩ F ̸= ∅}
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Theorem

every set accepted by NFA is regular

Proof (subset construction)

▶ NFA N = (QN,Σ,∆N,SN, FN)

▶ L(N) = L(M) for DFA M = (QM,Σ, δM, sM, FM) with

1 QM = 2QN

2 δM(A, a) = ∆̂N(A, a) for all A ⊆ QN and a ∈ Σ

3 sM = SN

4 FM = {A ⊆ QN | A ∩ FN ̸= ∅}

▶ claim: δ̂M(A, x) = ∆̂N(A, x) for all A ⊆ QN and x ∈ Σ∗

proof of claim: easy induction on |x|
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Example

1 2 3

ab

a

b

ab

a A = ∅ E = {1,2}
B = {1} F = {1,3}
C = {2} G = {2,3}
D = {3} H = {1,2,3}

a b

A A A

B E B

C D F

D D A

a b

E H F

F H B

G D F

H H F

abbbaababbabbbaababba remove inaccesible states

B E F

H

b

a b

a
b

a
a

b

C D

G A

ab

b

a

ab

ab
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Example

1 2 3

a b c

ϵ ϵ

Cϵ({1}) = {1,2,3}
∆̂({1},b) = {2,3}

Definitions

▶ NFA with ϵ–transitions (NFAϵ) is sextuple N = (Q,Σ, ϵ,∆,S, F) such that

1 ϵ /∈ Σ

2 Nϵ = (Q,Σ ∪ {ϵ},∆,S, F) is NFA over alphabet Σ ∪ {ϵ}

▶ ϵ–closure of set A ⊆ Q is defined as Cϵ(A) =
⋃ {

∆̂Nϵ
(A, x)

∣∣ x ∈ {ϵ}∗
}

▶ ∆̂N : 2Q × Σ∗ → 2Q is inductively defined by

∆̂N(A, ϵ) = Cϵ(A) ∆̂N(A, xa) =
⋃ {

Cϵ(∆(q, a))
∣∣ q ∈ ∆̂N(A, x)

}
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Lemma

Cϵ(A) is least extension of A that is closed under ϵ–transitions:

q ∈ Cϵ(A) =⇒ ∆Nϵ
(q, ϵ) ⊆ Cϵ(A)

Theorem

every set accepted by NFAϵ is regular

Proof (construction)

▶ NFAϵ N1 = (Q,Σ, ϵ,∆1,S, F1)

▶ L(N1) = L(N2) for NFA N2 = (Q,Σ,∆2,S, F2) with

1 ∆2(q, a) = ∆̂1({q}, a) for all q ∈ Q and a ∈ Σ

2 F2 = {q | Cϵ({q}) ∩ F1 ̸= ∅}
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Example

1 2 3

a b c

ϵ ϵ

1 2 3

a b c

ab b c

ab c

25W Automata and Logic lecture 2 3. Epsilon Transitions 14/30

Example

NFAϵ N1 = ({1,2,3}, {a,b, c}, ϵ,∆1, {1}, {3}) with

▶ ∆1 a b c ϵ

1 {1} ∅ ∅ {2}
2 ∅ {2} ∅ {3}
3 ∅ ∅ {3} ∅

1 2 3

a b c

ϵ ϵ

NFA N2 = ({1,2,3}, {a,b, c},∆2, {1}, F2) with

▶ F2 = {q | Cϵ({q}) ∩ {3} ̸= ∅} = {q | 3 ∈ Cϵ({q})} = {1,2,3}

▶ ∆2 a b c

1 {1,2,3} {2,3} {3}
2 ∅ {2,3} {3}
3 ∅ ∅ {3} 1 2 3

a b c

ab b c

ab c

∆2(3,b) = ∆̂1({3},b) =
⋃ {

Cϵ(∆1(q,b))
∣∣ q ∈ ∆̂1({3}, ϵ)

}
= Cϵ( ∅ ) = ∅
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with session ID 4957 9500

Question

What is the language accepted by the NFAϵ given by the following transition table ?

ϵ a b
→ 1 ∅ {2} ∅

2 {3} ∅ ∅
3 ∅ {4} {2}
4 F {1} ∅ ∅

A {xyx | x ∈ {a} and y ∈ {b}∗}

B the set of all strings over {a,b} starting and ending with a

C {xyz | x, z ∈ {a,b} and y ∈ {aab}∗}

D {{a}{b}∗{a}}+
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Theorem

regular sets are effectively closed under union, concatenation, and asterate

Proof

▶ A = L(N1) for NFA N1 = (Q1,Σ,∆1,S1, F1)

B = L(N2) for NFA N2 = (Q2,Σ,∆2,S2, F2)

▶ without loss of generality Q1 ∩ Q2 = ∅

▶ A ∪ B = L(N) for NFA N = (Q,Σ,∆,S, F) with

1 Q = Q1 ∪ Q2

2 S = S1 ∪ S2

3 F = F1 ∪ F2

4 ∆(q, a) =

{
∆1(q, a) if q ∈ Q1

∆2(q, a) if q ∈ Q2
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Example

{x ∈ {a}∗ | |x| is divisible by 3} ∪ {x ∈ {a}∗ | |x| is divisible by 4}

1 2

3

a

aa

1′ 2′

3′4′

a

a

a

a

{x ∈ {a}∗ | |x| is divisible by 3 or 4}
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Theorem

regular sets are effectively closed under union, concatenation, and asterate

Proof

▶ A = L(N1) for NFA N1 = (Q1,Σ,∆1,S1, F1)

B = L(N2) for NFA N2 = (Q2,Σ,∆2,S2, F2)

▶ without loss of generality Q1 ∩ Q2 = ∅

▶ AB = L(N) for NFAϵ N = (Q,Σ, ϵ,∆,S1, F2) with

1 Q = Q1 ∪ Q2

2 ∆(q, a) =


∆1(q, a) if q ∈ Q1 and a ∈ Σ

∆2(q, a) if q ∈ Q2 and a ∈ Σ

S2 if q ∈ F1 and a = ϵ

∅ otherwise
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Example

{x ∈ {a}∗ | |x| is divisible by 3} {x ∈ {a}∗ | |x| is divisible by 4}

1 2

3

a

aa

1′ 2′

3′4′

a

a

a

a

ϵ

{x ∈ {a}∗ | |x| /∈ {1,2,5} }
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Theorem

regular sets are effectively closed under union, concatenation, and asterate

Proof

▶ A = L(N1) for NFA N1 = (Q1,Σ,∆1,S1, F1)

▶ A∗ = L(N) for NFAϵ N = (Q,Σ, ϵ,∆,S, F) with

1 Q = Q1 ⊎ {s}
2 S = {s}
3 F = {s}

4 ∆(q, a) =


∆1(q, a) if q ∈ Q1 and a ∈ Σ

S1 if q = s and a = ϵ

S if q ∈ F1 and a = ϵ

∅ otherwise

25W Automata and Logic lecture 2 5. Closure Properties 23/30

Example

{a}∗{b}∗ 1 2
ab

a b

({a}∗{b}∗)∗ = {a,b}∗ 1 2
ab

a b

0
ϵ

ϵ

ϵ
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Definitions

▶ Hamming distance H(x, y) is number of places where bit strings x and y differ

▶ if |x| ̸= |y| then H(x, y) = ∞
▶ Nk(A) = {x ∈ {0,1}∗ | H(x, y) ⩽ k for some y ∈ A}

Lemma

A ⊆ {0,1}∗ is regular =⇒ N2(A) is regular
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Lemma

A ⊆ {0,1}∗ is regular =⇒ N2(A) is regular

Proof

▶ A = L(M) for DFA M = (QM, {0,1}, δM, sM, FM)
▶ define NFA N = (QN, {0,1},∆N,SN, FN) with

1 QN = QM × {0,1,2}

2 ∆N((p,0), a) = {(q,0) | δM(p, a) = q} ∪ {(q,1) | δM(p,b) = q for some b ̸= a}

∆N((p,1), a) = {(q,1) | δM(p, a) = q} ∪ {(q,2) | δM(p,b) = q for some b ̸= a}

∆N((p,2), a) = {(q,2) | δM(p, a) = q} for all a ∈ Σ

3 SN = {(sM,0)}

4 FN = FM × {0,1,2}
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Proof (cont’d)

▶ key property:

(q, j) ∈ ∆̂N({(p, i)}, y) ⇐⇒ δ̂M(p, x) = q for some x ∈ {0,1}∗

for all p, q ∈ QM, y ∈ {0,1}∗, i, j ∈ {0,1,2} such that |x| = |y| and H(x, y) = j− i

▶ N2(A) = {y | H(y, x) ⩽ 2 for some x ∈ A}

= {y | H(y, x) = k for some x ∈ A and k ∈ {0,1,2}}

= {y | H(y, x) = k and δ̂M(sM, x) = q for some x ∈ A, k ∈ {0,1,2} and q ∈ FM}

= {y | (q, k) ∈ ∆̂N({(sM,0)}, y) for some q ∈ FM and k ∈ {0,1,2}}

= {y | (q, k) ∈ ∆̂N({(sM,0)}, y) for some (q, k) ∈ FN}

= {y | ∆̂N({(sM,0)}, y) ∩ FN ̸= ∅}

= L(N)
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Kozen

▶ Lecture 5 and 6

Important Concepts

▶ ϵ–transition

▶ ϵ–closure

▶ asterate

▶ Hamming distance

▶ NFA

▶ NFAϵ

▶ subset construction

homework for October 24
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http://cl-informatik.uibk.ac.at/teaching/ws25/al/exercises/02.pdf
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