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Definition

equivalence relation ≡M on Σ∗ for DFA M = (Q,Σ, δ, s, F) is defined as follows:

x ≡M y ⇐⇒ δ̂(s, x) = δ̂(s, y)

Lemmata

▶ ≡M is right congruent: for all x, y ∈ Σ∗ x ≡M y =⇒ for all a ∈ Σ xa ≡M ya

▶ ≡M refines L(M): for all x, y ∈ Σ∗ x ≡M y =⇒ either x, y ∈ L(M) or x, y /∈ L(M)

▶ ≡M is of finite index: ≡M has finitely many equivalence classes

Definition

Myhill–Nerode relation for L ⊆ Σ∗ is right congruent equivalence relation of finite index on Σ∗

that refines L
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Definition

for any set L ⊆ Σ∗ equivalence relation ≡L on Σ∗ is defined as follows:

x ≡L y ⇐⇒ for all z ∈ Σ∗ (
xz ∈ L ⇐⇒ yz ∈ L

)
Theorem

1 for every regular set L ⊆ Σ∗

there exists one–to–one correspondence (up to isomorphism of automata) between

▶ DFAs for L with input alphabet Σ and without inaccessible states

▶ Myhill–Nerode relations for L

2 for every set L ⊆ Σ∗

L is regular ⇐⇒ L admits Myhill–Nerode relation ⇐⇒ ≡L is of finite index

3 regular sets are WMSO definable
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http://cl-informatik.uibk.ac.at/teaching/ws25/al
http://cl-informatik.uibk.ac.at/~ami


Automata

▶ (deterministic, nondeterministic, alternating) finite automata

▶ regular expressions

▶ (alternating) Büchi automata

Logic

▶ (weak) monadic second–order logic

▶ Presburger arithmetic

▶ linear–time temporal logic
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Definitions

▶ FV(φ) denotes list of free variables in φ in fixed order with first–order variables preceding

second–order ones

▶ assignment for φ with FV(φ) = (x1, . . . , xm, X1, . . . , Xn) is tuple (i1, . . . , im, I1, . . . , In)

such that i1, . . . , im are elements of N and I1, . . . , In are finite subsets of N

Example

φ = ∃ X.X(x) → ∃ y. x < y ∧ Y(y) FV(φ) = (x, Y)

Notation

(iii, III) for (i1, . . . , im, I1, . . . , In) 000 =

(
0
...
0

)
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Example

0 1 2 3 4 5 induced assignment

x1 0 0 0 1 0 0 i1 = 3

X1 1 0 1 0 1 0 I1 = {0,2,4}

X2 0 0 0 0 0 0 I2 = ∅

Remark

assignments are identified with strings over {0,1}m+n (here k = m+ n)

a11 a21 · · · aℓ1
...

...
...

a1k a2k · · · aℓk

≈


a11

...

a1k



a21

...

a2k

 · · ·


aℓ1
...

aℓk


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Definition

string over {0,1}m+n is m–admissible if first m rows contain exactly one 1 each

Remarks

▶ every m–admissible string x induces assignment x

▶ every assignment is induced by (not necessarily unique) m–admissible string:

if x is m–admissible then x000 is m–admissible and x = x000

▶ if x, y ∈ ({0,1}m+n)∗ induce same assignment then x = y000 · · ·000 or y = x000 · · ·000
▶ ϵ ∈ ({0,1}m+n)∗ is m–admissible if and only if m = 0

▶ if x = (iii, III) then |x| > k for all k ∈ { i1, . . . , im} ∪ I1 ∪ · · · ∪ In

Lemma

set of m–admissible strings over {0,1}m+n is regular
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with session ID 4957 9500

Question

Consider the following three strings over {0,1}2+2. Which statements hold ?

0 1 2 0 1 2 0 1 2 3

x1 0 1 0 0 1 0 0 1 0 0

x2 1 0 1 0 0 1 0 0 1 0

X1 1 0 0 1 0 0 1 0 0 0

X2 0 1 1 0 1 1 0 1 1 0

A the first string is 2–admissible

B the second and third string induce the same assignment

C X2(x1) is satisfied by the first string’s induced assignment

D the third string induces the assignment i1 = 1, i2 = 2, I1 = {0}, I2 = {1,2}
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https://ars.uibk.ac.at/p/49579500
https://ars.uibk.ac.at/p/49579500
https://ars.uibk.ac.at/p/49579500


Lemma

set of m–admissible strings over {0,1}m+n is regular

Proof (construction)

define DFA Am, n = (Q,Σ, δ, s, F) with

1 Σ = {0,1}m+n

2 Q = 2{1, ...,m} ∪ {⊥}

3 s = {1, . . . , m}

4 F = {∅}

5 δ(q, a) =


q− I if q ⊆ {1, . . . , m} and I ⊆ q

⊥ if q ⊆ {1, . . . , m} and I ⊈ q

⊥ if q = ⊥
with I = { i ∈ {1, . . . , m} | ai = 1}
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Example

DFA A2,1 with A = {1,2}, B = {1}, C = {2}, D = ∅

A B

C D

⊥

00* 00*

00*

00*

01*

10* 11* 10*

01*

1** *1*

1**

*1*

***
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Definition

La(φ) = {x ∈ ({0,1}m+n)∗ | x is m–admissible and x ⊨ φ}

Example

▶ φ(x,X) = ∀ y. y < x → X(y)

▶ La(φ) =
( 0

1

)∗[( 1
0

)
+
( 1

1

)][( 0
0

)
+
( 0

1

)]∗

Theorem

La(φ) is regular for every WMSO formula φ
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Proof

induction on φ

▶ φ = ⊥ =⇒ La(φ) = ∅

▶ φ = x < y =⇒ La(φ) =
( 0

0

)∗( 1
0

)( 0
0

)∗( 0
1

)( 0
0

)∗
or La(φ) =

( 0
0

)∗( 0
1

)( 0
0

)∗( 1
0

)( 0
0

)∗
▶ φ = X(x) =⇒ La(φ) =

[( 0
0

)
+
( 0

1

)]∗( 1
1

)[( 0
0

)
+
( 0

1

)]∗
▶ φ = ¬ψ =⇒ La(ψ) is regular =⇒ ∼ La(ψ) is regular

=⇒ La(φ) = ∼ La(ψ) ∩ L(Am, n) is regular (for suitable m and n)

▶ φ = φ1 ∨ φ2 with FV(φ) = (x1, . . . , xm, X1, . . . , Xn)

La(φ1) and La(φ2) are regular but may be defined over different alphabets

because φ1 and φ2 may have less free variables than φ

applications of inverse homomorphism drop−1
i to La(φ1) and La(φ2) yield regular sets

L1, L2 ⊆ ({0,1}m+n)∗ such that La(φ) = (L1 ∪ L2) ∩ L(Am, n)

25W Automata and Logic lecture 6 4. WMSO Definability 16/25



Example

φ = x < y ∨ X(x) with FV(φ) = (x, y,X)

▶ La(x < y) =
( 0

0

)∗( 1
0

)( 0
0

)∗( 0
1

)( 0
0

)∗
▶ La(X(x)) =

[( 0
0

)
+
( 0

1

)]∗( 1
1

)[( 0
0

)
+
( 0

1

)]∗
▶ L1 = drop−1

3

(( 0
0

)∗( 1
0

)( 0
0

)∗( 0
1

)( 0
0

)∗)
=

(
0
0
∗

)∗( 1
0
∗

)(
0
0
∗

)∗( 0
1
∗

)(
0
0
∗

)∗

▶ L2 = drop−1
2

([( 0
0

)
+
( 0

1

)]∗( 1
1

)[( 0
0

)
+
( 0

1

)]∗)
=

[(
0
∗
0

)
+

(
0
∗
1

)]∗( 1
∗
1

)[(
0
∗
0

)
+

(
0
∗
1

)]∗
▶ La(φ) = (L1 ∪ L2) ∩ L(A2,1)
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Definition

homomorphism

drop i : ({0,1}k)∗ → ({0,1}k−1)∗

is defined for 1 ⩽ i ⩽ k by dropping i–th component from vectors in {0,1}k

drop i


a1
...
ai
...
ak

 =


a1
...
...
ak



Lemmata

▶ A ⊆ ({0,1}k)∗ is regular =⇒ drop i (A) ⊆ ({0,1}k−1)∗ is regular

▶ B ⊆ ({0,1}k−1)∗ is regular =⇒ drop−1
i (B) ⊆ ({0,1}k)∗ is regular
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Proof (cont’d)

▶ φ = ∃ x. ψ =⇒ La(ψ) is regular

=⇒ drop i (La(ψ)) is regular where i is position of x in FV(ψ)

=⇒ La(φ) = stz(drop i (La(ψ))) is regular

▶ φ = ∃ X. ψ =⇒ La(ψ) is regular

=⇒ drop i (La(ψ)) is regular where i is position of X in FV(ψ)

=⇒ La(φ) = stz(drop i (La(ψ))) is regular

Example

φ = ∃ X. ψ with ψ = X(x) ∧ ∃ y. x < y ∧ X(y)

▶ La(ψ) =
[( 0

0

)
+
( 0

1

)]∗( 1
1

)[( 0
0

)
+
( 0

1

)]∗( 0
1

)[( 0
0

)
+
( 0

1

)]∗
▶ drop2(La(ψ)) = (0 + 0)∗1(0 + 0)∗0(0 + 0)∗ = 0∗100∗ ̸= 0∗10∗ = La(φ)
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Definition

stz(A) = {x | x000 · · ·000 ∈ A} for A ⊆ ({0,1}m+n)∗ " shorten trailing zeros "

Lemma

A ⊆ ({0,1}k)∗ is regular =⇒ stz(A) is regular

Proof

▶ DFA M = (Q,Σ, δ, s, F) with L(M) = A

▶ construct DFA M′ = (Q,Σ, δ, s, F′) with F′ = {q ∈ Q | δ̂(q, x) ∈ F for some x ∈ 000∗}
▶ L(M′) = stz(A)
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Final Task

transform La(φ) into L(φ) for WMSO formula φ with free variables in {Pa | a ∈ Σ}
using regularity preserving operations

Procedure

1 eliminate assignments which do not correspond to string in Σ∗

2 map strings in 0∗10∗ to elements of Σ using homomorphismm

h : {0k10l | k + 1 + l = |Σ|} → Σ which maps 0k10l to k+1–th element of Σ

Lemma

L(φ) = h(La(φ) ∩ {0k10l | k + 1 + l = |Σ|}∗) is regular

Corollary

WMSO definable sets are regular
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MONA

▶ MONA is state–of–the–art tool that implements decision procedures for WS1S and WS2S

▶ WS1S is weak monadic second–order theory of 1 successor = WMSO

▶ MONA translates WS1S formulas into minimum–state DFAs

▶ MONA confirms validity or produces counterexample

Demo

https://www.brics.dk/mona/
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https://www.brics.dk/mona/


Ebbinghaus, Flum and Thomas

▶ Section 10.9 of Einführung in die mathematische Logik (Springer Spektrum 2018)

Klarlund and Møller

▶ Section 3 of MONA Version 1.4 User Manual (2001)

Important Concepts

▶ drop i

▶ La(φ)

▶ m–admissible

▶ MONA

▶ stz

▶ WS1S

homework for November 14
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https://doi.org/10.1007/978-3-662-58029-5
https://www.brics.dk/mona/mona14.pdf
http://cl-informatik.uibk.ac.at/teaching/ws25/al/exercises/06.pdf
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