

Automata and Logic

Aart Middeldorp and Samuel Frontull

Definitions

DFA $M = (Q, \Sigma, \delta, s, F)$

- state p is inaccessible if $\widehat{\delta}(s,x) \neq p$ for all $x \in \Sigma^*$
- ▶ states p and q are indistinguishable $(p \approx q)$ if $\widehat{\delta}(p,x) \in F \iff \widehat{\delta}(q,x) \in F$ for all $x \in \Sigma^*$

Minimization Algorithm

DFA $M = (Q, \Sigma, \delta, s, F)$

- 1) remove inaccessible states
- 2 determine which states are indistinguishable by marking algorithm
- 3 collapse indistinguishable states

Outline

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. Myhill-Nerode Relations
- 5. Further Reading

universität 25W Automata and Logic lecture 5

____A_M

Marking Algorithm

given DFA $M=(Q,\Sigma,\delta,s,F)$ without inaccessible states

- ① tabulate all unordered pairs $\{p,q\}$ with $p,q\in Q$, initially unmarked
- ② mark $\{p,q\}$ if $p \in F$ and $q \notin F$ or $p \notin F$ and $q \in F$
- ③ repeat until no change: mark $\{p,q\}$ if $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a\in\Sigma$

Lemmata

- ▶ $p \approx q \iff \{p,q\}$ is unmarked
- ightharpoonup pprox is equivalence relation on Q

Notation

 $[p]_{\approx} = \{q \in Q \mid p \approx q\}$ denotes equivalence class of p

AM

Definition (Collapsing Indistinguishable States)

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

$$Q' = \{ [p]_{\approx} \mid p \in Q \}$$

$$lacksymbol{\delta}'([p]_{pprox},a)=[\delta(p,a)]_{pprox} \qquad \text{well-defined:} \quad ppprox q \implies \delta(p,a)pprox \delta(q,a)$$

$$\triangleright s' = [s]_{\approx}$$

$$F' = \{ [p]_{\approx} \mid p \in F \}$$

Theorem

$$L(M/\approx) = L(M)$$

Question

is M/\approx minimum-state DFA for L(M)?

25W Automata and Logic lecture 5

1. Summary of Previous Lecture

Definitions

- first-order variables $V_1 = \{x, y, ...\}$ ranging over natural numbers
- \triangleright second-order variables $V_2 = \{X, Y, \ldots\}$ ranging over finite sets of natural numbers
- formulas of weak monadic second-order logic (WMSO)

$$\varphi ::= \bot \mid x < y \mid X(x) \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \exists x. \varphi \mid \exists X. \varphi$$

with $x, y \in V_1$ and $X \in V_2$

Abbreviations

$$\varphi \wedge \psi := \neg(\neg \varphi \vee \neg \psi)$$

$$\varphi \to \psi := \neg \varphi \lor \psi$$

$$\forall x. \varphi := \neg \exists x. \neg \varphi$$

$$\forall X. \varphi := \neg \exists X. \neg \varphi$$

$$x \leqslant y := \neg(y < x)$$

$$x = y := x \leqslant y \land y \leqslant x$$

$$x = 0 := \neg \exists y. y < x$$

$$X(0) := \exists x. X(x) \land x = 0$$

$$X(0) := \exists x. X(x) \land x = 0$$
 $z = y + 1 := y < z \land \neg \exists x. y < x \land x < z$

 ΔM_{\perp}

AM

25W Automata and Logic lecture 5 1. Summary of Previous Lecture

Remarks

- ▶ X(x) represents $x \in X$
- ▶ MSO is WMSO without restriction to finite sets

Definitions

- \blacktriangleright assignment α is mapping from variables $x \in V_1$ to \mathbb{N} and $X \in V_2$ to finite subsets of \mathbb{N}
- ▶ assignment α satisfies formula φ ($\alpha \models \varphi$):

$$\alpha \nvDash \bot$$

$$\alpha \models x < y \iff \alpha(x) < \alpha(y)$$

$$\alpha \models X(x) \iff \alpha(x) \in \alpha(X)$$

$$\alpha \vDash \neg \varphi \iff \alpha \nvDash \varphi$$

$$\alpha \vDash \varphi_1 \lor \varphi_2 \iff \alpha \vDash \varphi_1 \text{ or } \alpha \vDash \varphi_2$$

$$\alpha \vDash \exists x. \varphi \iff \alpha[x \mapsto n] \vDash \varphi \quad \text{for some } n \in \mathbb{N}$$

$$\alpha \models \exists X. \varphi \iff \alpha[X \mapsto N] \models \varphi$$
 for some finite subset $N \subset \mathbb{N}$

Definitions

- ightharpoonup formula φ is satisfiable if $\alpha \models \varphi$ for some assignment α
- formula φ is valid if $\alpha \models \varphi$ for all assignments α
- ightharpoonup model of formula φ is assignment α such that $\alpha \vDash \varphi$
- ightharpoonup size of model α is smallest n such that

①
$$\alpha(x) < n \text{ for } x \in V_1$$

②
$$\alpha(X) \subseteq \{0, ..., n-1\} \text{ for } X \in V_2$$

Definition

given alphabet Σ and string $x = a_0 \cdots a_{n-1} \in \Sigma^*$

- ▶ second-order variables $V_2 = \{P_a \mid a \in \Sigma\}$
- $ightharpoonup \alpha_{x}(P_{a}) = \{i < n \mid x_{i} = a\}$

Notation

x for α_x

Definitions

▶ given alphabet Σ and WMSO formula φ with free variables (exclusively) in $\{P_a \mid a \in \Sigma\}$

$$L(\varphi) = \{ x \in \Sigma^* \mid x \vDash \varphi \}$$

▶ set $A \subseteq \Sigma^*$ is WMSO definable if $A = L(\varphi)$ for some WMSO formula φ

Theorem

set $A \subseteq \Sigma^*$ is regular if and only if A is WMSO definable

 ΔM_{-} 25W Automata and Logic lecture 5 1. Summary of Previous Lecture

Outline

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. Myhill-Nerode Relations
- 5. Further Reading

Automata

- ▶ (deterministic, nondeterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata

Logic

- ▶ (weak) monadic second-order logic
- ► Presburger arithmetic
- ► linear-time temporal logic

1. Summary of Previous Lecture Contents

Theorem

set $A \subseteq \Sigma^*$ is regular if and only if A is WMSO definable

$\mathsf{Proof} \; (\Longleftarrow)$

next lecture

Definitions

DFA $M = (Q, \Sigma, \delta, s, F)$

▶ run of M on input $x = a_1 \cdots a_n \in \Sigma^*$ is sequence q_0, \ldots, q_n of states such that

$$s = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$$

▶ run q_0, \ldots, q_n is accepting if $q_n \in F$

_A_M_

Proof (\Longrightarrow)

- ▶ DFA $M = (Q, \Sigma, \delta, s, F)$ with $Q = \{q_1, ..., q_m\}$
- second-order variables X_{q_1}, \ldots, X_{q_m} to encode accepting runs of M as WMSO formula φ_M :

$$\varphi_{\mathsf{M}} := \exists X_{q_1}. \cdots \exists X_{q_m}. \exists \ell. \bigwedge_{a \in \Sigma} \neg P_a(\ell) \land \left(\forall x. \bigwedge_{a \in \Sigma} \neg P_a(x) \rightarrow \ell \leqslant x \right) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$$

$$\psi_1 := X_s(0)$$

$$\psi_2 := \forall x. x \leqslant \ell \to \left(\bigvee_{q \in Q} X_q(x)\right) \land \bigwedge_{p \neq q} \neg \left(X_p(x) \land X_q(x)\right)$$

$$\psi_4 := \bigvee_{q \in F} X_q(\ell)$$

Remarks

- $\blacktriangleright X_q = \{i \mid \widehat{\delta}(s, a_1 \cdots a_i) = q\} \text{ for input } a_1 \cdots a_n \in \Sigma^*$
- \blacktriangleright ℓ denotes length n of input

Example

- run $s \xrightarrow{a} p \xrightarrow{a} q \xrightarrow{b} p$
- assignment

$$P_a = \{0, 1\}$$

$$P_{b} = \{2\}$$

$$X_{\rm s} = \{0\}$$

$$P_a = \{0,1\}$$
 $P_b = \{2\}$ $X_s = \{0\}$ $X_p = \{1,3\}$ $X_q = \{2\}$

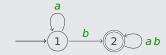
$$X_a = \{2$$

Proof (\Longrightarrow , cont'd)

 $\blacktriangleright L(\varphi_M) = L(M)$

Example

▶ DFA M



ightharpoonup WMSO formula φ_{M}

$$\exists X_1. \exists X_2. \exists \ell. \neg P_a(\ell) \land \neg P_b(\ell) \land (\forall X. \neg P_a(X) \land \neg P_b(X) \rightarrow \ell \leqslant X) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$$

with

$$\psi_{1} = X_{1}(0) \qquad \psi_{2} = \forall x. x \leqslant \ell \rightarrow (X_{1}(x) \lor X_{2}(x)) \land \neg (X_{1}(x) \land X_{2}(x))$$

$$\psi_{3} = \forall x. x \lessdot \ell \rightarrow (X_{1}(x) \land P_{a}(x) \land \exists y. y = x + 1 \land X_{1}(y)) \lor (X_{1}(x) \land P_{b}(x) \land \exists y. y = x + 1 \land X_{2}(y)) \lor (X_{2}(x) \land P_{a}(x) \land \exists y. y = x + 1 \land X_{2}(y)) \lor (X_{2}(x) \land P_{b}(x) \land \exists y. y = x + 1 \land X_{2}(y))$$

 $\psi_4 = X_2(\ell)$

Outline

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. Myhill-Nerode Relations
- 5. Further Reading

 ΔM_{\perp}

Particify with session ID 4957 9500

Question

Consider the language encoded by the following WMSO formula over $\Sigma = \{a, b\}$:

$$\varphi = \exists \ell. \neg P_{a}(\ell) \land \neg P_{b}(\ell) \land (\forall x. \neg P_{a}(x) \land \neg P_{b}(x) \rightarrow \ell \leqslant x)$$
$$\land (\forall x. P_{a}(x) \rightarrow x = 0 \lor \ell = x + 1)$$

Which of the following statements hold?

- **A** $L(\varphi) = \Sigma^*$
- **B** $L(\varphi) = L(N)$ for the NFA N:
- $L(\varphi) = L(ab^* + ab^*a + b^* + b^*a)$
- $L(\varphi) = L(N')$ for the NFA_{ϵ} N':

AM

Outline

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. Myhill-Nerode Relations
- 5. Further Reading

 $AM_$

Definition

equivalence relation \equiv_{M} on Σ^{*} for DFA $M=(Q,\Sigma,\delta,s,F)$ is defined as follows:

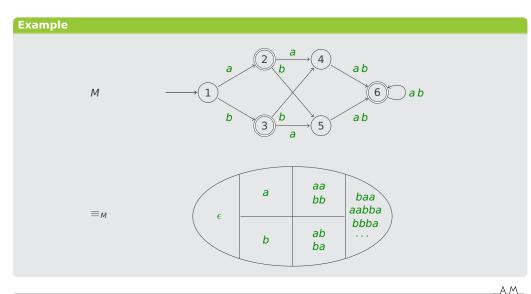
$$x \equiv_{\mathsf{M}} y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

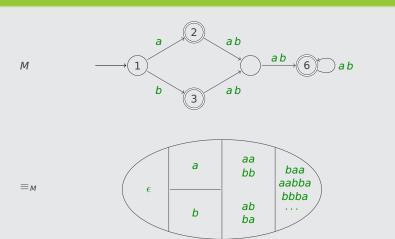
Lemmata

- ightharpoonup is right congruent: for all $x, y \in \Sigma^*$ $x \equiv_M y$ \implies for all $a \in \Sigma$ $xa \equiv_M ya$
- $\triangleright \equiv_M \text{ refines } L(M)$: for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ either $x, y \in L(M)$ or $x, y \notin L(M)$
- $ightharpoonup \equiv_M$ is of finite index: \equiv_M has finitely many equivalence classes

Definition

Myhill-Nerode relation for $L \subseteq \Sigma^*$ is right congruent equivalence relation of finite index on Σ^* that refines L



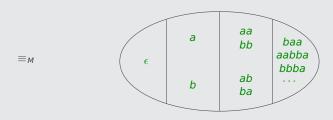


25W Automata and Logic lecture 5

4. Myhill - Nerode Relations

Example

$$M \longrightarrow 1 \longrightarrow 2 \longrightarrow ab \longrightarrow 6 \longrightarrow ab$$



25W Automata and Logic lecture 5 4. Myhill - Nerode Relations

Definition

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$ DFA $M_{=}$ is defined as $(Q, \Sigma, \delta, s, F)$ with

- well-defined: $x \equiv y \implies xa \equiv ya$
- $s = [\epsilon]_{\equiv}$
- $F = \{ [x]_{\equiv} \mid x \in L \}$

Lemma

 $x \in L \iff [x] = F$

for all $x \in \Sigma^*$

Theorem

 $L(M_{=}) = L$

Proof

 $x \in L(M_{\equiv}) \iff \widehat{\delta}([\epsilon]_{\equiv}, x) \in F \iff [x]_{\equiv} \in F \iff x \in L$

Corollary

if L admits Myhill–Nerode relation then L is regular

_A_M_

Theorem

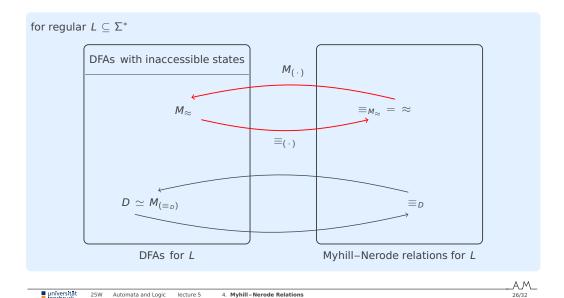
two mappings (for $L \subseteq \Sigma^*$)

- $D \mapsto \equiv_D$ from DFAs for L to Myhill-Nerode relations for L
- from Myhill–Nerode relations for L to DFAs for L $ightharpoonup pprox \mapsto M_{pprox}$

are each others inverse (up to isomorphism of automata):

- ▶ $M_{(\equiv_D)} \simeq D$ for every DFA D without inaccessible states
- ▶ $\equiv_{(M_{\approx})}$ = \approx for every Myhill–Nerode relation \approx

_A_M_ 25W Automata and Logic lecture 5 4. Myhill-Nerode Relations



Definition

for any set $L \subseteq \Sigma^*$ equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_{L} y \iff \text{for all } z \in \Sigma^{*} (xz \in L \iff yz \in L)$$

Lemma

for any set $L \subseteq \Sigma^* \equiv_L$ is coarsest right congruent refinement of L:

if \sim is right congruent equivalence relation refining L then

$$\text{for all } x,y \in \Sigma^* \quad x \sim y \quad \Longrightarrow \quad x \equiv_L y$$

 \equiv_L has fewest equivalence classes

Theorem

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- ▶ *L* is regular
- ▶ L admits Myhill–Nerode relation
- $\triangleright \equiv_L$ is of finite index

 $AM_$

Corollary

for every regular set L $M_{(\equiv_L)}$ is minimum-state DFA for L

Theorem

for every DFA M $M/\approx \simeq M_{(\equiv_L)}$

Examples

1 $A = \{a^n b^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes:

$$i \neq j \implies a^i \not\equiv_A a^j \quad (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

2 $B = \{a^{2^n} \mid n \geqslant 0\}$ is not regular because \equiv_B has infinitely many equivalence classes:

$$i < j \implies a^{2^i} \not\equiv_B a^{2^j} \left(a^{2^i} a^{2^i} = a^{2^{i+1}} \in B \text{ and } a^{2^j} a^{2^i} \notin B \right)$$

3 $C = \{a^{n!} \mid n \geqslant 0\}$ is not regular because \equiv_C has infinitely many equivalence classes:

$$i < j \implies a^{i!} \not\equiv_C a^{j!} \quad \left(a^{i!}a^{i!i} = a^{(i+1)!} \in C \text{ and } a^{j!}a^{i!i} \notin C\right)$$

AM

Example

4 $D = \{a^p \mid p \text{ is prime}\}\$ is not regular

because \equiv_D has infinitely many equivalence classes:

$$i < j$$
 and i, j are primes \implies $a^i \not\equiv_D a^j$

- ▶ suppose $a^i \equiv_D a^j$ and let k = j i
- lacksquare $a^i \equiv_D a^j = a^i a^k \equiv_D a^j a^k \equiv_D a^j a^k a^k = a^j a^{2k} \equiv_D \cdots \equiv_D a^j a^{jk} = a^{j(k+1)}$
- \triangleright $a^i \in D$ and $a^{j(k+1)} \notin D$
- $\triangleright \equiv_D$ does not refine D \checkmark

Outline

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. Myhill-Nerode Relations
- 5. Further Reading

Kozen

▶ Lectures 13–16

Important Concepts

coarse

- ► Myhill-Nerode relation
- right congruence

- finite index
- refinement

► (accepting) run

homework for November 7