

Automata and Logic

Aart Middeldorp and Samuel Frontull

Definitions

- ▶ nondeterministic finite automaton (NFA) is quintuple $N = (Q, \Sigma, \Delta, S, F)$ with
 - ① Q:

finite set of states

input alphabet

② Σ:

3 $\Delta: Q \times \Sigma \to \mathbf{2}^Q$: transition function

4 5 C *Q*:

set of start states

 \mathfrak{S} $F \subseteq Q$:

final (accept) states

▶ $\widehat{\Delta}$: $2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}(A,\epsilon)=A$$

$$\widehat{\Delta}(A, xa) = \bigcup_{q \in \widehat{\Delta}(A, x)} \Delta(q, a)$$

 $\blacktriangleright x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S,x) \cap F \neq \emptyset$

Theorem

every set accepted by NFA is regular

Outline

25W

lecture 3

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Definitions

- ▶ NFA with ϵ -transitions (NFA $_{\epsilon}$) is sextuple $N = (Q, \Sigma, \epsilon, \Delta, S, F)$ such that
 - ① $\epsilon \notin \Sigma$
 - ② $M_{\epsilon} = (Q, \Sigma \cup \{\epsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\epsilon\}$
- ▶ ϵ -closure of set $A \subseteq Q$ is defined as $C_{\epsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\epsilon}}(A, x) \mid x \in \{\epsilon\}^*\}$
- $lackbox{}\widehat{\Delta}_N\colon 2^Q\times\Sigma^* o 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A,\epsilon) = \frac{\mathbf{C}_{\epsilon}(A)}{\widehat{\Delta}_N(A,xa)} = \left(\left. \int \left\{ \frac{\mathbf{C}_{\epsilon}(\Delta(q,a))}{\widehat{\Delta}_N(A,x)} \right\} \right| q \in \widehat{\Delta}_N(A,x) \right\}$$

 $AM_$

Theorem

AM

- every set accepted by NFA_e is regular
- regular sets are effectively closed under union, concatenation, and asterate

Automata

- ▶ (deterministic, nondeterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata

Logic

- ► (weak) monadic second-order logic
- ► Presburger arithmetic
- ► linear-time temporal logic

- 1. Summary of Previous Lecture Contents

Outline

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

$AM_$

Definitions

- ▶ regular expression α over alphabet Σ :
 - $a \in \Sigma$

- $\beta + \gamma$
- β^*

 ΔM_{-}

AM

- ▶ set of strings $L(\alpha) \subseteq \Sigma^*$ matched by regular expression α :
 - $L(a) = \{a\}$
- $L(\beta + \gamma) = L(\beta) \cup L(\gamma)$
- $L(\epsilon) = \{\epsilon\}$

 $L(\beta\gamma) = L(\beta)L(\gamma)$

 $L(\emptyset) = \emptyset$

 $L(\beta^*) = L(\beta)^*$

Example

regular expression $(a+b)^*b$ matches all strings over $\Sigma = \{a,b\}$ that end with b

Definition

regular expressions α and β are equivalent $(\alpha \equiv \beta)$ if $L(\alpha) = L(\beta)$

25W Automata and Logic lecture 3 2. Regular Expressions

Theorem

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular \iff $A = L(\alpha)$ for some regular expression α

Proof (\Leftarrow)

induction on regular expression α

$$\frac{\alpha \qquad L(\alpha) \qquad \text{finite automaton}}{a \in \Sigma \quad \{a\} \qquad \longrightarrow \bigcirc \stackrel{a}{\longrightarrow} \bigcirc}$$

$$\frac{\alpha \qquad L(\alpha)}{\beta + \gamma \quad L(\beta) \cup L(\gamma)}$$

$$\epsilon \qquad \{\epsilon\} \qquad \longrightarrow \emptyset$$

$$\beta \gamma \qquad L(\beta)L(\gamma)$$

$$\emptyset$$
 \emptyset \longrightarrow

$$\beta^*$$
 $L(\beta)^*$

- $L(\beta)$ and $L(\gamma)$ are regular according to induction hypothesis
 - $\implies L(\alpha)$ is regular according to closure properties of regular sets

Lemma (Arden's Lemma)

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$X \subset A^*B$

- ▶ let $x \in X = AX \cup B$
- ightharpoonup induction on |x|
 - $\blacktriangleright x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - ▶ $x \in B$ $\implies x \in A^*B$ because $\epsilon \in A^*$

$X \supset A^*B$

- $\blacktriangleright x \in A^*B \implies x = x_1 \cdots x_k y$ for some $x_1, \ldots, x_k \in A$ and $y \in B$
- ▶ induction on *k*
 - $k = 0 \implies x = y \in B \subseteq X$
 - $k > 0 \implies x_2 \cdots x_k y \in X \implies x \in AX \subseteq X$

universität 25W Automata and Logic lecture 3 2. Regular Expressions

Theorem

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular \iff $A = L(\alpha)$ for some regular expression α

Proof (\Longrightarrow)

given NFA $N = (Q, \Sigma, \Delta, S, F)$ with $Q = \{1, ..., n\}$ and $S = \{1\}$

▶ define system of equations

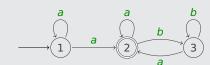
$$X_i = \left(\bigcup_{a \in \Sigma} \bigcup_{j \in \Delta(i,a)} \{a\} X_j\right) \cup \begin{cases} \{\epsilon\} & \text{if } i \in F \\ \emptyset & \text{otherwise} \end{cases}$$

with unknowns X_1, \ldots, X_n

 \blacktriangleright transform X_1 into regular expression by successive substitution and Arden's lemma

 $AM_$

Example



$$X_1 = aX_1 + aX_2$$

$$X_1 = aX_1 + aX_2$$
 $X_2 = aX_2 + bX_3 + \epsilon$ $X_3 = aX_2 + bX_3$

$$X_3 = aX_2 + bX_3$$

$$X_1 = a^*aX_1$$

$$X_1 = a^* a X_2$$
 $X_2 = a^* (b X_3 + \epsilon)$ $X_3 = b^* a X_2$

$$X_3 = b^* a X_2$$

$$X_1 = a^*aX_2$$

$$X_1 = a^* a X_2$$
 $X_2 = a^* (bb^* a X_2 + \epsilon)$

AM

$$X_1 = a^{\scriptscriptstyle T} a X_2$$

$$X_1 = a^* a X_2$$
 $X_2 = a^* b b^* a X_2 + a^*$

$$X_1 = a^*aX_2$$

$$X_2 = (a^*bb^*a)^*a^*$$

$$X_1 = a^*a(a^*bb^*a)^*a^*$$

(substitute)

 ΔM_{\perp}

Outline

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Particify with session ID 4957 9500

Question

Which of the following strings belong to $L((a + ba + bab)^*)$?

- \mathbf{A}
- B ababa
- **c** all strings over $\{a,b\}$ that start with a
- all strings over $\{a,b\}$ that do not contain two consecutive b's

 ΔM_{-}

Outline

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Theorem

regular sets are effectively closed under homomorphic image and preimage

Definitions

▶ homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\epsilon) = \epsilon$$

$$h(xy) = h(x)h(y)$$

so homomorphism is completely determined by its effect on Σ

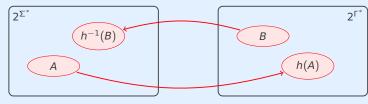
▶ if $A \subseteq \Sigma^*$ then $h(A) = \{h(x) \mid x \in A\} \subseteq \Gamma^*$

"image of A under h"

_A_M_

▶ if $B \subseteq \Gamma^*$ then $h^{-1}(B) = \{x \mid h(x) \in B\} \subseteq \Sigma^*$

"preimage of B under h"



- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- ► $h^{-1}(h(A)) \supseteq A$
- ▶ $h(h^{-1}(B)) \subseteq B$

Example

$$\Sigma = \Gamma = \{0,1\}$$
 $h(0) = 11$ $h(1) = 1$ $A = B = \{0\}$

$$h^{-1}(h(A)) = h^{-1}(\{11\}) = \{0, 11\} \supseteq A$$

$$h(h^{-1}(B)) = h(\emptyset) = \emptyset \subseteq B$$

Example

 $A \subseteq \{0,1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular

- $\Sigma = \{0,1\} \text{ and } \Gamma = \{0,1,2\}$
- ▶ define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$

$$i(0) = 0$$

$$i(2) = \epsilon$$

$$h^{-1}(A) = \{x \in \Gamma^* \mid h(x) \in A\}$$

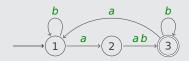
- ► $h^{-1}(A) \cap L((0+1)^*2(0+1)^*) = \{x2y \mid x1y \in A\}$
- $\{xy \mid x1y \in A\} = i(h^{-1}(A) \cap L((0+1)^*2(0+1)^*))$ is regular

_A_M_

AM

Example

► DFA M



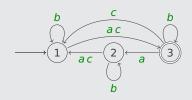
▶ homomorphism $h: \{a,b,c\}^* \rightarrow \{a,b\}^*$

$$h(a) = aa$$

$$h(b) = \epsilon$$

$$h(c) = bab$$

▶ DFA M'



$$\delta'(3,c) = \widehat{\delta}(3,bab) = 1$$

25W Automata and Logic lecture 3

regular sets are effectively closed under homomorphic image and preimage

Proof

- ▶ NFA $M = (Q, \Gamma, \Delta, S, F)$
- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- $h^{-1}(L(M)) = L(M')$ for NFA $M' = (Q, \Sigma, \Delta', S, F)$ with $\Delta'(q, a) = \widehat{\Delta}(\{q\}, h(a))$
- $\widehat{\Delta}'(A,x) = \widehat{\Delta}(A,h(x))$ for all $A \subseteq Q$ and $x \in \Sigma^*$ ▶ claim: proof of claim: easy induction on |x|

Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof

- ightharpoonup regular expression α over Σ
- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- ▶ $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$$a'=h(a)$$
 for $a\in\Sigma$

$$(\beta + \gamma)' = \beta' + \gamma'$$

$$\epsilon'=\epsilon$$

25W Automata and Logic lecture 3

$$(\beta\gamma)'=\beta'\gamma'$$

$$\emptyset' = \emptyset$$

$$\beta^{*'} = \beta'^*$$

Definitions

- **Hamming distance** H(x,y) is number of places where bit strings x and y differ
- ▶ if $|x| \neq |y|$ then $H(x, y) = \infty$
- ▶ $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \leq k \text{ for some } y \in A\}$

Lemma

 $A \subseteq \{0,1\}^*$ is regular $\implies \forall k \in \mathbb{N} \ N_k(A)$ is regular

Proof

$$D_k = \{x \in (\{0,1\} \times \{0,1\})^* \mid x \text{ contains at most } k \text{ pairs } (0,1) \text{ or } (1,0)\}$$
 is regular
$$= \{x \in (\{0,1\} \times \{0,1\})^* \mid H(\mathsf{fst}(x),\mathsf{snd}(x)) \leqslant k\}$$
 $N_k(A) = \mathsf{fst}(\mathsf{snd}^{-1}(A) \cap D_k)$

25W Automata and Logic lecture 3

 ΔM_{\perp}

 ΔM_{\perp}

Outline

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Example

- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

▶ $fst(snd^{-1}(A) \cap D_k)$ consists of

Automata and Logic

Remark

most decision problems concerning regular sets are decidable

Theorem

problems

instance: DFA M and string x

instance: DFA M

question: $L(M) = \emptyset$?

instance: DFAs M and N question: L(M) = L(N)?

are decidable

question: $x \in L(M)$?

Remark

representation of regular sets (DFA, NFA, regular expression) may affect complexity of decision problems

Outline

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- **5. Decision Problems**
- 6. Further Reading

Kozen

▶ Lecture 7-10

Important Concepts

- ► Arden's lemma
- homomorphic image
- regular expression

► homomorphism

25W Automata and Logic lecture 3

homomorphic preimage

homework for October 24

