

Automata and Logic

Aart Middeldorp and Samuel Frontull

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Definitions

- nondeterministic finite automaton (NFA) is quintuple $N = (Q, \Sigma, \Delta, S, F)$ with
 - ① O: finite set of states
 - Σ : input alphabet
 - (3) $\Delta: O \times \Sigma \to 2^{Q}$: transition function
 - 4 $S \subset Q$: set of start states
 - (5) $F \subset O$: final (accept) states
- $ightharpoonup \widehat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}(A,\epsilon)=A$$

$$\widehat{\Delta}(A, xa) = \bigcup_{q \in \widehat{\Delta}(A, x)} \Delta(q, a)$$

 \blacktriangleright $x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S,x) \cap F \neq \emptyset$

Theorem

every set accepted by NFA is regular

Definitions

- ▶ NFA with ϵ -transitions (NFA $_{\epsilon}$) is sextuple $N = (Q, \Sigma, \epsilon, \Delta, S, F)$ such that
 - ① $\epsilon \notin \Sigma$
 - ② $M_{\epsilon}=(Q,\Sigma\cup\{\epsilon\},\Delta,S,F)$ is NFA over alphabet $\Sigma\cup\{\epsilon\}$
- ▶ ϵ -closure of set $A \subseteq Q$ is defined as $C_{\epsilon}(A) = \bigcup \left\{\widehat{\Delta}_{N_{\epsilon}}(A, x) \mid x \in \{\epsilon\}^*\right\}$
- $lackbox{}\widehat{\Delta}_{\it N}\colon 2^{\it Q} imes \Sigma^* o 2^{\it Q}$ is inductively defined by

$$\widehat{\Delta}_{N}(A,\epsilon) = \mathbf{C}_{\epsilon}(A) \qquad \qquad \widehat{\Delta}_{N}(A,xa) = \bigcup \left\{ \mathbf{C}_{\epsilon}(\Delta(q,a)) \mid q \in \widehat{\Delta}_{N}(A,x) \right\}$$

Theorem

- every set accepted by NFA_ε is regular
- regular sets are effectively closed under union, concatenation, and asterate

Automata

- ► (deterministic, nondeterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata

Logic

- ► (weak) monadic second-order logic
- Presburger arithmetic
- ► linear-time temporal logic

1. Summary of Previous Lecture

2. Regular Expressions

- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Definitions

▶ regular expression α over alphabet Σ :

$$\mathbf{a} \in \Sigma$$
 $\boldsymbol{\epsilon}$

$$\epsilon$$

$$\beta + \gamma$$
 $\beta \gamma$

 \blacktriangleright set of strings $L(\alpha) \subseteq \Sigma^*$ matched by regular expression α :

$$L(a) = \{a\}$$

 $L(\emptyset) = \emptyset$

$$L(\epsilon) = \{\epsilon\}$$

$$L(\beta + \gamma) = L(\beta) \cup L(\gamma)$$

$$L(\beta\gamma) = L(\beta)L(\gamma)$$

$$L(\beta^*) = L(\beta)^*$$

Example

regular expression $(a+b)^*b$ matches all strings over $\Sigma = \{a,b\}$ that end with b

Definition

regular expressions α and β are equivalent $(\alpha \equiv \beta)$ if $L(\alpha) = L(\beta)$

Theorem

finite automata and regular expressions are equivalent:

 $\text{for all } \textit{A} \subseteq \Sigma^* \quad \textit{A} \text{ is regular } \iff \textit{A} = \textit{L}(\alpha) \text{ for some regular expression } \alpha$

$oxed{\mathsf{Proof}}$ (eq)

induction on regular expression $\, \alpha \,$

 $L(\beta)$ and $L(\gamma)$ are regular according to induction hypothesis

 \implies L(lpha) is regular according to closure properties of regular sets

Lemma (Arden's Lemma)

if A, B, $X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subseteq A^*B$$

- ▶ let $x \in X = AX \cup B$
- ightharpoonup induction on |x|
- $\blacktriangleright x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - $\rightarrow x \in B \implies x \in A^*B$ because $\epsilon \in A^*$

$X \supset A^*B$

- $\blacktriangleright x \in A^*B \implies x = x_1 \cdots x_k y$ for some $x_1, \ldots, x_k \in A$ and $y \in B$
- \triangleright induction on k
 - $k = 0 \implies x = y \in B \subseteq X$
 - $k > 0 \implies x_2 \cdots x_k v \in X \implies x \in AX \subseteq X$

Theorem

finite automata and regular expressions are equivalent:

for all $A\subseteq \Sigma^*$ A is regular \iff $A=L(\alpha)$ for some regular expression α

Proof (\Longrightarrow)

given NFA $N=(Q,\Sigma,\Delta,S,F)$ with $Q=\{1,\ldots,n\}$ and $S=\{1\}$

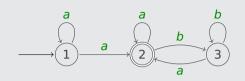
define system of equations

$$X_i = \left(\bigcup_{a \in \Sigma} \bigcup_{j \in \Delta(i,a)} \{a\} X_j\right) \cup \begin{cases} \{\epsilon\} & \text{if } i \in F \\ \emptyset & \text{otherwise} \end{cases}$$

with unknowns X_1, \ldots, X_n

ightharpoonup transform X_1 into regular expression by successive substitution and Arden's lemma

Example



$$X_1=aX_1+aX_2$$
 $X_2=aX_2+bX_3+\epsilon$ $X_3=aX_2+bX_3$ $X_1=a^*aX_2$ $X_2=a^*(bX_3+\epsilon)$ $X_3=b^*aX_2$ (Arden's lemma) $X_1=a^*aX_2$ $X_2=a^*(bb^*aX_2+\epsilon)$ (substitute) $X_1=a^*aX_2$ $X_2=a^*bb^*aX_2+a^*$ (distribute) $X_1=a^*aX_2$ $X_2=(a^*bb^*a)^*a^*$ (Arden's lemma) $X_1=a^*a(a^*bb^*a)^*a^*$ (substitute)

25W

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Particify with session ID 4957 9500

Question

Which of the following strings belong to $L((a + ba + bab)^*)$?

- Α
- _ . .
- в ababa
- **c** all strings over $\{a,b\}$ that start with a
- **D** all strings over $\{a,b\}$ that do not contain two consecutive b's

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

regular sets are effectively closed under homomorphic image and preimage

Definitions

▶ homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\epsilon) = \epsilon$$

$$h(xy) = h(x)h(y)$$

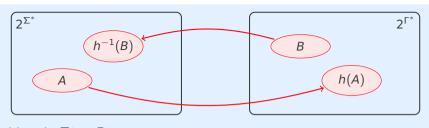
so homomorphism is completely determined by its effect on Σ

▶ if $A \subseteq \Sigma^*$ then $h(A) = \{h(x) \mid x \in A\} \subseteq \Gamma^*$

"image of A under h"

▶ if $B \subseteq \Gamma^*$ then $h^{-1}(B) = \{x \mid h(x) \in B\} \subseteq \Sigma^*$

"preimage of B under h"



- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- $h^{-1}(h(A)) \supset A$
- ▶ $h(h^{-1}(B)) \subseteq B$

Example

$$\Sigma = \Gamma = \{0,1\}$$
 $h(0) = 11$ $h(1) = 1$ $A = B = \{0\}$

- $h^{-1}(h(A)) = h^{-1}(\{11\}) = \{0,11\} \supseteq A$
- $h(h^{-1}(B)) = h(\emptyset) = \emptyset \subseteq B$

Example

$$A \subseteq \{0,1\}^*$$
 is regular $\implies \{xy \mid x1y \in A\}$ is regular

- $\Sigma = \{0,1\} \text{ and } \Gamma = \{0,1,2\}$
- ightharpoonup define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \epsilon$

- ▶ $h^{-1}(A) = \{x \in \Gamma^* \mid h(x) \in A\}$
- $h^{-1}(A) \cap L((0+1)^*2(0+1)^*) = \{x2v \mid x1v \in A\}$
- $\{xy \mid x1y \in A\} = i(h^{-1}(A) \cap L((0+1)^*2(0+1)^*))$ is regular

Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof

- ▶ NFA $M = (Q, \Gamma, \Delta, S, F)$
- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- $h^{-1}(L(M)) = L(M')$ for NFA $M' = (Q, \Sigma, \Delta', S, F)$ with $\Delta'(q, a) = \widehat{\Delta}(\{q\}, h(a))$
- ▶ claim: $\widehat{\Delta'}(A,x) = \widehat{\Delta}(A,h(x))$ for all $A \subseteq Q$ and $x \in \Sigma^*$ proof of claim: easy induction on |x|

Example

DFA M

▶ homomorphism $h: \{a,b,c\}^* \rightarrow \{a,b\}^*$

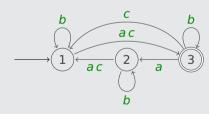
$$h(a) = aa$$

$$h(b) = \epsilon$$

$$h(c) = bab$$

▶ DFA M'

universität



$$\delta'(3,c) = \widehat{\delta}(3,bab) = 1$$

regular sets are effectively closed under homomorphic image and preimage

Proof

- ▶ regular expression α over Σ
- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- ▶ $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$$a' = h(a)$$
 for $a \in \Sigma$ $(\beta + \gamma)' = \beta' + \gamma'$
 $\epsilon' = \epsilon$ $(\beta \gamma)' = \beta' \gamma'$
 $\emptyset' = \emptyset$ $\beta^{*'} = \beta'^{*}$

Definitions

- ▶ Hamming distance H(x, y) is number of places where bit strings x and y differ
- if $|x| \neq |y|$ then $H(x,y) = \infty$
- ▶ $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \le k \text{ for some } y \in A\}$

Lemma

 $A \subseteq \{0,1\}^*$ is regular $\implies \forall k \in \mathbb{N}$ $N_k(A)$ is regular

Proof

 $D_k = \{x \in (\{0,1\} \times \{0,1\})^* \mid x \text{ contains at most } k \text{ pairs } (0,1) \text{ or } (1,0)\}$ is regular $= \{x \in (\{0,1\} \times \{0,1\})^* \mid H(fst(x), snd(x)) \leq k\}$ $N_{\nu}(A) = \operatorname{fst}(\operatorname{snd}^{-1}(A) \cap D_{\nu})$

Example

- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

▶ $fst(snd^{-1}(A) \cap D_k)$ consists of

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Remark

most decision problems concerning regular sets are decidable

Theorem

problems

instance: DFA M and string x

question: $x \in L(M)$?

instance: DFA M

question: $L(M) = \emptyset$?

instance: DFAs M and N question: L(M) = L(N)?

are decidable

Remark

representation of regular sets (DFA, NFA, regular expression) may affect complexity of decision problems

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Kozen

▶ Lecture 7–10

Important Concepts

- Arden's lemma
- homomorphism

- homomorphic image
- homomorphic preimage

homework for October 24

regular expression