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Definitions

▶ nondeterministic finite automaton (NFA) is quintuple N = (Q,Σ,∆,S, F) with

1 Q: finite set of states

2 Σ: input alphabet

3 ∆: Q× Σ → 2Q : transition function

4 S ⊆ Q: set of start states

5 F ⊆ Q: final (accept) states

▶ ∆̂ : 2Q × Σ∗ → 2Q is inductively defined by

∆̂(A, ϵ) = A ∆̂(A, xa) =
⋃

q∈∆̂(A,x)

∆(q, a)

▶ x ∈ Σ∗ is accepted by N if ∆̂(S, x) ∩ F ̸= ∅

Theorem

every set accepted by NFA is regular
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Definitions

▶ NFA with ϵ–transitions (NFAϵ) is sextuple N = (Q,Σ, ϵ,∆,S, F) such that

1 ϵ /∈ Σ

2 Mϵ = (Q,Σ ∪ {ϵ},∆,S, F) is NFA over alphabet Σ ∪ {ϵ}

▶ ϵ–closure of set A ⊆ Q is defined as Cϵ(A) =
⋃ {

∆̂Nϵ
(A, x)

∣∣ x ∈ {ϵ}∗
}

▶ ∆̂N : 2Q × Σ∗ → 2Q is inductively defined by

∆̂N(A, ϵ) = Cϵ(A) ∆̂N(A, xa) =
⋃ {

Cϵ(∆(q, a))
∣∣ q ∈ ∆̂N(A, x)

}

Theorem

▶ every set accepted by NFAϵ is regular

▶ regular sets are effectively closed under union, concatenation, and asterate
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Automata

▶ (deterministic, nondeterministic, alternating) finite automata

▶ regular expressions

▶ (alternating) Büchi automata

Logic

▶ (weak) monadic second–order logic

▶ Presburger arithmetic

▶ linear–time temporal logic
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Definitions

▶ regular expression α over alphabet Σ:

a ∈ Σ ϵ ∅∅∅ β+ γ βγ β∗

▶ set of strings L(α) ⊆ Σ∗ matched by regular expression α:

L(a) = {a} L(β+ γ) = L(β) ∪ L(γ)

L(ϵ) = {ϵ} L(βγ) = L(β)L(γ)

L(∅∅∅) = ∅ L(β∗) = L(β)∗

Example

regular expression (a+ b)∗b matches all strings over Σ = {a,b} that end with b

Definition

regular expressions α and β are equivalent (α ≡ β) if L(α) = L(β)
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Theorem

finite automata and regular expressions are equivalent:

for all A ⊆ Σ∗ A is regular ⇐⇒ A = L(α) for some regular expression α

Proof ( ⇐= )

induction on regular expression α

α L(α) finite automaton α L(α)

a ∈ Σ {a}
a

β + γ L(β) ∪ L(γ)

ϵ {ϵ} βγ L(β)L(γ)

∅∅∅ ∅ β∗ L(β)∗

L(β) and L(γ) are regular according to induction hypothesis

=⇒ L(α) is regular according to closure properties of regular sets
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Lemma (Arden’s Lemma)

if A, B, X ⊆ Σ∗ such that X = AX ∪ B and ϵ /∈ A then X = A∗B

Proof

X ⊆ A∗B

▶ let x ∈ X = AX ∪ B

▶ induction on |x|
▶ x ∈ AX =⇒ x = ay for some a ∈ A and y ∈ X =⇒ y ∈ A∗B =⇒ x ∈ A∗B

▶ x ∈ B =⇒ x ∈ A∗B because ϵ ∈ A∗

X ⊇ A∗B

▶ x ∈ A∗B =⇒ x = x1 · · · xky for some x1, . . . , xk ∈ A and y ∈ B

▶ induction on k

▶ k = 0 =⇒ x = y ∈ B ⊆ X

▶ k > 0 =⇒ x2 · · · xky ∈ X =⇒ x ∈ AX ⊆ X

25W Automata and Logic lecture 3 2. Regular Expressions 9/26

Theorem

finite automata and regular expressions are equivalent:

for all A ⊆ Σ∗ A is regular ⇐⇒ A = L(α) for some regular expression α

Proof ( =⇒ )

given NFA N = (Q,Σ,∆,S, F) with Q = {1, . . . , n} and S = {1}
▶ define system of equations

Xi =

 ⋃
a∈Σ

⋃
j∈∆(i, a)

{a}X j

 ∪

{
{ϵ} if i ∈ F

∅ otherwise

with unknowns X1, . . . , Xn

▶ transform X1 into regular expression by successive substitution and Arden’s lemma
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Example

1 2 3

a

a

a

b

a

b

X1 = aX1 + aX2 X2 = aX2 + bX3 + ϵ X3 = aX2 + bX3

X1 = a∗aX2 X2 = a∗(bX3 + ϵ) X3 = b∗aX2 (Arden’s lemma)

X1 = a∗aX2 X2 = a∗(bb∗aX2 + ϵ) (substitute)

X1 = a∗aX2 X2 = a∗bb∗aX2 + a∗ (distribute)

X1 = a∗aX2 X2 = (a∗bb∗a)∗a∗ (Arden’s lemma)

X1 = a∗a(a∗bb∗a)∗a∗ (substitute)
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with session ID 4957 9500

Question

Which of the following strings belong to L((a+ ba+ bab)∗) ?

A ϵ

B ababa

C all strings over {a,b} that start with a

D all strings over {a,b} that do not contain two consecutive b’s
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Theorem

regular sets are effectively closed under homomorphic image and preimage

Definitions

▶ homomorphism is mapping h : Σ∗ → Γ∗ such that

h(ϵ) = ϵ h(xy) = h(x)h(y)

so homomorphism is completely determined by its effect on Σ

▶ if A ⊆ Σ∗ then h(A) = {h(x) | x ∈ A} ⊆ Γ∗ " image of A under h "

▶ if B ⊆ Γ∗ then h−1(B) = {x | h(x) ∈ B} ⊆ Σ∗ " preimage of B under h "
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2Σ∗
2Γ∗

A h(A)

Bh−1(B)

▶ homomorphism h : Σ∗ → Γ∗

▶ h−1(h(A)) ⊇ A

▶ h(h−1(B)) ⊆ B

Example

Σ = Γ = {0,1} h(0) = 11 h(1) = 1 A = B = {0}
▶ h−1(h(A)) = h−1({11}) = {0,11} ⊋ A

▶ h(h−1(B)) = h(∅) = ∅ ⊊ B
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Example

A ⊆ {0,1}∗ is regular =⇒ {xy | x1y ∈ A} is regular

▶ Σ = {0,1} and Γ = {0,1,2}
▶ define homomorphisms h, i : Γ∗ → Σ∗ by

h(0) = 0 h(1) = h(2) = 1 i(0) = 0 i(1) = 1 i(2) = ϵ

▶ h−1(A) = {x ∈ Γ∗ | h(x) ∈ A}

▶ h−1(A) ∩ L((0 + 1)∗2(0 + 1)∗) = {x2y | x1y ∈ A}

▶ {xy | x1y ∈ A} = i(h−1(A) ∩ L((0 + 1)∗2(0 + 1)∗)) is regular
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Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof

▶ NFA M = (Q, Γ,∆,S, F)

▶ homomorphism h : Σ∗ → Γ∗

▶ h−1(L(M)) = L(M′) for NFA M′ = (Q,Σ,∆′,S, F) with ∆′(q, a) = ∆̂({q},h(a))

▶ claim: ∆̂′(A, x) = ∆̂(A,h(x)) for all A ⊆ Q and x ∈ Σ∗

proof of claim: easy induction on |x|
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Example

▶ DFA M

1 2 3
a ab

b ba

▶ homomorphism h : {a,b, c}∗ → {a,b}∗

h(a) = aa h(b) = ϵ h(c) = bab

▶ DFA M′

1 2 3

a c
b

a c

b

a

bc

δ′(3, c) = δ̂(3,bab) = 1
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Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof

▶ regular expression α over Σ

▶ homomorphism h : Σ∗ → Γ∗

▶ h(L(α)) = L(α′) for regular expression α′ defined inductively:

a′ = h(a) for a ∈ Σ (β + γ)′ = β′ + γ′

ϵ′ = ϵ (βγ)′ = β′γ′

∅∅∅′ = ∅∅∅ β∗′ = β′∗
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Definitions

▶ Hamming distance H(x, y) is number of places where bit strings x and y differ

▶ if |x| ̸= |y| then H(x, y) = ∞
▶ Nk(A) = {x ∈ {0,1}∗ | H(x, y) ⩽ k for some y ∈ A}

Lemma

A ⊆ {0,1}∗ is regular =⇒ ∀ k ∈ N Nk(A) is regular

Proof

Dk = {x ∈ ({0,1} × {0,1})∗ | x contains at most k pairs (0,1) or (1,0)} is regular

= {x ∈ ({0,1} × {0,1})∗ | H(fst(x), snd(x)) ⩽ k}

Nk(A) = fst(snd−1(A) ∩ Dk)
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Example

▶ A = {0011} k = 2

▶ Nk(A) consists of

0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1

1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0

▶ fst(snd−1(A) ∩ Dk) consists of

0 0 0 0
0 0 1 1

0 0 0 1
0 0 1 1

0 0 1 0
0 0 1 1

0 0 1 1
0 0 1 1

0 1 0 0
0 0 1 1

0 1 0 1
0 0 1 1

0 1 1 0
0 0 1 1

0 1 1 1
0 0 1 1

1 0 0 0
0 0 1 1

1 0 0 1
0 0 1 1

1 0 1 0
0 0 1 1

1 0 1 1
0 0 1 1

1 1 0 0
0 0 1 1

1 1 0 1
0 0 1 1

1 1 1 0
0 0 1 1

1 1 1 1
0 0 1 1
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Remark

most decision problems concerning regular sets are decidable

Theorem

problems

instance: DFA M and string x

question: x ∈ L(M) ?

instance: DFA M

question: L(M) = ∅ ?

instance: DFAs M and N

question: L(M) = L(N) ?

are decidable

Remark

representation of regular sets (DFA, NFA, regular expression) may affect complexity of

decision problems
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Kozen

▶ Lecture 7 – 10

Important Concepts

▶ Arden’s lemma

▶ homomorphism

▶ homomorphic image

▶ homomorphic preimage

▶ regular expression

homework for October 24
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