

lecture 6 25W

Automata and Logic

Aart Middeldorp and Samuel Frontull

Definition

equivalence relation \equiv_{M} on Σ^{*} for DFA $M=(Q,\Sigma,\delta,s,F)$ is defined as follows:

$$x \equiv_{\mathbf{M}} y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

Lemmata

- $ightharpoonup \equiv_M$ is right congruent: for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ for all $a \in \Sigma$ $xa \equiv_M ya$
- for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ either $x, y \in L(M)$ or $x, y \notin L(M)$ $ightharpoonup \equiv_M \text{ refines } L(M)$:
- $\triangleright \equiv_{M}$ is of finite index: \equiv_{M} has finitely many equivalence classes

Definition

Myhill-Nerode relation for $L \subseteq \Sigma^*$ is right congruent equivalence relation of finite index on Σ^* that refines L

Outline

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

AM

Definition

for any set $L \subseteq \Sigma^*$ equivalence relation \equiv_I on Σ^* is defined as follows:

$$x \equiv_{L} y \iff \text{for all } z \in \Sigma^{*} \quad (xz \in L \iff yz \in L)$$

Theorem

- **1** for every regular set $L \subseteq \Sigma^*$
 - there exists one-to-one correspondence (up to isomorphism of automata) between
 - ightharpoonup DFAs for L with input alphabet Σ and without inaccessible states
 - ▶ Myhill–Nerode relations for *L*
- **2** for every set $L \subseteq \Sigma^*$
 - L is regular \iff L admits Myhill–Nerode relation \iff \equiv_{L} is of finite index
- 3 regular sets are WMSO definable

 ΔM_{\perp}

Automata

- ▶ (deterministic, nondeterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata

Logic

- ▶ (weak) monadic second-order logic
- ► Presburger arithmetic
- ► linear-time temporal logic

1. Summary of Previous Lecture Contents

Outline

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

Definitions

- ightharpoonup FV(φ) denotes list of free variables in φ in fixed order with first–order variables preceding second-order ones
- \blacktriangleright assignment for φ with $\mathsf{FV}(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$ is tuple $(i_1, \ldots, i_m, I_1, \ldots, I_n)$ such that i_1, \ldots, i_m are elements of \mathbb{N} and I_1, \ldots, I_n are finite subsets of \mathbb{N}

Example

$$\varphi = \exists X.X(x) \rightarrow \exists y.x < y \land Y(y)$$

 $FV(\varphi) = (x, Y)$

 ΔM_{-}

Notation

$$(i, I)$$
 for $(i_1, \ldots, i_m, I_1, \ldots, I_n)$

$$\mathbf{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

 ΔM_{\perp}

Example

induced assignment $i_1 = 3$

$$I_1 = \{0, 2, 4\}$$

$$X_2$$
 0 0 0 0 0 0

$$I_2 = \emptyset$$

Remark

assignments are identified with strings over $\{0,1\}^{m+n}$ (here k=m+n)

2. WMSO Definability

 $AM_$

Definition

string over $\{0,1\}^{m+n}$ is m-admissible if first m rows contain exactly one 1 each

Remarks

- ightharpoonup every m-admissible string x induces assignment x
- every assignment is induced by (not necessarily unique) m-admissible string: if x is m-admissible then $x\mathbf{0}$ is m-admissible and $x = x\mathbf{0}$
- if $x, y \in (\{0,1\}^{m+n})^*$ induce same assignment then $x = y \mathbf{0} \cdots \mathbf{0}$ or $y = x \mathbf{0} \cdots \mathbf{0}$
- \bullet $\epsilon \in (\{0,1\}^{m+n})^*$ is m-admissible if and only if m=0
- if x = (i, I) then |x| > k for all $k \in \{i_1, \ldots, i_m\} \cup I_1 \cup \cdots \cup I_n$

Lemma

set of m-admissible strings over $\{0,1\}^{m+n}$ is regular

innsbruck

Automata and Logic lecture 6

cture 6 2. WMSO Defin

AM

Particify with session ID 4957 9500

Question

Consider the following three strings over $\{0,1\}^{2+2}.$ Which statements hold ?

	0	1	2	0	1	2		0	1	2	3
<i>X</i> ₁	0	1	0	0	1	0		0	1	0	0
<i>X</i> ₂	1	0	1	0	0	1		0	0	1	0
X_1	1	0	0	1	0	0		1	0	0	0
X_2	0	1	1	0	1	1		0	1	1	0

- A the first string is 2-admissible
- **B** the second and third string induce the same assignment
- \boldsymbol{C} $X_2(x_1)$ is satisfied by the first string's induced assignment
- **D** the third string induces the assignment $i_1 = 1$, $i_2 = 2$, $I_1 = \{0\}$, $I_2 = \{1,2\}$

Outline

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

universität 25W Automata and Logic lecture 6 3. Intermezzo

Outline

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

AM

 $AM_$

Lemma

set of m-admissible strings over $\{0,1\}^{m+n}$ is regular

Proof (construction)

define DFA $\mathcal{A}_{m,n} = (Q, \Sigma, \delta, s, F)$ with

①
$$\Sigma = \{0,1\}^{m+n}$$

②
$$Q = 2^{\{1, \dots, m\}} \cup \{\bot\}$$

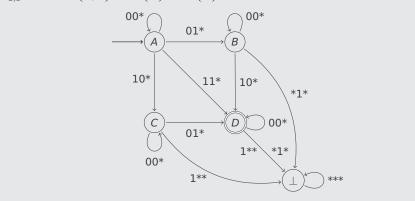
$$\mathfrak{S} = \{1, \ldots, m\}$$

with
$$I = \{i \in \{1, ..., m\} \mid a_i = 1\}$$

universität 25W Automata and Logic lecture 6 4. WMSO Definability

Example

DFA $A_{2,1}$ with $A = \{1,2\}$, $B = \{1\}$, $C = \{2\}$, $D = \emptyset$



Definition

 $L_a(\varphi) = \{x \in (\{0,1\}^{m+n})^* \mid x \text{ is } m\text{-admissible and } x \models \varphi\}$

Example

- $L_{a}(\varphi) = \binom{0}{1}^{*} \left[\binom{1}{0} + \binom{1}{1} \right] \left[\binom{0}{0} + \binom{0}{1} \right]^{*}$

Theorem

 $L_a(\varphi)$ is regular for every WMSO formula φ

Proof

 ΔM_{\perp}

 ΔM_{-}

induction on φ

- $ightharpoonup \varphi = \bot \implies L_{a}(\varphi) = \varnothing$

- $ightharpoonup \varphi = \neg \psi \implies L_a(\psi)$ is regular $\implies \sim L_a(\psi)$ is regular
 - \implies $L_a(\varphi) = \sim L_a(\psi) \cap L(\mathcal{A}_{m,n})$ is regular (for suitable m and n)
- $ightharpoonup \varphi = \varphi_1 \vee \varphi_2$ with $FV(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$

 $L_a(\varphi_1)$ and $L_a(\varphi_2)$ are regular but may be defined over different alphabets because φ_1 and φ_2 may have less free variables than φ

applications of inverse homomorphism drop_i⁻¹ to $L_a(\varphi_1)$ and $L_a(\varphi_2)$ yield regular sets $L_1, L_2 \subseteq (\{0,1\}^{m+n})^*$ such that $L_a(\varphi) = (L_1 \cup L_2) \cap L(A_{m,n})$

Example

 $\varphi = x < y \lor X(x)$ with $FV(\varphi) = (x, y, X)$

- $L_a(x < y) = \binom{0}{0}^* \binom{1}{0} \binom{0}{0}^* \binom{0}{1} \binom{0}{0}^*$
- $L_{a}(X(x)) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*}$
- $L_1 = \mathsf{drop}_{\mathbf{3}}^{-1} \left(\binom{0}{0}^* \binom{1}{0} \binom{0}{0}^* \binom{0}{1} \binom{0}{0}^* \right) = \binom{0}{0}^* \binom{1}{0}^* \binom{0}{0}^* \binom{0}{1}^* \binom{0}{0}^*$
- $L_{2} = drop_{2}^{-1}(\left[\binom{0}{0} + \binom{0}{1}\right]^{*}\binom{1}{1}\left[\binom{0}{0} + \binom{0}{1}\right]^{*}) = \left[\binom{0}{*} + \binom{0}{*}\right]^{*}\binom{1}{*}\left[\binom{0}{*} + \binom{0}{*}\right]^{*}$
- $L_a(\varphi) = (L_1 \cup L_2) \cap L(\mathcal{A}_{2,1})$

Proof (cont'd)

- $ightharpoonup \varphi = \exists x. \psi \implies L_a(\psi) \text{ is regular}$
 - \implies drop_i($L_a(\psi)$) is regular where i is position of x in FV(ψ)
 - $\implies L_a(\varphi) = \operatorname{stz}(\operatorname{drop}_i(L_a(\psi)))$ is regular
- $\varphi = \exists X. \psi \implies L_a(\psi)$ is regular
 - \implies drop_i($L_a(\psi)$) is regular where i is position of X in FV(ψ)
 - $\implies L_a(\varphi) = \operatorname{stz}(\operatorname{drop}_i(L_a(\psi)))$ is regular

Example

 $\varphi = \exists X. \psi \text{ with } \psi = X(x) \land \exists y. x < y \land X(y)$

- $L_{a}(\psi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*}$
- ho drop₂ $(L_a(\psi)) = (0+0)^*1(0+0)^*0(0+0)^* = 0^*100^* \neq 0^*10^* = L_a(\varphi)$

Definition

homomorphism

$$drop_i: (\{0,1\}^k)^* \to (\{0,1\}^{k-1})^*$$

is defined for $1 \le i \le k$ by dropping *i*-th component from vectors in $\{0,1\}^k$

$$\mathsf{drop}_{i} \begin{pmatrix} \overset{a_{1}}{\vdots} \\ \vdots \\ \overset{a_{l}}{\vdots} \\ \vdots \\ \overset{a_{k}}{\Rightarrow_{k}} \end{pmatrix} = \begin{pmatrix} \overset{a_{1}}{\vdots} \\ \vdots \\ \vdots \\ \overset{a_{k}}{\Rightarrow_{k}} \end{pmatrix}$$

Lemmata

 ΔM_{\perp}

AM

- $ightharpoonup A \subseteq (\{0,1\}^k)^*$ is regular \implies drop_i(A) \subseteq ({0,1}^{k-1})* is regular
- \triangleright $B \subseteq (\{0,1\}^{k-1})^*$ is regular \implies $\operatorname{drop}_i^{-1}(B) \subseteq (\{0,1\}^k)^*$ is regular

Definition

$$\operatorname{stz}(A) = \{x \mid x\mathbf{0}\cdots\mathbf{0} \in A\} \text{ for } A \subseteq (\{0,1\}^{m+n})^*$$

"shorten trailing zeros"

Lemma

$$A \subseteq (\{0,1\}^k)^*$$
 is regular \implies stz (A) is regular

Proof

- ▶ DFA $M = (Q, \Sigma, \delta, s, F)$ with L(M) = A
- ▶ construct DFA $M' = (Q, \Sigma, \delta, s, F')$ with $F' = \{q \in Q \mid \widehat{\delta}(q, x) \in F \text{ for some } x \in \mathbf{0}^*\}$
- ightharpoonup L(M') = stz(A)

Final Task

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

- $\textcircled{\scriptsize 1}$ eliminate assignments which do not correspond to string in Σ^*
- ② map strings in 0^*10^* to elements of Σ using homomorphismm $h \colon \{0^k10^l \mid k+1+l=|\Sigma|\} \to \Sigma$ which maps 0^k10^l to k+1-th element of Σ

Lemma

 $L(\varphi) = h(L_a(\varphi) \cap \{0^k 10^l \mid k+1+l = |\Sigma|\}^*)$ is regular

Corollary

WMSO definable sets are regular

universität innsbruck 25W Automata and Logic lecture 6 4. **WMSO Definabil**

A_M_ 21/25

 ΔM_{\perp}

Automata and I

1. Summary of Previous Lecture

2. WMSO Definability

4. WMSO Definability

6. Further Reading

3. Intermezzo

5. MONA

re 6 5.

__A_M_

MONA

- ▶ MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S
- ▶ WS1S is weak monadic second-order theory of 1 successor = WMSO
- ► MONA translates WS1S formulas into minimum-state DFAs
- ► MONA confirms validity or produces counterexample

Demo

https://www.brics.dk/mona/

Outline

Outline

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

Ebbinghaus, Flum and Thomas

► Section 10.9 of Einführung in die mathematische Logik (Springer Spektrum 2018)

Klarlund and Møller

► Section 3 of MONA Version 1.4 User Manual (2001)

Important Concepts

▶ drop_i

- ► *m*-admissible
- ► stz

L_a(φ)

MONA

▶ WS1S

homework for November 14

_A_M_

25W Automata and Logic lecture 6