

Automata and Logic

Aart Middeldorp and Samuel Frontull

Definitions

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - ① O: finite set of states
 - 2 Σ : input alphabet
 - ③ δ : $Q \times \Sigma \rightarrow Q$: transition function
 - **4** $s \in Q$: start state
 - ⑤ $F \subseteq Q$: final (accept) states
- $ightharpoonup \widehat{\delta} \colon Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q,\epsilon) = q$$

$$\widehat{\delta}(q, xa) = \delta(\widehat{\delta}(q, x), a)$$

- ▶ string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s,x) \in F$
- ▶ string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s,x) \notin F$
- ▶ language accepted by M: $L(M) = \{x \in \Sigma^* \mid \widehat{\delta}(s,x) \in F\}$

Outline

- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- 5. Closure Properties
- 6. Hamming Distance
- 7. Further Reading

universität 25W Automata and Logic lecture 2 2/30

Definition

set $A \subseteq \Sigma^*$ is regular if A = L(M) for some DFA M

Theorem

regular sets are effectively closed under intersection, union, and complement

Automata

- ▶ (deterministic, nondeterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata

Logic

- ► (weak) monadic second-order logic
- ► Presburger arithmetic
- ► linear-time temporal logic

1. Summary of Previous Lecture

ΔM_{-}

Outline

1. Summary of Previous Lecture

3. Epsilon Transitions

5. Closure Properties

6. Hamming Distance

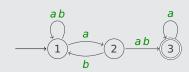
7. Further Reading

4. Intermezzo

2. Nondeterministic Finite Automata

Example

NFA $M = (Q, \Sigma, \Delta, S, F)$



- $Q = \{1, 2, 3\}$
- **2** $\Sigma = \{a, b\}$

- 4 $S = \{1\}$

- **6** $F = \{3\}$

Definitions

- ▶ nondeterministic finite automaton (NFA) is quintuple $N = (Q, \Sigma, \Delta, S, F)$ with
 - ① 0:
- finite set of states
- **②** Σ:
- input alphabet
- ③ $\Delta: Q \times \Sigma \rightarrow 2^Q$: transition function
- **4 5** ⊆ *Q*:

- set of start states
- \mathfrak{S} $F\subseteq Q$:
- final (accept) states
- $ightharpoonup \widehat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}(A,\epsilon) = A$$

$$\widehat{\Delta}(A,\epsilon) = A$$
 $\widehat{\Delta}(A,xa) = \bigcup_{q \in \widehat{\Delta}(A,x)} \Delta(q,a)$

- $\blacktriangleright x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S,x) \cap F \neq \emptyset$
- $\blacktriangleright L(N) = \{x \in \Sigma^* \mid \widehat{\Delta}(S,x) \cap F \neq \emptyset\}$

 $AM_$

Theorem

every set accepted by NFA is regular

Proof (subset construction)

- ▶ NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$
- ▶ L(N) = L(M) for DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ with
 - ① $Q_M = 2^{Q_N}$
 - ② $\delta_M(A,a) = \widehat{\Delta}_N(A,a)$ for all $A \subseteq Q_N$ and $a \in \Sigma$
- ▶ claim: $\widehat{\delta_M}(A,x) = \widehat{\Delta}_N(A,x)$ for all $A \subseteq Q_N$ and $x \in \Sigma^*$ proof of claim: easy induction on |x|

universität 25W Automata and Logic lecture 2 2. **Nondeterministic Finite Automata** Innsbruck

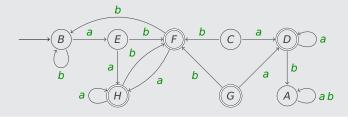
Outline

- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- **5. Closure Properties**
- 6. Hamming Distance
- 7. Further Reading

Example

abbbaababbabbbaababba

remove inaccesible states

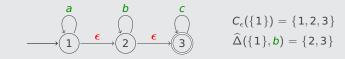


iversität 25W Automata and Logic lecture 2 2. Nondeterministic Finite Automata

Example

 ΔM_{-}

 ΔM_{\perp}



Definitions

- ightharpoonup NFA with ϵ -transitions (NFA $_{\epsilon}$) is sextuple $N=(Q,\Sigma,\epsilon,\Delta,S,F)$ such that
 - ① $\epsilon \notin \Sigma$
 - ② $N_{\epsilon}=(Q,\Sigma\cup\{\epsilon\},\Delta,S,F)$ is NFA over alphabet $\Sigma\cup\{\epsilon\}$
- ▶ ϵ -closure of set $A \subseteq Q$ is defined as $C_{\epsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\epsilon}}(A, x) \mid x \in \{\epsilon\}^*\}$
- ▶ $\widehat{\Delta}_{\mathbf{N}} \colon 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A,\epsilon) = \mathbf{C}_{\epsilon}(A) \qquad \qquad \widehat{\Delta}_N(A,xa) = \bigcup \left\{ \mathbf{C}_{\epsilon}(\Delta(q,a)) \mid q \in \widehat{\Delta}_N(A,x) \right\}$$

Lemma

 $C_{\epsilon}(A)$ is least extension of A that is closed under ϵ -transitions:

$$q \in C_{\epsilon}(A) \implies \Delta_{N_{\epsilon}}(q, \epsilon) \subseteq C_{\epsilon}(A)$$

Theorem

every set accepted by NFA_€ is regular

Proof (construction)

- $ightharpoonup NFA_{\epsilon} N_1 = (Q, \Sigma, \epsilon, \Delta_1, S, F_1)$
- ▶ $L(N_1) = L(N_2)$ for NFA $N_2 = (Q, \Sigma, \Delta_2, S, F_2)$ with
 - ① $\Delta_2(q,a) = \widehat{\Delta}_1(\{q\},a)$ for all $q \in Q$ and $a \in \Sigma$
 - ② $F_2 = \{ q \mid C_{\epsilon}(\{q\}) \cap F_1 \neq \emptyset \}$

Example

 ΔM_{\perp}

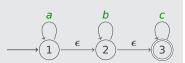
25W Automata and Logic lecture 2

 $AM_$

Example

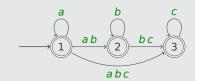
 $NFA_{\epsilon} N_1 = (\{1,2,3\}, \{a,b,c\}, \epsilon, \Delta_1, \{1\}, \{3\}) \text{ with }$

Ø Ø {3} Ø



NFA $N_2 = (\{1,2,3\}, \{a,b,c\}, \Delta_2, \{1\}, F_2)$ with

- ► $F_2 = \{q \mid C_{\epsilon}(\{q\}) \cap \{3\} \neq \emptyset\} = \{q \mid 3 \in C_{\epsilon}(\{q\})\} = \{1,2,3\}$
- $\{1,2,3\}$ $\{2,3\}$ $\{3\}$ 2 Ø



Outline

- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- **5. Closure Properties**
- **6.** Hamming Distance
- 7. Further Reading

Particify with session ID 4957 9500

Question

What is the language accepted by the NFA_e given by the following transition table?

		ϵ	а	b
\rightarrow	1	Ø	{2}	Ø
	2	{3}	Ø	Ø
	3	Ø	{4}	{2}
	4 <i>F</i>	{1}	Ø	Ø

- **A** $\{xyx \mid x \in \{a\} \text{ and } y \in \{b\}^*\}$
- B the set of all strings over $\{a, b\}$ starting and ending with a
- $\{xyz \mid x, z \in \{a, b\} \text{ and } y \in \{aab\}^*\}$
- $D \{\{a\}\{b\}^*\{a\}\}^+$

AM

Outline

- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- 5. Closure Properties
- **6.** Hamming Distance
- 7. Further Reading

 $AM_$

Theorem

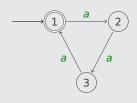
regular sets are effectively closed under union, concatenation, and asterate

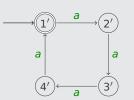
Proof

- \blacktriangleright $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
 - $B = L(N_2)$ for NFA $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- lacktriangle without loss of generality $Q_1 \cap Q_2 = \varnothing$
- ▶ $A \cup B = L(N)$ for NFA $N = (Q, \Sigma, \Delta, S, F)$ with
 - ① $Q = Q_1 \cup Q_2$
 - ② $S = S_1 \cup S_2$
 - 3 $F = F_1 \cup F_2$

Example

 $\{x \in \{a\}^* \mid |x| \text{ is divisible by 3}\} \quad \bigcup \quad \{x \in \{a\}^* \mid |x| \text{ is divisible by 4}\}$





 $\{x \in \{a\}^* \mid |x| \text{ is divisible by 3 or 4}\}$

Theorem

regular sets are effectively closed under union, concatenation, and asterate

Proof

- \blacktriangleright $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
 - $B = L(N_2)$ for NFA $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- without loss of generality $Q_1 \cap Q_2 = \emptyset$
- ightharpoonup AB = L(N) for NFA_{\epsilon} $N = (Q, \Sigma, \epsilon, \Delta, S_1, F_2)$ with
 - ① $Q = Q_1 \cup Q_2$

$$egin{aligned} \mathfrak{D}(q,a) &= egin{cases} \Delta_1(q,a) & ext{if } q \in Q_1 ext{ and } a \in \Sigma \ \Delta_2(q,a) & ext{if } q \in Q_2 ext{ and } a \in \Sigma \ S_2 & ext{if } q \in F_1 ext{ and } a = \epsilon \ \varnothing & ext{otherwise} \end{cases} \end{aligned}$$

25W Automata and Logic lecture 2

Example $\{x \in \{a\}^* \mid |x| \text{ is divisible by 3}\}$ $\{x \in \{a\}^* \mid |x| \text{ is divisible by 4}\}$ $\{x \in \{a\}^* \mid |x| \notin \{1,2,5\} \}$

 $AM_$ 25W Automata and Logic lecture 2

Theorem

regular sets are effectively closed under union, concatenation, and asterate

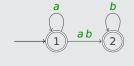
Proof

- \blacktriangleright $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $ightharpoonup A^* = L(N)$ for NFA_{\(\epsilon\)} $N = (Q, \Sigma, \(\epsilon\), \(\epsilon\), <math>S, F)$ with
 - ① $Q = Q_1 \uplus \{s\}$
 - ② $S = \{s\}$

Example

$${a}^*{b}^*$$

$$({a}^*{b}^*)^* = {a,b}^*$$



$$\begin{array}{c|c}
 & \epsilon & b \\
\hline
 & 1 & ab \\
\hline
 & \epsilon & 2
\end{array}$$

AM

Outline

- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- 5. Closure Properties
- 6. Hamming Distance
- 7. Further Reading

_A_M_

Definitions

- **Hamming distance** H(x,y) is number of places where bit strings x and y differ
- ▶ if $|x| \neq |y|$ then $H(x, y) = \infty$
- ▶ $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \leq k \text{ for some } y \in A\}$

Lemma

 $A \subset \{0,1\}^*$ is regular $\implies N_2(A)$ is regular

Lemma

 $A \subseteq \{0,1\}^*$ is regular $\implies N_2(A)$ is regular

Proof

- ▶ A = L(M) for DFA $M = (Q_M, \{0, 1\}, \delta_M, s_M, F_M)$
- ▶ define NFA $N = (Q_N, \{0,1\}, \Delta_N, S_N, F_N)$ with
 - ① $Q_N = Q_M \times \{0, 1, 2\}$
 - ② $\Delta_N((p,0),a) = \{(q,0) \mid \delta_M(p,a) = q\} \cup \{(q,1) \mid \delta_M(p,b) = q \text{ for some } b \neq a\}$ $\Delta_N((p,1),a) = \{(q,1) \mid \delta_M(p,a) = q\} \cup \{(q,2) \mid \delta_M(p,b) = q \text{ for some } b \neq a\}$ $\Delta_N((p,2),a) = \{(q,2) \mid \delta_M(p,a) = q\}$ for all $a \in \Sigma$
 - $S_N = \{(s_M, 0)\}$
 - **4** $F_N = F_M \times \{0, 1, 2\}$

Proof (cont'd)

key property:

$$(q,j) \in \widehat{\Delta}_N(\{(p,i)\},y) \iff \widehat{\delta_M}(p,x) = q \text{ for some } x \in \{0,1\}^*$$

for all $p, q \in Q_M$, $y \in \{0, 1\}^*$, $i, j \in \{0, 1, 2\}$ such that |x| = |y| and H(x, y) = j - i

- ► $N_2(A) = \{ y \mid H(y, x) \leq 2 \text{ for some } x \in A \}$
 - $= \{ y \mid H(y, x) = k \text{ for some } x \in A \text{ and } k \in \{0, 1, 2\} \}$
 - $= \{y \mid H(y,x) = k \text{ and } \widehat{\delta_M}(s_M,x) = q \text{ for some } x \in A, k \in \{0,1,2\} \text{ and } q \in F_M\}$
 - $= \{y \mid (q,k) \in \widehat{\Delta}_N(\{(s_M,0)\},y) \text{ for some } q \in F_M \text{ and } k \in \{0,1,2\}\}$
 - $= \{y \mid (q,k) \in \widehat{\Delta}_N(\{(s_M,0)\},y) \text{ for some } (q,k) \in F_N\}$
 - $= \{ y \mid \widehat{\Delta}_N(\{(s_M, 0)\}, y) \cap F_N \neq \emptyset \}$

 - = L(N)

 ΔM_{-}

 ΔM_{-}

Outline

- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- 5. Closure Properties
- 6. Hamming Distance
- 7. Further Reading

Kozen

► Lecture 5 and 6

Important Concepts

- $ightharpoonup \epsilon$ -transition
- ► Hamming distance
- $ightharpoonup \mathsf{NFA}_\epsilon$

- ightharpoonup ϵ -closure
- ► NFA

subset construction

asterate

homework for October 24

universität 25W Automata and Logic lecture 2 7. Further Reading