

Automata and Logic

Aart Middeldorp and Samuel Frontull

Definitions

- ightharpoonup FV(arphi) denotes list of free variables in arphi in fixed order with first–order variables preceding second–order ones
- ▶ assignment for φ with $\mathsf{FV}(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$ is tuple $(i_1, \ldots, i_m, I_1, \ldots, I_n)$ such that i_1, \ldots, i_m are elements of $\mathbb N$ and I_1, \ldots, I_n are finite subsets of $\mathbb N$
- ▶ assignments are identified with strings over $\{0,1\}^{m+n}$
- string over $\{0,1\}^{m+n}$ is m-admissible if first m rows contain exactly one 1 each

Remarks

- every m-admissible string x induces assignment x
- every assignment is induced by (not necessarily unique) m-admissible string: if x is m-admissible then x**0** is m-admissible and x = x**0**

Outline

- 1. Summary of Previous Lecture
- 2. Presburger Arithmetic
- 3. Intermezzo
- 4. Presburger Arithmetic
- 5. WMSO
- 6. Further Reading

universität innsbruck 25W Automata and Logic lecture 7 2

Lemma

set of m-admissible strings over $\{0,1\}^{m+n}$ is regular and accepted by DFA $\mathcal{A}_{m,n}$

Definition

 $L_a(\varphi) = \{x \in (\{0,1\}^{m+n})^* \mid x \text{ is } m\text{-admissible and } \underline{x} \models \varphi\}$

Theorem

 $L_a(\varphi)$ is regular for every WMSO formula φ

Definitions

- ▶ homomorphism drop_i : $(\{0,1\}^k)^* \to (\{0,1\}^{k-1})^*$ is defined for $1 \le i \le k$ by dropping i-th component from vectors in $\{0,1\}^k$
- ▶ $\operatorname{stz}(A) = \{x \mid x \mathbf{0} \cdots \mathbf{0} \in A\} \supseteq A \text{ for } A \subseteq (\{0,1\}^{m+n})^*$

"shorten trailing zeros"

 AM_{-}

Lemma

 $A \subseteq (\{0,1\}^k)^*$ is regular \implies stz(A) is regular

Final Task

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with $FV(\varphi) = \{P_a \mid a \in \Sigma^*\}$ using regularity preserving operations

Procedure

- ① eliminate assignments which do not correspond to string in Σ^*
- ② map strings in 0^*10^* to elements of Σ using homorphism $h: \{0,1\}^{|\Sigma|} \to \Sigma$ which maps $0^k 10^l$ to k+1-th element of Σ

Lemma

 $L(\varphi) = h(L_a(\varphi) \cap \{0^k 10^l \mid k+1+l = |\Sigma|\}^*)$ is regular

25W Automata and Logic lecture 7

AM

Corollary

MONA

WMSO definable sets are regular

1. Summary of Previous Lecture

▶ MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S

▶ WS1S is weak monadic second-order theory of 1 successor = WMSO

Automata

- ▶ (deterministic, nondeterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata

Logic

- ► (weak) monadic second-order logic
- ► Presburger arithmetic
- ► linear-time temporal logic

Outline

- 1. Summary of Previous Lecture
- 2. Presburger Arithmetic
- 3. Intermezzo
- 4. Presburger Arithmetic
- 5. WMSO
- 6. Further Reading

Definition

formulas of Presburger arithmetic

$$\varphi ::= \bot \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \exists x. \varphi \mid t_1 = t_2 \mid t_1 < t_2$$

 $t ::= 0 \mid 1 \mid t_1 + t_2 \mid x$

Examples

$$\exists y. x = y + y + y + 1$$

2
$$\forall x. (\exists y. x = y + y) \lor (\exists y. x + 1 = y + y)$$

Abbreviations

$$\varphi \wedge \psi := \neg(\neg \varphi \vee \neg \psi)$$

$$\varphi \to \psi \; := \; \neg \, \varphi \, \vee \, \psi$$

$$\top := \neg \bot$$

AM

AM

$$\forall x. \varphi := \neg \exists x. \neg \varphi$$

$$\forall x. \varphi := \neg \exists x. \neg \varphi \qquad \qquad t_1 \leqslant t_2 := t_1 < t_2 \lor t_1 = t_2$$

$$n := \underbrace{1 + \cdots +}_{n}$$

$$\mathbf{n}x := \underbrace{x + \cdots + x}$$
 for $n > 1$

25W Automata and Logic lecture 7

Definitions

- ightharpoonup assignment α is mapping from first-order variables to $\mathbb N$
- extension to terms: $\alpha(0) = 0$ $\alpha(1) = 1$ $\alpha(t_1 + t_2) = \alpha(t_1) + \alpha(t_2)$
- ▶ assignment α satisfies formula φ ($\alpha \models \varphi$):

$$\alpha \nvDash \bot$$

$$\alpha \vDash \neg \varphi \iff \alpha \nvDash \varphi$$

$$\alpha \vDash \varphi_1 \lor \varphi_2 \iff \alpha \vDash \varphi_1 \text{ or } \alpha \vDash \varphi_2$$

$$\alpha \models \exists x. \varphi \iff \alpha[x \mapsto n] \models \varphi \text{ for some } n \in \mathbb{N}$$

$$\alpha \models t_1 = t_2 \iff \alpha(t_1) = \alpha(t_2)$$

$$\alpha \models t_1 < t_2 \iff \alpha(t_1) < \alpha(t_2)$$

Remark

 $t_1 < t_2$ can be modeled as $\exists x. x \neq 0 \land t_1 + x = t_2$

universität 25W Automata and Logic lecture 7 2. **Presburger Arithmetic**

Remark

every $t_1 = t_2$ can be written as $a_1x_1 + \cdots + a_nx_n = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$

Side Remark

Presburger arithmetic admits complete first-order axiomatization:

- $\forall x.x+1\neq 0$
- $\forall x. \forall y. x + 1 = y + 1 \rightarrow x = y$
- ▶ induction

$$\psi(0) \wedge \forall x. (\psi(x) \rightarrow \psi(x+1)) \rightarrow \forall x. \psi(x)$$

for every formula $\psi(x)$ with single free variable x

- $\forall x.x + 0 = x$
- $\forall x. \forall y. x + (y+1) = (x+y) + 1$

Example (Frobenius Coin Problem)

given natural numbers $a_1, \ldots, a_n > 0$

$$(\forall y.x < y \rightarrow \exists x_1...\exists x_n.a_1x_1 + \cdots + a_nx_n = y) \land \neg(\exists x_1...\exists x_n.a_1x_1 + \cdots + a_nx_n = x)$$

expresses largest number x that does not satisfy $a_1x_1 + \cdots + a_nx_n = x$ for some $x_1, \ldots, x_n \in \mathbb{N}$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Decision Procedures

- quantifier elimination
- automata techniques
- ► translation to WMSO

25W Automata and Logic lecture 7

2. Presburger Arithmetic

_A_M_

Example

Presburger arithmetic formula φ : x + 2y - 3z = 2

some accepted strings:

$$\qquad \qquad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$x = 0$$

$$y = 1$$

$$z = 0$$

$$\qquad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$x = (10)_2 = 1$$

$$y = (11)_2$$

$$x = (10)_2 = 2$$
 $y = (11)_2 = 3$ $z = (10)_2 = 2$

$$\qquad \qquad \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$x = (0101)_2 = 5$$

$$x = (0101)_2 = 5$$
 $y = (1111)_2 = 15$ $z = (1011)_2 = 11$

some rejected strings:

$$x = 0$$

$$x = 0$$
 $y = 0$ $z = 0$

$$z = 0$$

$$\qquad \qquad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

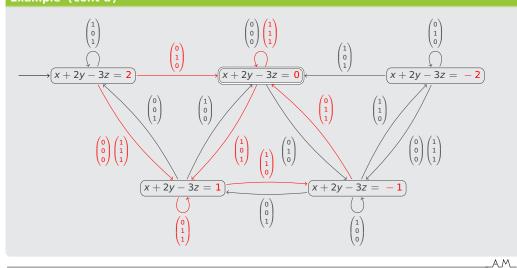
$$x = (010)_2 = 2$$
 $y = (101)_2 = 5$ $z = (110)_2 = 6$

$$y = (101)_2 = 5$$

$$z = (110)_2 = 6$$

25W Automata and Logic lecture 7

Example (cont'd)



Definition (Representation)

▶ sequence of *n* natural numbers is represented as string over

$$\Sigma_{n} = \{(b_{1} \cdots b_{n})^{T} \mid b_{1}, \ldots, b_{n} \in \{0, 1\}\}$$

 $\mathbf{x} = (x_1, \ldots, x_n)$

Example

- $\binom{0}{1}\binom{1}{0}$ represents $x_1 = 10, x_2 = 7, x_3 = 6$
- $x_1 = 1, x_2 = 2, x_3 = 3$ is represented by $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \dots$

Definition

for Presburger arithmetic formula φ with $\mathsf{FV}(\varphi) = (x_1, \ldots, x_n)$

$$L(\varphi) = \{ x \in \Sigma_n^* \mid \underline{x} \vDash \varphi \}$$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Proof Sketch

- lacktriangle construct finite automaton A_{φ} for every Presburger arithmetic formula φ
- ightharpoonup induction on φ
- $\blacktriangleright L(A_{\varphi}) = L(\varphi)$

 ΔM_{-}

Particify with session ID 4957 9500

Question

Consider the following automaton *A*:

$$\begin{pmatrix} * \\ * \end{pmatrix} \bigcirc 3 \leftarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \bigcirc 1 \longrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \bigcirc 2 \leftarrow \begin{pmatrix} * \\ * \end{pmatrix}$$

For which of the following formulas φ does $L(A) = L(\varphi)$ hold?

- $\neg (x = y)$
- $\mathbf{B} \quad x+y>0$
- $\exists z. x + y = 2z$

Outline

- 1. Summary of Previous Lecture
- 2. Presburger Arithmetic
- 3. Intermezzo
- 4. Presburger Arithmetic
- 5. WMSO
- 6. Further Reading

Outline

- 1. Summary of Previous Lecture
- 2. Presburger Arithmetic
- 3. Intermezzo
- 4. Presburger Arithmetic

Atomic Formulas

- 5. WMSO
- 6. Further Reading

 $AM_$

Definition (Automaton for Atomic Formula)

DFA $A_{\varphi} = (Q, \Sigma_n, \delta, s, F)$ for $\varphi(x_1, \ldots, x_n)$: $a_1x_1 + \cdots + a_nx_n = b$

- ▶ $Q \subseteq \{i \mid |i| \leq |b| + |a_1| + \cdots + |a_n|\} \cup \{\bot\}$
- $\delta(i,(b_1\cdots b_n)^{\mathsf{T}}) = \begin{cases} \frac{i-(a_1b_1+\cdots+a_nb_n)}{2} & \text{if } i-(a_1b_1+\cdots+a_nb_n) \text{ is even} \\ \bot & \text{if } i-(a_1b_1+\cdots+a_nb_n) \text{ is odd or } i=\bot \end{cases}$
- $F = \{0\}$

Lemma

if $\delta(i, (b_1 \cdots b_n)^T) = i$ then $a_1 x_1 + \cdots + a_n x_n = i \iff a_1 (2x_1 + b_1) + \cdots + a_n (2x_n + b_n) = i$

Theorem

A_∞ is well-defined

 $2 L(A_{\varphi}) = L(\varphi)$

AM

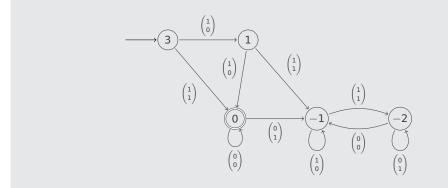
 $\varphi(x,y): x + 2y = 3$

- $P = \{3, \bot, 1, 0, -1, -2\}$ s = 3 $F = \{0\}$
- $\delta(3, \begin{pmatrix} 0 \\ 0 \end{pmatrix}) = \delta(3, \begin{pmatrix} 1 \\ 1 \end{pmatrix}) = \bot \quad \delta(3, \begin{pmatrix} 1 \\ 1 \end{pmatrix}) = \mathbf{1} \quad \delta(3, \begin{pmatrix} 1 \\ 1 \end{pmatrix}) = \mathbf{0}$
- $\delta(\bot, \binom{0}{0}) = \delta(\bot, \binom{0}{1}) = \delta(\bot, \binom{1}{0}) = \delta(\bot, \binom{1}{1}) = \bot$

- $\delta(-2, \binom{1}{0}) = \delta(-2, \binom{1}{1}) = \bot \quad \delta(-2, \binom{0}{0}) = -1 \quad \delta(-2, \binom{0}{1}) = -2$

Example

 $\varphi(x,y): x + 2y = 3$



Theorem

- $\mathbf{0}$ A_{φ} is well-defined
- $2 L(A_{\varphi}) = L(\varphi)$

Proof

- \bullet $q \in Q \subseteq \{i \mid |i| \leq |b| + |a_1| + \cdots + |a_n|\} \cup \{\bot\}$ and $b' = (b_1 \cdots b_n)^{\mathsf{T}} \in \Sigma_n$
- lacktriangle if $q = \bot$ or $i (a_1b_1 + \cdots + a_nb_n)$ is odd then $\delta(q, b') = \bot$
- ▶ suppose q = i with $|i| \le |b| + |a_1| + \cdots + |a_n|$ and $i (a_1b_1 + \cdots + a_nb_n)$ is even

$$\delta(i,b') = \frac{i - (a_1b_1 + \dots + a_nb_n)}{2} \in Q$$

$$|i - (a_1b_1 + \dots + a_nb_n)| \leq |i| + |a_1b_1| + \dots + |a_nb_n|$$

$$\leq |i| + |a_1| + \dots + |a_n|$$

$$\leq 2(|b| + |a_1| + \dots + |a_n|)$$

 ΔM_{\perp}

Outline

- 1. Summary of Previous Lecture
- 2. Presburger Arithmetic
- 3. Intermezzo
- 4. Presburger Arithmetic

Boolean Operations

- 5. WMSO
- 6. Further Reading

Example

Presburger arithmetic formula

$$x + 2y - 3z = 2 \land x + 2y = 3$$

- $A_{x+2v-3z=2}$ operates on alphabet $\Sigma_3 = (\{0,1\}^3)^T$
- operates on alphabet $\Sigma_2 = (\{0,1\}^2)^T$ $A_{x+2v=3}$
- before intersection can be computed $A_{x+2y=3}$ needs to operate on $Σ_3$

Definition (Cylindrification)

 $C_i(R)\subseteq \Sigma_{n+1}^*$ is defined for $R\subseteq \Sigma_n^*$ and index $1\leqslant i\leqslant n+1$ as

$$C_i(R) = \{x_1 \cdots x_m \in \Sigma_{n+1}^* \mid drop_i(x_1) \cdots drop_i(x_m) \in R\}$$

with drop_i $((b_1 \cdots b_{n+1})^T) = (b_1 \cdots b_{i-1} b_{i+1} \cdots b_{n+1})^T$

Boolean Operations				
	boolean operation	automata const	automata construction	
		complement	С	
	\wedge	intersection	1	
	V	union	U	

Example

Presburger arithmetic formula

$$\neg ((x+2y-3z \neq 2 \land 2x-y+z=3) \lor x-3y-z \neq 1))$$

is implemented as

$$C(U(I(C(A_{x+2y-3z=2}), A_{2x-y+z=3}), C(A_{x-3y-z=1})))$$

25W Automata and Logic lecture 7

Example

 ΔM_{-}

AM

$$L(A_{x+2y=3}) = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}^*$$

$$L(C_3(A_{x+2y=3})) = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\} \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}^*$$

Lemma

if $R \subseteq \Sigma_n^*$ is regular then $C_i(R) \subseteq \Sigma_{n+1}^*$ is regular for every $1 \le i \le n+1$

 ΔM_{-}

Remark

- ▶ drop_i is homomorphism from Σ_{n+1}^* to Σ_n^*
- $ightharpoonup C_i(R) = \operatorname{drop}_i^{-1}(R)$

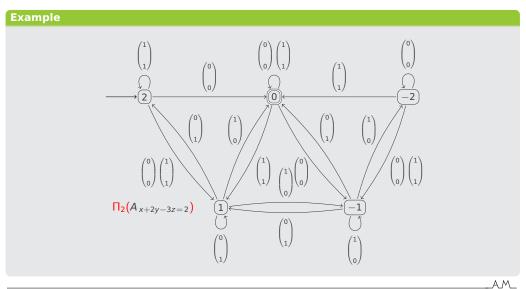
Outline

- 1. Summary of Previous Lecture
- 2. Presburger Arithmetic
- 3. Intermezzo
- 4. Presburger Arithmetic

Quantifiers

- 5. WMSO
- 6. Further Reading

_A_M_



Definition (Projection)

 $\Pi_i(R)\subseteq \Sigma_n^*$ is defined for $R\subseteq \Sigma_{n+1}^*$ and index $1\leqslant i\leqslant n+1$ as

$$\Pi_i(R) = \{ \operatorname{drop}_i(x_1) \cdots \operatorname{drop}_i(x_m) \in \Sigma_n^* \mid x_1 \cdots x_m \in R \}$$

 $AM_$

Lemma

if $R \subseteq \Sigma_{n+1}^*$ is regular then $\Pi_i(R) \subseteq \Sigma_n^*$ is regular for every $1 \leqslant i \leqslant n+1$

Example

- solutions of $\exists y. x + 2y 3z = 2$ correspond to $stz(\Pi_2(A_{x+2y-3z=2}))$
- 2 solutions of $\forall y. x + 2y 3z = 2$ correspond to $C(stz(\Pi_2(C(A_{x+2y-3z=2}))))$

Outline

- 1. Summary of Previous Lecture
- 2. Presburger Arithmetic
- 3. Intermezzo
- 4. Presburger Arithmetic
- 5. WMSO
- 6. Further Reading

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Decision Procedures

- quantifier elimination
- automata techniques
- ► translation to WMSO

ΔM_{-}

Procedure

- ▶ map variables in Presburger arithmetic formula to second-order variables in WMSO
- ▶ n is represented as set of "1" positions in reverse binary notation of n
- ▶ 0 and 1 in Presburger arithmetic formulas are translated into ZERO and ONE with

$$\forall x. \neg \mathsf{ZERO}(x)$$
 $\forall x. \mathsf{ONE}(x) \leftrightarrow x = 0$

 \blacktriangleright + in Presburger arithmetic formula is translated into ternary predicate P_+ with

$$\begin{array}{l} P_{+}(X,Y,Z) \ := \ \exists \ C. \ \neg C(0) \ \land \ (\forall \ x. \ C(x+1) \ \leftrightarrow \ X(x) \land Y(x) \lor X(x) \land C(x) \lor Y(x) \land C(x)) \land \\ (\forall \ x. \ Z(x) \ \leftrightarrow \ X(x) \land Y(x) \land C(x) \lor X(x) \land \neg Y(x) \land \neg C(x) \lor \\ \neg X(x) \land Y(x) \land \neg C(x) \lor \neg X(x) \land \neg Y(x) \land C(x)) \end{array}$$

Example

26 is represented by $\{1, 3, 4\}$ since $(26)_2 = 11010$

25W Automata and Logic lecture 7

Example

Presburger arithmetic formula $\exists y. x = y + y + 1$ is transformed into WMSO formula

$$\big(\forall\,x.\,\mathsf{ONE}(x)\,\leftrightarrow\,x\,=\,0\big)\,\,\wedge\,\,\exists\,Y.\,\exists\,Z.\,P_+(Y,Y,Z)\,\wedge\,P_+(Z,\mathsf{ONE},X)$$

Corollary

Presburger arithmetic is decidable

Outline

- 1. Summary of Previous Lecture
- 2. Presburger Arithmetic
- 3. Intermezzo
- 4. Presburger Arithmetic
- 5. WMSO
- 6. Further Reading

Boudet and Comon

▶ Diophantine Equations, Presburger Arithmetic and Finite Automata, Proc. 21st International Colloquium on Trees in Algebra and Programming, LNCS 1059, pp. 30–43, 1996

Esparza and Blondin

► Chapter 9 of Automata Theory: An Algorithmic Approach (MIT Press 2023)

Important Concepts

 $ightharpoonup A_{arphi}$ ightharpoonup L(arphi) ightharpoonup cylindrification ightharpoonup projection ightharpoonup Presburger arithmetic

homework for November 21

_A_M_

universität 25W Automata and Logic lecture 7 6. Further Reading