

Automata and Logic

Aart Middeldorp and Samuel Frontull

Outline

- 1. Summary of Previous Lecture
- 2. Minimization
- 3. Intermezzo
- 4. Weak Monadic Second-Order Logic
- 5. Further Reading

▶ regular expression α over alphabet Σ :

$${\color{red} a} \in \Sigma$$

$$\epsilon$$

$$\beta + \gamma$$

$$\beta\gamma$$

 $L(\beta\gamma) = L(\beta)L(\gamma)$

▶ set of strings $L(\alpha) \subseteq \Sigma^*$ matched by regular expression α :

$$L(a) = \{a\}$$

$$L(\mathbf{\varnothing})=\varnothing$$

$$L(\gamma) \qquad L(\beta^*) = L(\beta)^*$$

$$L(\epsilon) = \{\epsilon\}$$
 $L(\beta + \gamma) = L(\beta) \cup L(\gamma)$

regular expressions
$$\alpha$$
 and β are equivalent ($\alpha \equiv \beta$) if $L(\alpha) = L(\beta)$

Theorem

finite automata and regular expressions are equivalent:

for all
$$A \subseteq \Sigma^*$$
 A is regular $\iff A = L(\alpha)$ for some regular expression α

- ▶ homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that $h(\epsilon) = \epsilon$ and h(xy) = h(x)h(y)
- ▶ if $A \subseteq \Sigma^*$ then $h(A) = \{h(x) \mid x \in A\} \subseteq \Gamma^*$ "image of A under h"
- ▶ if $B \subseteq \Gamma^*$ then $h^{-1}(B) = \{x \mid h(x) \in B\} \subseteq \Sigma^*$ "preimage of B under h"

Theorem

regular sets are effectively closed under homomorphic image and preimage

Theorem

problems

instance: DFA M and string x

question: $x \in L(M)$?

ng *x* instance: DFA *M*

question: $L(M) = \emptyset$?

instance: DFAs M and N

question: L(M) = L(N)?

are decidable

Automata

- ▶ (deterministic, nondeterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata

Logic

- ► (weak) monadic second-order logic
- Presburger arithmetic
- ► linear-time temporal logic

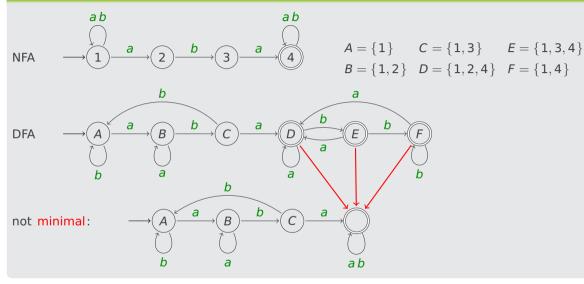
Contents

Outline

1. Summary of Previous Lecture

2. Minimization

- 3. Intermezzo
- 4. Weak Monadic Second-Order Logic
- 5. Further Reading



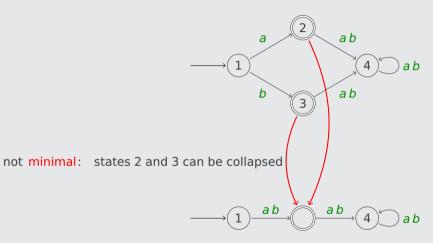
universität innsbruck 25W

Automata and Logic

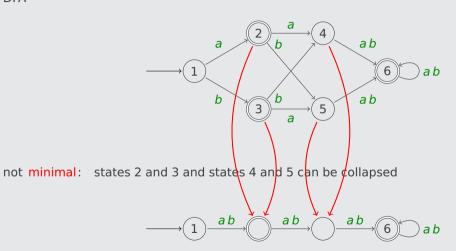
lecture 4

2. Minimization

DFA



DFA



DFA $M = (Q, \Sigma, \delta, s, F)$

- ▶ state p is inaccessible if $\widehat{\delta}(s,x) \neq p$ for all $x \in \Sigma^*$
- states p and q are distinguishable if

$$\left(\widehat{\delta}(p,x) \in F \land \widehat{\delta}(q,x) \notin F\right) \lor \left(\widehat{\delta}(p,x) \notin F \land \widehat{\delta}(q,x) \in F\right)$$

for some $x \in \Sigma^*$

Minimization Algorithm

DFA $M = (O, \Sigma, \delta, s, F)$

- remove inaccessible states
- ② for every two different states determine whether they are distinguishable (marking)
- 3 collapse indistinguishable states

Marking Algorithm

given DFA $M = (Q, \Sigma, \delta, s, F)$ without inaccessible states

- ① tabulate all unordered pairs $\{p,q\}$ with $p,q\in Q$, initially unmarked
- ② mark $\{p,q\}$ if $p \in F$ and $q \notin F$ or $p \notin F$ and $q \in F$
- repeat until no change:

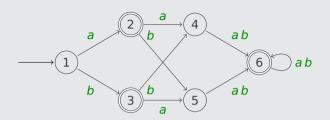
mark $\{p,q\}$ if $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a\in\Sigma$

Notation

Lemma

 $p \approx a \iff$ states p and a are indistinguishable

$p \approx q \iff \{p,q\}$ is unmarked



- Τ.
- **√**
- \checkmark
- \checkmark \checkmark \checkmark 4
- ✓ ✓ ✓

final/nonfinal states are distinguishable

a b

аb

collapse states 2 and 3 and states 4 and 5:

states p and q of DFA $M = (Q, \Sigma, \delta, s, F)$ are indistinguishable $(p \approx q)$ if for all $x \in \Sigma^*$ $\widehat{\delta}(p,x) \in F \iff \widehat{\delta}(q,x) \in F$

Lemma

$$\approx$$
 is equivalence relation on Q :

Notation

$$[p]_{\approx} = \{q \in Q \mid p \approx q\}$$
 denotes equivalence class of p

(reflexivity)

(symmetry)

(transitivity)

Definition (Collapsing Indistinguishable States)

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

- $P Q' = \{ [p]_{\approx} \mid p \in Q \}$
 - well-defined: $p \approx q \implies \delta(p, a) \approx \delta(q, a)$
- $\triangleright \delta'([p]_{\approx},a) = [\delta(p,a)]_{\approx}$ $\triangleright s' = [s]_{\approx}$
- $ightharpoonup F' = \{ [p]_{\approx} \mid p \in F \}$

Lemma

- $p \in F \iff [p]_{\sim} \in F'$

for all $p \in Q$

Theorem

$$L(M/\approx) = L(M)$$

Proof

$$x \in L(M/\approx) \iff \widehat{\delta'}([s]_\approx, x) \in F' \iff [\widehat{\delta}(s, x)]_\approx \in F' \iff \widehat{\delta}(s, x) \in F \iff x \in L(M)$$

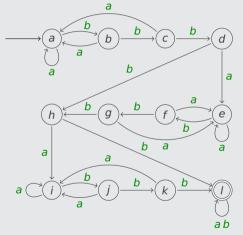
Question

is M/\approx minimum-state DFA for L(M)?

Lemma

 M/\approx cannot be collapsed further

DFA for set of strings over $\{a,b\}$ containing at least three occurrences of three consecutive b's, overlapping permitted:



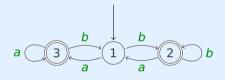
states d, g and h, k can be merged

Outline

- 1. Summary of Previous Lecture
- 2. Minimization
- 3. Intermezzo
- 4. Weak Monadic Second-Order Logic
- 5. Further Reading

Question

Which statements about the following DFA A are true?



- A the DFA is minimal
- **B** states 2 and 3 are distinguishable
- $L(A) = L(a^*ba^*)$
- all states can be merged

Outline

- 1. Summary of Previous Lecture
- 2. Minimization
- 3. Intermezzo
- 4. Weak Monadic Second-Order Logic
- 5. Further Reading

- first-order variables $V_1 = \{x, y, ...\}$ ranging over natural numbers
- \triangleright second-order variables $V_2 = \{X, Y, \dots\}$ ranging over finite sets of natural numbers
- formulas of weak monadic second-order logic

$$\varphi ::= \bot \mid x < y \mid X(x) \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \exists x. \varphi \mid \exists X. \varphi$$

with $x, y \in V_1$ and $X \in V_2$

Abbreviations

$$\varphi \wedge \psi := \neg(\neg \varphi \vee \neg \psi)$$

$$\forall x. \varphi := \neg \exists x. \neg \varphi$$

$$x \leqslant y := \neg(y < x)$$

$$\top := \neg \bot$$

$$X(0) := \exists x. \ X(x) \land x = 0$$

$$\varphi \to \psi := \neg \varphi \lor \psi$$
$$\forall X. \varphi := \neg \exists X. \neg \varphi$$

$$x = y := x \leqslant y \land y \leqslant x$$

 $x = 0 := \neg \exists y. y < x$

Remarks

- ▶ X(x) represents $x \in X$
- MSO is weak MSO without restriction to finite sets

Examples

- $\forall x. X(x) \rightarrow Y(x) \land (\exists y. \neg X(y) \land Y(y))$
- $ightharpoonup \exists X. (\forall x. x = 0 \rightarrow X(x)) \land (\forall x. X(x) \rightarrow \exists y. x < y \land X(y))$
- $\exists X.X(0) \land (\forall y. \forall z. z = y + 1 \land z \leq x \rightarrow (X(y) \leftrightarrow \neg X(z))) \land X(x) \iff x \text{ is even}$

Remark

z = y + 1 abbreviates $y < z \land \neg \exists x. (y < x \land x < z)$

- ▶ assignment α is mapping from variables $x \in V_1$ to \mathbb{N} and $X \in V_2$ to finite subsets of \mathbb{N}
- ▶ assignment α satisfies formula φ ($\alpha \models \varphi$):

$$\begin{array}{lll} \alpha \not \models \mathcal{X} & \Longleftrightarrow & \alpha(\mathcal{X}) < \alpha(\mathcal{Y}) \\ \alpha \models \mathcal{X}(\mathcal{X}) & \Longleftrightarrow & \alpha(\mathcal{X}) \in \alpha(\mathcal{X}) \\ \alpha \models \neg \varphi & \Longleftrightarrow & \alpha \not \models \varphi \\ \alpha \models \varphi_1 \lor \varphi_2 & \Longleftrightarrow & \alpha \models \varphi_1 \text{ or } \alpha \models \varphi_2 \\ \alpha \models \exists \mathcal{X}. \varphi & \Longleftrightarrow & \alpha[\mathcal{X} \mapsto n] \models \varphi & \text{for some } n \in \mathbb{N} \\ \alpha \models \exists \mathcal{X}. \varphi & \Longleftrightarrow & \alpha[\mathcal{X} \mapsto N] \models \varphi & \text{for some finite subset } \mathcal{N} \subset \mathbb{N} \end{array}$$

- ightharpoonup formula φ is satisfiable if $\alpha \models \varphi$ for some assignment α
- ightharpoonup formula φ is valid if $\alpha \models \varphi$ for all assignments α
- ightharpoonup model of formula φ is assignment α such that $\alpha \models \varphi$
- \triangleright size of model α is smallest n such that
 - ① $\alpha(x) < n \text{ for } x \in V_1$
 - (2) $\alpha(X) \subseteq \{0, \ldots, n-1\}$ for $X \in V_2$

Examples

- $(\forall x. X(x) \to Y(x)) \land (\exists y. \neg X(y) \land Y(y))$
- $(\forall x. x = 0 \rightarrow X(x)) \land (\forall x. X(x) \rightarrow \exists y. x < y \land X(y))$
- $(\exists x. X(x) \land \exists y. X(y) \land x \neq y) \land (\forall x. X(x) \rightarrow \exists y. Y(y) \land x < y)$

satisfiable

satisfiable

unsatisfiable

given alphabet Σ and string $x = a_0 \cdots a_{n-1} \in \Sigma^*$

- ▶ second-order variables $V_2 = \{P_a \mid a \in \Sigma\}$

Notation

x for α_x

Example

$$\Sigma = \{a, b\}$$

universität innsbruck

- ightharpoonup abba $(P_a) = \{0, 3\}$
- ightharpoonup abba $(P_b) = \{1, 2\}$

$$\Sigma = \{a, b\}$$

$$\psi = \forall x. \forall y. (P_a(x) \land P_b(y)) \rightarrow x < y$$
 aabbb $\vDash \psi$ aabab $\nvDash \psi$

 $x \models \varphi$ for all $x \in \Sigma^*$

$$\chi = \forall x. P_b(x) \to \exists y. P_a(y) \land y < x$$
 aaaaa $\vDash \chi$ babab $\nvDash \chi$

Definitions

 \blacktriangleright given alphabet Σ and WMSO formula φ with free variables (exclusively) in $\{P_a \mid a \in \Sigma\}$

$$L(\varphi) = \{ x \in \Sigma^* \mid \underline{x} \vDash \varphi \}$$

ightharpoonup set $A\subseteq \Sigma^*$ is WMSO definable if $A=L(\varphi)$ for some WMSO formula φ

$$\Sigma = \{a, b\}$$

regular set $L((a+b)^*ab(a+b)^*)$ is WMSO definable by formula

$$\exists x. \exists y. P_a(x) \land P_b(y) \land x < y \land \neg \exists z. x < z \land z < y$$

WMSO formula

$$\exists x. P_a(x) \land \forall y. x < y \rightarrow \neg (P_a(y) \lor P_b(y))$$

defines regular set $\{xa \mid x \in \Sigma^*\}$

Theorem

set $A \subset \Sigma^*$ is regular if and only if A is WMSO definable

Outline

- 1. Summary of Previous Lecture
- 2. Minimization
- 3. Intermezzo
- 4. Weak Monadic Second-Order Logic
- 5. Further Reading

Kozen

▶ Lectures 13 and 14

Important Concepts

- $\qquad \qquad \alpha \models \varphi$
- indistinguishable states
- minimization algorithm
- model
- MSO

- satisfiability
- validity
- weak monadic second-order logic (WMSO)
- WMSO definability

homework for October 31