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Automata and Logic

Aart Middeldorp and Samuel Frontull

Definitions

DFA M = (Q,%,4,s,F)
» state p is inaccessible if S(S,X) # p forall x € ©*

» states p and g are indistinguishable (p =~ q) if g(p,x) EF — g(q,x) €F forall xeX*

Minimization Algorithm

DFA M = (Q,X,4,s,F)
@ remove inaccessible states
@ determine which states are indistinguishable by marking algorithm

® collapse indistinguishable states
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Marking Algorithm

given DFA M = (Q, X, 4,s,F) without inaccessible states

@ tabulate all unordered pairs {p,q} with p, g € Q, initially unmarked

@ mark {p,q} ifpcFand g¢Forp¢F and geF

® repeat until no change: mark {p,q} if {d(p,a),d(q,a)} is marked for some a €

p~q <= {p,q} isunmarked

~ is equivalence relation on Q

[pl~ = {q€Q|p~~q} denotes equivalence class of p

_AMC
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http://cl-informatik.uibk.ac.at/teaching/ws25/al
http://cl-informatik.uibk.ac.at/~ami

Definition (Collapsing Indistinguishable States)

DFA M/~ is defined as (Q’,X,d’,s',F") with
> @ = {[pl~ | p € O}

> &([pl~. @) = [6(p,a)]~
» ' = [s]~

» FF={lplx |peF}

well-defined: p~qg = d(p,a) ~ i(q,a)

L(M/~) = L(M)

is M/~ minimum-state DFA for L(M) ?
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» X(x) represents x € X
» MSO is WMSO without restriction to finite sets

Definitions

» assignment « is mapping from variables x € V; to N and X € V, to finite subsets of N

» assignment « satisfies formula ¢ (o F ¢):

ak L

aFEx<y —  a(x) < aly)

a F X(x) — a(x) € o(X)

akF —-p — aFoyp

aFpiVp, <= aFpiorak e

aF3Ix e — a[x—=n]Ep for some n € N

oaF3IX e <= a[X—N]E ¢ forsome finite subset N C N
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Definitions

» first-order variables V; = {x,y,...} ranging over natural numbers
» second-order variables V, = {X,Y,...} ranging over finite sets of natural numbers

» formulas of weak monadic second-order logic (WMSO)
pu= L[ x<y | X(X) | e[V | Ixp | IXp

with x, y € V5 and X € V,

Abbreviations

AP = =(mp V) =Y = npVa

VX.¢ (= 23x.—p VX .o = 23X —p

x<y =~y <x) X=y:=Xx<yAy<x
T = =1 x=0:=-3dJy.y<x
X(0) = Ix.X(X)Ax=0 z=y+1l =y<zA-3Ixy<xAx<z
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Definitions

» formula ¢ is satisfiable if a F ¢ for some assignment «
» formula ¢ is valid if o F ¢ for all assignments «
» model of formula ¢ is assignment « such that a F ¢
» size of model « is smallest n such that
® a(x) <n for xeVq
@ a(X)C{0,....,n—1} for X € V5

given alphabet ¥ and string x = ag --- ap_1 € &*
» second-order variables V, = {P, |a € X}

» oy(P) ={i<n|xi=a}
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Definitions

» given alphabet ¥ and WMSO formula ¢ with free variables (exclusively) in {P,|a e X}
Lp) ={xeX’|xF ¢}

» set A C X* is WMSO definable if A = L(¢) for some WMSO formula ¢

set A C ¥* isreqgularif and only if A is WMSO definable

AM_
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2. WMSO Definability
AM_
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> ( alternating) finite automata
>

» (alternating) Blichi automata

Logic

» (weak) monadic second-order logic
» Presburger arithmetic

» linear-time temporal logic
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set A C ¥* isregular if and only if A is WMSO definable

Proof ( <)

next lecture

Definitions

DFA M = (Q,X,6,s,F)

» run of M oninput x = a;---a, € ¥* is sequence qo, ..., g, of states such that
ax az an
S=qo—q1——> -+ —0n
» run qo, ..., qn is accepting if g, € F
AM_
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» DFA M = (Q,%,4,s,F) with Q = {q1, ..., m }

» second-order variables X, ..., Xg, to encode accepting runs of M as WMSO formula ¢p:

<W;3&W~M%BKAﬂM@A@xAﬁMﬂﬁfggAQMMAWAM
acx acy
1 = Xs(0)
wf:Wx<€%<v&M>AAﬁ%QM&M)
geQ p#q

Y3 =Vx.x <l — \/ Xq(X) A Pa(x) A Jy.y =x+1 A Xsga)(Y)

aEex,geqQ
RS \/ Xq(0)
geF
AM_
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DFA M a

()
— =@

IX1.3X2.3L.=P5(€) A =Po(£) A (VX.2P5(X) A =Pp(X) — £ <

WMSO formula ¢y
X) A hy Ao A3 A s
with
Y1 =X1(0) W =Vx.x <L = (Xo(X) V X2(x)) A = (X2(x) A Xa(x))
Y3 =Vx.x <l = (Xu(x) APa(x) Ady.y = x+1AXi(y)) V
(X1(X) A Po(x) ATy.y = x+1 A Xa(y)) V
(X2(X) APa(X) ATy.y = x+1AXa(y)) V
(X2(X) A Po(x) ATy.y = x+1 A Xa(y))
Vs = X2(0)
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> Xq:{i\g(s,alma,-):q} forinput a;---a, € X*

» / denotes length n of input

a a b
run s —p—qgq—p

assignment

Pa = {0,1} Po = {2} Xs ={0} Xp = {1,3} Xq={2}

Proof ( —, cont’d)

> L{pw) = L(M)
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Erticify with session ID Outline
(Question |

Consider the language encoded by the following WMSO formula over ¥ = {a,b}:

0 =3L.P,(0) A =Pu(£) A (VX.2P5(x) A =Pp(x) — £ < x)

A (VX.Pa(x) = x=0VL=x+1)
4. Myhill-Nerode Relations
Which of the following statements hold ?

A L(p)=x" b

()
L(¢) = L(N) for the NFA N: %@L‘%L
b

B
L(y) = L(ab* + ab*a + b* + b*a)
D]

€a €ea
L(¢) = L(N') for the NFA, N': © © @
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equivalence relation =y on ©* for DFA M = (Q, X%, 0, s, F) is defined as follows:

X=uy S(5~X) = g(s7y) 7

=y is right congruent: forall x,ye¥* x=yy — forallaeX xa =y ya

=u refines L(M): forall x,yeX* x=yy = either x,ye€L(M) or x,y ¢ L(M) | T
=y is of finite index: =y has finitely many equivalence classes a ZZ -
=" g aabba
bbba
pefinition | i b |
Myhill-Nerode relation for L C ¥* is right congruent equivalence relation of finite index on ¥~*
y _ = 9 g q S
that refines L
AM_ AM_
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given Myhill-Nerode relation = forset L C ¥* DFA M= is defined as (Q,X,d,s,F) with
Q={lxl=xeXx}
6([x]=,a) = [xa]=

> s = [e]=
F={Ixl=|xeL}

v

v

well-defined: x =y =— xa = ya

v

0 ([x]=,y) = [xy]l= forall y € T*
B xel << |[x]lz€F

forall x € ©*
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(1)_ab N ab ~\_ab OD
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/—\
aa
& bb baa
= p aabba
5 bbba
a 000
b ba
\0—/
_AM_
=iunnri\s/§;f‘ictl§t 25W  Automata and Logic  lecture 5 4. Myhill-Nerode Relations 22/32

Theorem

L(M=) =L

if L admits Myhill-Nerode relation then L is regular
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Theorem

two mappings (for L C X*)
» D~ =p from DFAs for L to Myhill-Nerode relations for L
> X = My from Myhill-Nerode relations for L to DFAs for L
are each others inverse (up to isomorphism of automata):

» M=, ~ D forevery DFA D without inaccessible states

» =m.) =~ forevery Myhill-Nerode relation ~
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forany set L C ¥* equivalence relation =, on ¥* is defined as follows:

x=y <= forallzeX* (xzel < yzel)

foranyset L C ¥* =, is coarsest right congruent refinement of L:

if ~ is right congruent equivalence relation refining L then

forall x,yeY¥* x~y — x=_y

=, has fewest equivalence classes
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for regular L C ¥*

( N s N

DFAs with inaccessible states

=)

[D) &2 M(ED)

=D
\
. J J
DFAs for L Myhill-Nerode relations for L
_ _AM_
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following statements are equivalent for any set L C > *:
» L is regular

» L admits Myhill-Nerode relation

» =, is of finite index

for every regularset L M=) is minimum-state DFA for L

Theorem

forevery DFA M M/~ ~ M
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@ A={a""|n >0} isnotregular
because =, has infinitely many equivalence classes:

i#j = a #a,a (ab'€Aandalb ¢A)
® B ={a? |n > 0} is not regular
because =5 has infinitely many equivalence classes:
i<j = a? #ga? (aziazi = a2 cB and azjazigé B)
® C={a"|n >0} isnotregular
because = has infinitely many equivalence classes:

i<j = a'#cal' (a"a"=a*V' ecCanda'a’ ¢C)

_ _AM_
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5. Further Reading
_AM_
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@ D = {aP|p is prime} is not regular

because =p has infinitely many equivalence classes:

i<jandijareprimes = a' #p al

» suppose a' =p al andlet k = — i
» a' =p al = alak =p alak =p alakak = ala?* = ... = alalk = g/k+1)
» a' €D and a/t1) ¢ D

» =p does not refine D 4
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» Lectures 13-16

Important Concepts

» coarse » Myhill-Nerode relation » right congruence

» finite index » refinement » (accepting) run

homework for November 7
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