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Definitions

▶ regular expression α over alphabet Σ:

a ∈ Σ ϵ ∅∅∅ β+ γ βγ β∗

▶ set of strings L(α) ⊆ Σ∗ matched by regular expression α:

L(a) = {a} L(∅∅∅) = ∅ L(βγ) = L(β)L(γ)

L(ϵ) = {ϵ} L(β+ γ) = L(β) ∪ L(γ) L(β∗) = L(β)∗

▶ regular expressions α and β are equivalent (α ≡ β) if L(α) = L(β)

Theorem

finite automata and regular expressions are equivalent:

for all A ⊆ Σ∗ A is regular ⇐⇒ A = L(α) for some regular expression α
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Definitions

▶ homomorphism is mapping h : Σ∗ → Γ∗ such that h(ϵ) = ϵ and h(xy) = h(x)h(y)

▶ if A ⊆ Σ∗ then h(A) = {h(x) | x ∈ A} ⊆ Γ∗ " image of A under h "

▶ if B ⊆ Γ∗ then h−1(B) = {x | h(x) ∈ B} ⊆ Σ∗ " preimage of B under h "

Theorem

regular sets are effectively closed under homomorphic image and preimage

Theorem

problems

instance: DFA M and string x

question: x ∈ L(M) ?

instance: DFA M

question: L(M) = ∅ ?

instance: DFAs M and N

question: L(M) = L(N) ?

are decidable
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Automata

▶ (deterministic, nondeterministic, alternating) finite automata

▶ regular expressions

▶ (alternating) Büchi automata

Logic

▶ (weak) monadic second–order logic

▶ Presburger arithmetic

▶ linear–time temporal logic
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Example 1

NFA 1 2 3 4

ab

a b a

ab

A = {1} C = {1,3} E = {1,3,4}
B = {1,2} D = {1,2,4} F = {1,4}

DFA A B C D E F

b

a

a

b

b

a b

a

a

b

b

a

not minimal: A B C

b

a

a

b

b

a

ab
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Example 2

DFA

1

2

3

4

a

b

ab

ab

ab

not minimal: states 2 and 3 can be collapsed

1 4
ab ab

ab
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Example 3

DFA

1

2

3

4

5

6

a

b

a

b

a

b

ab

ab

ab

not minimal: states 2 and 3 and states 4 and 5 can be collapsed

1 6
ab ab ab

ab
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Definitions

DFA M = (Q,Σ, δ, s, F)

▶ state p is inaccessible if δ̂(s, x) ̸= p for all x ∈ Σ∗

▶ states p and q are distinguishable if(
δ̂(p, x) ∈ F ∧ δ̂(q, x) /∈ F

)
∨

(
δ̂(p, x) /∈ F ∧ δ̂(q, x) ∈ F

)
for some x ∈ Σ∗

Minimization Algorithm

DFA M = (Q,Σ, δ, s, F)

1 remove inaccessible states

2 for every two different states determine whether they are distinguishable (marking)

3 collapse indistinguishable states
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Marking Algorithm

given DFA M = (Q,Σ, δ, s, F) without inaccessible states

1 tabulate all unordered pairs {p,q} with p, q ∈ Q, initially unmarked

2 mark {p,q} if p ∈ F and q /∈ F or p /∈ F and q ∈ F

3 repeat until no change:

mark {p,q} if {δ(p, a), δ(q, a)} is marked for some a ∈ Σ

Notation

p ≈ q ⇐⇒ states p and q are indistinguishable

Lemma

p ≈ q ⇐⇒ {p,q} is unmarked
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Example

1

2

3

4

5

6

a

b

a

b

a

b

ab

ab

ab

1

✓ 2

✓ 3

✓ ✓ ✓ 4

✓ ✓ ✓ 5

✓ ✓ ✓ ✓ ✓ 6

1 final / nonfinal states are distinguishable

2 {2,6} a−→ {4,6} {3,6} a−→ {5,6}

3 {1,4} a−→ {2,6} {1,5} a−→ {2,6}

collapse states 2 and 3 and states 4 and 5: 1 6
ab ab ab

ab
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Definition

states p and q of DFA M = (Q,Σ, δ, s, F) are indistinguishable (p ≈ q) if for all x ∈ Σ∗

δ̂(p, x) ∈ F ⇐⇒ δ̂(q, x) ∈ F

Lemma

≈ is equivalence relation on Q:

1 ∀ p ∈ Q p ≈ p (reflexivity)

2 ∀ p, q ∈ Q p ≈ q =⇒ q ≈ p (symmetry)

3 ∀ p, q, r ∈ Q p ≈ q ∧ q ≈ r =⇒ p ≈ r (transitivity)

Notation

[p]≈ = {q ∈ Q | p ≈ q} denotes equivalence class of p
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Definition (Collapsing Indistinguishable States)

DFA M/≈ is defined as (Q′,Σ, δ′, s′, F′) with

▶ Q′ = {[p]≈ | p ∈ Q}
▶ δ′([p]≈, a) = [δ(p, a)]≈ well–defined: p ≈ q =⇒ δ(p, a) ≈ δ(q, a)

▶ s′ = [s]≈

▶ F′ = {[p]≈ | p ∈ F}

Lemma

1 δ̂′([p]≈, x) = [ δ̂(p, x)]≈ for all x ∈ Σ∗

2 p ∈ F ⇐⇒ [p]≈ ∈ F′

for all p ∈ Q
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Theorem

L(M/≈) = L(M)

Proof

x ∈ L(M/≈) ⇐⇒ δ̂′([s]≈, x) ∈ F′ ⇐⇒ [ δ̂(s, x)]≈ ∈ F′ ⇐⇒ δ̂(s, x) ∈ F ⇐⇒ x ∈ L(M)

Question

is M/≈ minimum–state DFA for L(M) ?

Lemma

M/≈ cannot be collapsed further
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Example

DFA for set of strings over {a,b} containing at least three occurrences of three consecutive
b’s, overlapping permitted:

a b c d

efgh

i j k l

a

b

a

b b

a

a
b

b

a

a
bb

a
a b

b
a

a

b b

a

a b

a

✓ b

✓ ✓ c

✓ ✓ ✓ d

✓ ✓ ✓ ✓ e

✓ ✓ ✓ ✓ ✓ f

✓ ✓ ✓ ✓ ✓ g

✓ ✓ ✓ ✓ ✓ ✓ ✓ h

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ i

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ j

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ k

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ l

states d, g and h, k can be merged
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with session ID 4957 9500

Question

Which statements about the following DFA A are true ?

1 23
b

a a

b
ba

A the DFA is minimal

B states 2 and 3 are distinguishable

C L(A) = L(a∗ba∗)

D all states can be merged
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Definitions

▶ first–order variables V1 = {x, y, . . .} ranging over natural numbers

▶ second–order variables V2 = {X, Y, . . .} ranging over finite sets of natural numbers

▶ formulas of weak monadic second–order logic

φ ::= ⊥ | x < y | X(x) | ¬φ | φ1 ∨ φ2 | ∃ x. φ | ∃ X. φ

with x, y ∈ V1 and X ∈ V2

Abbreviations

φ ∧ ψ := ¬(¬φ ∨ ¬ψ) φ→ ψ := ¬φ ∨ ψ

∀ x. φ := ¬∃ x.¬φ ∀ X. φ := ¬∃ X.¬φ
x ⩽ y := ¬(y < x) x = y := x ⩽ y ∧ y ⩽ x

⊤ := ¬⊥ x = 0 := ¬∃ y. y < x

X(0) := ∃ x.

(

X(x) ∧ x = 0

)
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https://ars.uibk.ac.at/p/49579500
https://ars.uibk.ac.at/p/49579500
https://ars.uibk.ac.at/p/49579500


Remarks

▶ X(x) represents x ∈ X

▶ MSO is weak MSO without restriction to finite sets

Examples

▶ (∀ x.X(x) → Y(x)) ∧ (∃ y.¬X(y) ∧ Y(y))

▶ ∃ X. (∀ x. x = 0 → X(x)) ∧ (∀ x.X(x) → ∃ y. x < y ∧ X(y))

▶ ∃ X.X(0) ∧
(
∀ y.∀ z. z = y+ 1 ∧ z ⩽ x → (X(y) ↔ ¬X(z))

)
∧ X(x) ⇐⇒ x is even

Remark

z = y+ 1 abbreviates y < z ∧ ¬∃ x. (y < x ∧ x < z)
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Definitions

▶ assignment α is mapping from variables x ∈ V1 to N and X ∈ V2 to finite subsets of N

▶ assignment α satisfies formula φ (α ⊨ φ):

α ⊭ ⊥
α ⊨ x < y ⇐⇒ α(x) < α(y)

α ⊨ X(x) ⇐⇒ α(x) ∈ α(X)

α ⊨ ¬φ ⇐⇒ α ⊭ φ

α ⊨ φ1 ∨ φ2 ⇐⇒ α ⊨ φ1 or α ⊨ φ2

α ⊨ ∃ x. φ ⇐⇒ α [x 7→ n] ⊨ φ for some n ∈ N

α ⊨ ∃ X. φ ⇐⇒ α [X 7→ N] ⊨ φ for some finite subset N ⊂ N
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Definitions

▶ formula φ is satisfiable if α ⊨ φ for some assignment α

▶ formula φ is valid if α ⊨ φ for all assignments α

▶ model of formula φ is assignment α such that α ⊨ φ

▶ size of model α is smallest n such that

1 α(x) < n for x ∈ V1

2 α(X) ⊆ {0, . . . , n− 1} for X ∈ V2

Examples

▶ (∀ x.X(x) → Y(x)) ∧ (∃ y.¬X(y) ∧ Y(y)) satisfiable

▶ (∀ x. x = 0 → X(x)) ∧ (∀ x.X(x) → ∃ y. x < y ∧ X(y)) unsatisfiable

▶ (∃ x.X(x) ∧ ∃ y.X(y) ∧ x ̸= y) ∧ (∀ x.X(x) → ∃ y. Y(y) ∧ x < y) satisfiable
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Definition

given alphabet Σ and string x = a0 · · · an−1 ∈ Σ∗

▶ second–order variables V2 = {Pa | a ∈ Σ}
▶ αx(Pa) = { i < n | ai = a}

Notation

x for αx

Example

Σ = {a,b}
▶ abba (Pa) = {0,3}
▶ abba (Pb) = {1,2}
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Example

Σ = {a,b}
▶ φ = ∀ x.¬(Pa(x) ∧ Pb(x)) x ⊨ φ for all x ∈ Σ∗

▶ ψ = ∀ x. ∀ y. (Pa(x) ∧ Pb(y)) → x < y aabbb ⊨ ψ aabab ⊭ ψ

▶ χ = ∀ x. Pb(x) → ∃ y. Pa(y) ∧ y < x aaaaa ⊨ χ babab ⊭ χ

Definitions

▶ given alphabet Σ and WMSO formula φ with free variables (exclusively) in {Pa | a ∈ Σ}

L(φ) = {x ∈ Σ∗ | x ⊨ φ}

▶ set A ⊆ Σ∗ is WMSO definable if A = L(φ) for some WMSO formula φ
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Examples

Σ = {a,b}
▶ regular set L((a+ b)∗ab(a+ b)∗) is WMSO definable by formula

∃ x. ∃ y. Pa(x) ∧ Pb(y) ∧ x < y ∧ ¬∃ z. x < z ∧ z < y

▶ WMSO formula

∃ x. Pa(x) ∧ ∀ y. x < y → ¬(Pa(y) ∨ Pb(y))

defines regular set {xa | x ∈ Σ∗}

Theorem

set A ⊆ Σ∗ is regular if and only if A is WMSO definable
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Kozen

▶ Lectures 13 and 14

Important Concepts

▶ α ⊨ φ

▶ indistinguishable states

▶ minimization algorithm

▶ model

▶ MSO

▶ satisfiability

▶ validity

▶ weak monadic second–order logic (WMSO)

▶ WMSO definability

homework for October 31

25W Automata and Logic lecture 4 5. Further Reading 28/28

http://cl-informatik.uibk.ac.at/teaching/ws25/al/exercises/04.pdf
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