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Definition

formulas of Presburger arithmetic

φ ::= ⊥ | ¬φ | φ1 ∨ φ2 | ∃ x. φ | t1 = t2 | t1 < t2

t ::= 0 | 1 | t1 + t2 | x

Abbreviations

φ ∧ ψ := ¬(¬φ ∨ ¬ψ) φ→ ψ := ¬φ ∨ ψ ⊤ := ¬⊥
∀ x. φ := ¬∃ x.¬φ t1 ⩽ t2 := t1 < t2 ∨ t1 = t2

n := 1 + · · ·+ 1︸ ︷︷ ︸
n

n x := x+ · · ·+ x︸ ︷︷ ︸
n

for n > 1

Definitions

▶ assignment α is mapping from first–order variables to N

▶ extension to terms: α(0) = 0 α(1) = 1 α(t1 + t2) = α(t1) + α(t2)
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Definition

assignment α satisfies formula φ (α ⊨ φ):

α ⊭ ⊥
α ⊨ ¬φ ⇐⇒ α ⊭ φ

α ⊨ φ1 ∨ φ2 ⇐⇒ α ⊨ φ1 or α ⊨ φ2

α ⊨ ∃ x. φ ⇐⇒ α [ x 7→ n ] ⊨ φ for some n ∈ N

α ⊨ t1 = t2 ⇐⇒ α(t1) = α(t2)

α ⊨ t1 < t2 ⇐⇒ α(t1) < α(t2)

Remark

every t1 = t2 can be written as a1x1 + · · ·+ anxn = b with a1, . . . , an, b ∈ Z

Theorem (Presburger 1929)

Presburger arithmetic is decidable
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http://cl-informatik.uibk.ac.at/~ami


Decision Procedures

▶ quantifier elimination

▶ automata techniques

▶ translation to WMSO

Definition (Representation)

▶ sequence of n natural numbers is represented as string over

Σn = {(b1 · · · bn)T | b1, . . . , bn ∈ {0,1}}

▶ x =


b1

1

...

b1
n



b2

1

...

b2
n

 · · ·


bm1
...

bmn

 ∈ Σ∗
n represents x1 = (bm1 · · · b2

1b
1
1)2, . . . , xn = (bmn · · · b2

nb
1
n)2

▶ x = (x1, . . . , xn)
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Definition

for Presburger arithmetic formula φ with FV(φ) = (x1, . . . , xn)

L(φ) = {x ∈ Σ∗
n | x ⊨ φ}

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Proof Sketch

▶ construct finite automaton Aφ for every Presburger arithmetic formula φ

▶ induction on φ

▶ L(Aφ) = L(φ)
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Definition (Automaton for Atomic Formula)

finite automaton Aφ = (Q,Σn, δ, s, F) for φ(x1, . . . , xn) : a1x1 + · · ·+ anxn = b

▶ Q ⊆ { i | | i | ⩽ |b|+ |a1|+ · · ·+ |an|} ∪ {⊥}

▶ δ(i, (b1 · · ·bn)T) =


i− (a1b1 + · · ·+ anbn)

2
if i− (a1b1 + · · ·+ anbn) is even

⊥ if i− (a1b1 + · · ·+ anbn) is odd or i = ⊥
▶ s = b

▶ F = {0}

Lemma

if δ(i, (b1 · · ·bn)T) = j then a1x1 + · · ·+ anxn = j ⇐⇒ a1(2x1 + b1) + · · ·+ an(2xn + bn) = i

Theorem

▶ Aφ is well–defined

▶ L(Aφ) = L(φ)
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Boolean Operations

boolean operation automata construction

¬ complement C

∧ intersection I

∨ union U

Definition (Cylindrification)

C i (R) ⊆ Σ∗
n+1 is defined for R ⊆ Σ∗

n and index 1 ⩽ i ⩽ n+ 1 as

C i (R) =
{
x1 · · · xm ∈ Σ∗

n+1

∣∣ drop i (x1) · · · drop i (xm) ∈ R
}

with drop i

(
(b1 · · ·bn+1)

T
)
= (b1 · · ·bi−1bi+1 · · ·bn+1)

T

Lemma

if R ⊆ Σ∗
n is regular then C i (R) ⊆ Σ∗

n+1 is regular for every 1 ⩽ i ⩽ n+ 1
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Definition (Projection)

Π i (R) ⊆ Σ∗
n is defined for R ⊆ Σ∗

n+1 and index 1 ⩽ i ⩽ n+ 1 as

Π i (R) = {drop i (x1) · · · drop i (xm) ∈ Σ∗
n

∣∣ x1 · · · xm ∈ R}

Lemma

if R ⊆ Σ∗
n+1 is regular then Π i(R) ⊆ Σ∗

n is regular for every 1 ⩽ i ⩽ n+ 1
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Translation from Presburger Arithmetic to WMSO

▶ map variables in Presburger arithmetic formula to second–order variables in WMSO

▶ n is represented as set of "1" positions in reverse binary notation of n

▶ 0 and 1 in Presburger arithmetic formulas are translated into ZERO and ONE with

∀ x.¬ZERO(x) ∀ x.ONE(x) ↔ x = 0

▶ + in Presburger arithmetic formula is translated into ternary predicate P+ with

P+(X, Y,Z) := ∃ C.¬C(0) ∧
(
∀ x.C(x+ 1) ↔ X(x) ∧ Y(x) ∨ X(x) ∧ C(x) ∨ Y(x) ∧ C(x)

)
∧(

∀ x.Z(x) ↔ X(x) ∧ Y(x) ∧ C(x) ∨ X(x) ∧ ¬Y(x) ∧ ¬C(x)∨
¬X(x) ∧ Y(x) ∧ ¬C(x) ∨ ¬X(x) ∧ ¬Y(x) ∧ C(x)

)
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Automata

▶ (deterministic, nondeterministic, alternating) finite automata

▶ regular expressions

▶ (alternating) Büchi automata

Logic

▶ (weak) monadic second–order logic

▶ Presburger arithmetic

▶ linear–time temporal logic
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Definitions

▶ infinite string over alphabet Σ is function x : N → Σ

▶ Σω denotes set of all infinite strings over Σ

▶ |x|a for x ∈ Σω and a ∈ Σ denotes number of occurrences of a in x

Example

x(i) =

a if i is even

b if i is odd
x = ababab · · · = (ab)ω

Remarks

▶ infinite string x is identified with infinite sequence x(0)x(1)x(2) · · ·
▶ |x|a = ∞ for at least one a ∈ Σ
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Definitions

▶ left–concatenation of u ∈ Σ∗ and v ∈ Σω is denoted by u · v ∈ Σω

▶ left–concatenation of U ⊆ Σ∗ and V ⊆ Σω

U · V = {u · v | u ∈ U and v ∈ V}

▶ ∼V = Σω − V is complement of V ⊆ Σω

▶ Uω = {u0 · u1 · · · · | ui ∈ U− {ϵ} for all i ∈ N} is ω–iteration of U ⊆ Σ∗
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Definitions

▶ nondeterministic Büchi automaton (NBA) is NFA M = (Q,Σ,∆,S, F) operating on Σω

▶ run of M on input x = a0a1a2 · · · ∈ Σω is infinite sequence q0,q1, . . . of states such that

q0 ∈ S and qi+1 ∈ ∆(qi, ai) for i ⩾ 0

▶ run q0,q1, . . . is accepting if qi ∈ F for infinitely many i

▶ L(M) = {x ∈ Σω | x admits accepting run}

Example

▶ NBA M

1 2

b

a

b

a

▶ (ab)ω ∈ L(M)

▶ aabω /∈ L(M)

▶ L(M) = {x ∈ {a,b}ω | |x|a = ∞}

25W Automata and Logic lecture 8 3. Büchi Automata 16/32



Example

▶ NBA M

1 2

ab

b

b

▶ L(M) = {x ∈ {a,b}ω | |x|a ̸= ∞} = (a+ b)∗bω

▶ M is not deterministic

Definitions

▶ set A ⊆ Σω is ω–regular if A = L(M) for some NBA M

▶ deterministic Büchi automaton (DBA) is NBA (Q,Σ,∆,S, F) with

1 |S | = 1

2 |∆(q, a) | = 1 for all q ∈ Q and a ∈ Σ
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Example

{x ∈ {a,b}ω | |x|a = |x|b = ∞} is accepted by DBA

1 2

3

a

b

a

ba
b
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Theorem

not every ω–regular set is accepted by DBA

Proof

L = {x ∈ {a,b}ω | |x|a ̸= ∞} is ω–regular but not accepted by DBA:

▶ suppose L = L(M) for DBA M = (Q,Σ,∆,S, F)

x0 = bω ∈ L =⇒ ∃ accepting run q0,q1, . . . =⇒ ∃ i0 ⩾ 0 with qi0 ∈ F

x1 = b i0abω ∈ L =⇒ ∃ accepting run q0,q1, . . . =⇒ ∃ i1 > i0 + 1 with qi1 ∈ F

let l1 = i1 − i0 − 1

x2 = b i0ab l1abω ∈ L =⇒ ∃ accepting run q0,q1, · · · =⇒ ∃ i2 > i1 + 1 with qi2 ∈ F

· · ·
∃ j < k such that qij = qik

▶ x = b i0ab l1 · · · ab lj(ab lj+1 · · · ab lk)ω admits accepting run but x /∈ L �
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Lemma

every ω–regular set is accepted by NBA with one start state

Proof

▶ A = L(M) for NBA M = (Q,Σ,∆,S, F)

▶ define NBA N = (Q′,Σ,∆′, {s}, F) with Q′ = Q ⊎ {s} and

∆′(p, a) =

{
∆(p, a) if p ̸= s

{q ∈ Q | q ∈ ∆(p′, a) for some p′ ∈ S} if p = s

▶ L(N) = A:

x ∈ A ⇐⇒ ∃ run q0,q1,q2, . . . in M with q0 ∈ S and qi ∈ F for infinitely many i ⩾ 0

⇐⇒ ∃ run q0,q1,q2, . . . in M with q0 ∈ S and qi ∈ F for infinitely many i > 0

⇐⇒ ∃ run s,q1,q2, . . . in N with qi ∈ F for infinitely many i > 0

⇐⇒ x ∈ L(N)
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with session ID 4957 9500

Question

Which statement about the following NBA M is true ?

1 2 3
a

a

a

b
A L(M) = ∅

B (b∗aa)ω ∈ L(M)

C L(M) = {x | |x|a = ∞ and |x|b ̸= ∞}

D L(M) = {x ∈ {a,b}ω | every b follows an even number of a’s}
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Theorem

ω–regular sets are effectively closed under union

Proof (construction)

▶ A = L(M1) for NBA M1 = (Q1,Σ,∆1,S1, F1)

B = L(M2) for NBA M2 = (Q2,Σ,∆2,S2, F2)

▶ without loss of generality Q1 ∩ Q2 = ∅

▶ A ∪ B = L(M) for NBA M = (Q,Σ,∆,S, F) with

1 Q = Q1 ∪ Q2

2 S = S1 ∪ S2

3 F = F1 ∪ F2

4 ∆(q, a) =

∆1(q, a) if q ∈ Q1

∆2(q, a) if q ∈ Q2
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Theorem

ω–regular sets are effectively closed under intersection

Remark

product construction needs to be modified

Example

M1 : 1 2

a

b

M2 : 1 2

a

b

a

L(M1) = a(ba)ω = (ab)ω L(M2) = (aa∗b)ω L(M1) ∩ L(M2) = (ab)ω

M1 ×M2 : 11 22

a

b
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Theorem

ω–regular sets are effectively closed under intersection

Proof (modified product construction)

▶ A = L(M1) for NBA M1 = (Q1,Σ,∆1,S1, F1) and B = L(M2) for NBA M2 = (Q2,Σ,∆2,S2, F2)

▶ A ∩ B = L(M) for NBA M = (Q,Σ,∆,S, F) with

1 Q = Q1 × Q2 × {0,1,2}
2 S = S1 × S2 × {0}
3 F = Q1 × Q2 × {2}
4 ∆((p,q, i), a) = {(p′,q′, j) | p′ ∈ ∆1(p, a) and q′ ∈ ∆2(q, a)} with

j =


1 if i = 0 and p′ ∈ F1 or i = 1 and q′ /∈ F2

2 if i = 1 and q′ ∈ F2

0 otherwise
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Example

M1 : 1 2

a

b

M2 : 1 2

a

b

a

L(M1) = a(ba)ω = (ab)ω L(M2) = (aa∗b)ω L(M1) ∩ L(M2) = (ab)ω

M : 110 220

111 221

112 222

a

a

a

b

b

b
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Theorem

left–concatenation of regular set and ω–regular set is ω–regular

Proof (construction)

▶ A = L(M1) for NFA M1 = (Q1,Σ,∆1,S1, F1) and B = L(M2) for NBA M2 = (Q2,Σ,∆2,S2, F2)

▶ without loss of generality Q1 ∩ Q2 = ∅

▶ A · B = L(M) for NBA M = (Q,Σ,∆,S, F) with

1 Q = Q1 ∪ Q2

2 S =

{
S1 if F1 ∩ S1 = ∅
S1 ∪ S2 otherwise

3 F = F2

4 ∆ = ∆1 ∪ ∆2 ∪ {(p, a,q) | (p, a, f) ∈ ∆1 for some f ∈ F1 and q ∈ S2}
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Theorem

ω–iteration of regular set is ω–regular

Proof (construction)

▶ A = L(M) for NFA M = (Q,Σ,∆,S, F)

▶ without loss of generality ϵ /∈ A

▶ NFA M′ = (Q ∪ {s},Σ,∆′, {s}, F) with

∆′ = ∆ ∪ {(s, a,q) | (p, a,q) ∈ ∆ for some p ∈ S}

▶ L(M′) = L(M)

▶ NBA M′′ = (Q ∪ {s},Σ,∆′′, {s}, {s}) with

∆′′ = ∆′ ∪ {(p, a, s) | (p, a,q) ∈ ∆′ for some q ∈ F}

▶ L(M′′) = L(M′)ω
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Theorem

set A ⊆ Σω is ω–regular ⇐⇒
A = U1 · Vω

1 ∪ · · · ∪ Un · Vω
n

for some n ⩾ 0 and regular U1, . . . , Un, V1, . . . , Vn ⊆ Σ∗

Proof ( ⇐= )

A is ω–regular using closure properties: ω–iteration, left–concatenation, union

Proof ( =⇒ )

▶ A = L(M) for some NBA M = (Q,Σ,∆,S, F)

▶ Lpq for p, q ∈ Q is set of strings x ∈ Σ∗ such that q ∈ ∆̂({p}, x)
▶ Lpq is regular for all p, q ∈ Q

▶ A =
⋃

p∈S, q∈F

Lpq · Lωqq
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Hofmann and Lange

▶ Chapter 5 of Automatentheorie und Logik (Springer 2011)

Esparza and Blondin

▶ Chapter 10 of Automata Theory: An Algorithmic Approach (MIT Press 2023)

Important Concepts

▶ Büchi automaton

▶ DBA

▶ left–concatenation ▶ NBA

▶ Σω

▶ ω–iteration

▶ ω–regular

homework for November 28
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https://doi.org/10.1007/978-3-642-18090-3
https://mitpress.mit.edu/9780262048637/automata-theory/
http://cl-informatik.uibk.ac.at/teaching/ws25/al/exercises/08.pdf
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