

Automata and Logic

Aart Middeldorp and Samuel Frontull

Definitions

- ▶ infinite string over alphabet Σ is function $x: \mathbb{N} \to \Sigma$
- $ightharpoonup \Sigma^{\omega}$ denotes set of all infinite strings over Σ
- ▶ $|x|_a$ for $x \in \Sigma^\omega$ and $a \in \Sigma$ denotes number of occurrences of a in x
- ▶ left-concatenation of $u \in \Sigma^*$ and $v \in \Sigma^\omega$ is denoted by $u \cdot v \in \Sigma^\omega$
- ▶ left-concatenation of $U \subseteq \Sigma^*$ and $V \subseteq \Sigma^\omega$

$$U \cdot V = \{u \cdot v \mid u \in U \text{ and } v \in V\}$$

- $ightharpoonup \sim V = \Sigma^{\omega} V$ is complement of $V \subseteq \Sigma^{\omega}$
- ▶ $U^{\omega} = \{u_0 \cdot u_1 \cdot \dots \mid u_i \in U \{\epsilon\} \text{ for all } i \in \mathbb{N}\} \text{ is } \omega\text{-iteration of } U \subseteq \Sigma^*$

Outline

- 1. Summary of Previous Lecture
- 2. Complementation
- 3. Intermezzo
- 4. Monadic Second-Order Logic
- 5. Further Reading

universität 25W Automata and Logic lecture 9

Definitions

- lacktriangledown nondeterministic Büchi automaton (NBA) is NFA $M=(Q,\Sigma,\Delta,S,F)$ operating on Σ^ω
- ▶ run of M on input $x = a_0 a_1 a_2 \cdots \in \Sigma^{\omega}$ is infinite sequence q_0, q_1, \ldots of states such that $q_0 \in S$ and $q_{i+1} \in \Delta(q_i, a_i)$ for $i \ge 0$
- ▶ run $q_0, q_1,...$ is accepting if $q_i \in F$ for infinitely many i
- ▶ $L(M) = \{x \in \Sigma^{\omega} \mid x \text{ admits accepting run}\}$
- ▶ set $A \subseteq \Sigma^{\omega}$ is ω -regular if A = L(M) for some NBA M
- ▶ deterministic Büchi automaton (DBA) is NBA $(Q, \Sigma, \Delta, S, F)$ with
 - ① |S| = 1
 - ② $|\Delta(q,a)|=1$ for all $q\in Q$ and $a\in \Sigma$

Lemma

 ΔM_{\perp}

every ω -regular set is accepted by NBA with one start state

Theorem

not every ω -regular set is accepted by DBA

Theorem

- \bullet -regular sets are effectively closed under union and intersection
- **2** left-concatenation of regular set and ω -regular set is ω -regular
- 3 ω -iteration of regular set is ω -regular

Theorem

$$\mathsf{set}\;\mathsf{A}\subseteq \Sigma^\omega\;\mathsf{is}\;\omega\mathsf{-regular}\quad\Longleftrightarrow\quad \begin{array}{l} \mathsf{A}=U_1\cdot V_1^\omega\cup\cdots\cup U_n\cdot V_n^\omega\\ \\ \mathsf{for}\;\mathsf{some}\;n\in\mathbb{N}\;\mathsf{and}\;\mathsf{regular}\;U_1,\ldots,U_n,V_1,\ldots,V_n\subseteq\Sigma^* \end{array}$$

1. Summary of Previous Lecture

Outline

- 1. Summary of Previous Lecture
- 2. Complementation
- 3. Intermezzo
- 4. Monadic Second-Order Logic
- 5. Further Reading

Automata

- ▶ (deterministic, nondeterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata

Logic

- ► (weak) monadic second-order logic
- ► Presburger arithmetic
- ► linear-time temporal logic

1. Summary of Previous Lecture

Theorem

every DBA M can be effectively transformed into NBA M' such that $L(M') = \sim L(M)$

Proof

- ▶ DBA $M = (Q, \Sigma, \Delta, S, F)$
- \blacktriangleright NBA M' should accept all strings for which (single) run of M visits F finitely often idea: guess state from which no more visits to F take place
- ▶ $Q' = (Q \times \{0\}) \cup ((Q F) \times \{1\})$

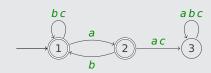
 ΔM_{-}

- ► $F' = (Q F) \times \{1\}$ ► if $\Delta(p, a) = \{q\}$ then $\Delta'((p, i), a) = \begin{cases} \{(q, 0), (q, 1)\} & \text{if } i = 0 \text{ and } q \notin F \\ \{(q, 0)\} & \text{if } i = 0 \text{ and } q \in F \end{cases}$ $\{(q, 1)\}$ if i = 1 and $q \notin F$ if i = 1 and $q \in F$

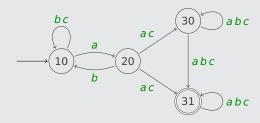
AM

Example

DBA M



- ▶ $L(M) = \{x \in \{a, b, c\}^{\omega} \mid \text{ every } a \text{ in } x \text{ is immediately followed by } b\}$
- $ightharpoonup \sim L(M) = \{x \in \{a,b,c\}^{\omega} \mid x \text{ contains } aa \text{ or } ac \text{ as substring}\}$ is accepted by NBA M'



25W Automata and Logic lecture 9

Theorem

 ω -regular sets are closed under complement

Notation

for NBA $M = (Q, \Sigma, \Delta, S, F)$ and states $p, q \in Q$

$$\blacktriangleright \mathbf{L}_{pq} = \{ x \in \Sigma^* \mid q \in \widehat{\Delta}(\{p\}, x) \}$$

$$\blacktriangleright \ L_{pq}^{f} = \bigcup_{f \in F} L_{pf} \cdot L_{fq}$$

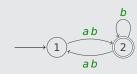
Definition

relation \sim_M on Σ^* for NBA $M = (Q, \Sigma, \Delta, S, F)$: $u \sim_M v$ if for all $p, q \in Q$

$$u \in L_{pq} \iff v \in L_{pq} \quad \text{and} \quad u \in L_{pq}^{f} \iff v \in L_{pq}^{f}$$

Example

NBA M



- $ightharpoonup a
 ot\sim_M b: a
 otin L_{22} and b
 otin L_{22}$
- ▶ $b \not\sim_M bb$: $b \notin L_{11}$ and $bb \in L_{11}$
- **▶** а ∼м ааа
- ▶ $bb \sim_M bbb$

Lemma

- \bullet \sim_M is equivalence relation of finite index
- 2 each equivalence class of \sim_M is regular

Proof

for string $u \in \Sigma^*$

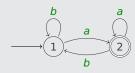
- $Q_u = \{ (p,q) \in Q \times Q \mid u \in L_{pq} \}$
- $ightharpoonup Q_u^f = \{(p,q) \in Q \times Q \mid u \in L_{pq}^f\}$
- $\triangleright Q_{\neg \mu} = Q \times Q Q_{\mu}$
- $\triangleright Q_{-u}^{f} = Q \times Q Q_{u}^{f}$

$$[u]_{\sim_{\mathsf{M}}} = \left(\bigcap_{(p,q)\in\mathcal{Q}_u} L_{pq} \cap \bigcap_{(p,q)\in\mathcal{Q}_u^{\mathsf{f}}} L_{pq}^{\mathsf{f}}\right) - \left(\bigcup_{(p,q)\in\mathcal{Q}_{\neg u}} L_{pq} \cup \bigcup_{(p,q)\in\mathcal{Q}_{\neg u}^{\mathsf{f}}} L_{pq}^{\mathsf{f}}\right)$$

AM

Example

► NBA M



$$\begin{aligned} [\epsilon]_{\sim_{M}} &= \{\epsilon\} \\ [a]_{\sim_{M}} &= L((a+b)^{*}a) \\ [b]_{\sim_{M}} &= L(b^{+}) \\ [ab]_{\sim_{M}} &= L((a+b)^{*}a(a+b)^{*}b) \end{aligned}$$

universität 25W Automata and Logic lecture 9 2. **Complementation** innsbruck

Lemma

for all $x \in U \cdot V^{\omega}$ with equivalence classes U and V of \sim_M

- $\triangleright x \in L(M) \implies U \cdot V^{\omega} \subseteq L(M)$
- $\triangleright x \notin L(M) \implies U \cdot V^{\omega} \subseteq \sim L(M)$

Proof

AM

AM

- ▶ $x = uv_1v_2 \cdots$ with $u \in U$ and $v_i \in V \{\epsilon\}$ for all $i \geqslant 1$
- \blacktriangleright arbitrary $x' \in U \cdot V^{\omega}$ can be written as $u'v_1'v_2' \cdots$ with $u' \in U$ and $v_i' \in V \{\epsilon\}$ for all $i \geqslant 1$
- ▶ $u \sim_M u'$ and $v_i \sim_M v_i'$ for all $i \geqslant 1$ \implies x and x' have essentially same runs

■ universität 25W Automata and Logic lecture 9 2. Complementation 14/27

Theorem (Ramsey)

every infinite k-colored complete graph contains infinite complete monochromatic subgraph

Proof (for k = 2)

- ▶ $V = \{v_i \mid i \in \mathbb{N}\}$ is arbitrary countable subset of nodes of given graph; 2 colors: red blue
- ▶ construct infinite sequences $w_0, w_1, \ldots \in V$ and $V_0, V_1, \ldots \subseteq V$ inductively:
 - $w_0 = v_0$ and V_0 is infinite subset of V such that all edges $\{w_0v \mid v \in V_0\}$ are same color
 - w_{i+1} is arbitrary node in V_i and V_{i+1} is infinite subset of V_i such that all edges $\{w_{i+1}v \mid v \in V_{i+1}\}$ are same color
- ▶ i < j < k \implies $w_j, w_k \in V_i$ \implies edges $w_i w_j$ and $w_i w_k$ are same color
- w_i is blue-based (red-based) if edge $w_i w_i$ is blue (red) for all j > i
- ▶ pigeon-hole principle: $\exists w_{i_0}, w_{i_1}, \dots$ such that all elements have same color base
- \triangleright w_{i_0}, w_{i_1}, \ldots induces infinite complete monochromotic subgraph

Lemma

for all $x \in \Sigma^{\omega}$ there exist equivalence classes U and V of \sim_M such that $x \in U \cdot V^{\omega}$

Proof

- $\rightarrow x = a_0 a_1 a_2 \cdots$
- \blacktriangleright for all i < j "color" c_{ij} is equivalence class of \sim_M containing finite substring $x_{ij} = a_i \cdots a_j$
- $ightharpoonup \sim_{M}$ is of finite index \implies (theorem of Ramsey)

 \exists equivalence class V and infinite subset S of $\mathbb N$ such that $x_{ij} \in V$ for all $i, j \in S$ with i < j

- $\mathbf{V} = [a_0 \cdots a_{k-1}]_{\sim_M} \text{ where } k = \min(S)$
- $\rightarrow x \in U \cdot V^{\omega}$

AM

Corollary

 $\sim L(M) = \bigcup \{U \cdot V^{\omega} \mid U \text{ and } V \text{ are equivalence classes of } \sim_M \text{ such that } U \cdot V^{\omega} \cap L(M) = \emptyset \}$

Corollary

 \sim L(M) is ω -regular for every NBA M

Remarks

- construction is double exponential: if M has n states then NBA for $\sim L(M)$ has $2^{2^{\mathcal{O}(n)}}$ states
- ▶ optimal construction (Safra 1988) produces $2^{O(n \log n)}$ states

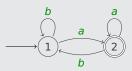
 ΔM_{-}

Outline

- 1. Summary of Previous Lecture
- 2. Complementation
- 3. Intermezzo
- 4. Monadic Second-Order Logic
- 5. Further Reading

Example

► NBA M



• equivalence classes of \sim_M :

$$\mathbf{0} = \{\epsilon\}$$

$$\mathbf{0} = \{ \epsilon \}$$
 $\mathbf{2} = L((a+b)^*a)$

$$\mathbf{0} = L(b^+)$$

$$4 = L((a+b)^*a(a+b)^*b)$$

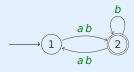
$$U \cdot V^{\omega} \cap L(M) = \emptyset \text{ for } U, V \in \{0, 2, 3, 4\}?$$

$$ho \sim L(M) = (1 \cup 2 \cup 3 \cup 4) \cdot (1^{\omega} \cup 3^{\omega}) = \{a, b\}^* \{b\}^{\omega}$$

Prticify with session ID 4957 9500

Question

What can be said about the equivalence relation \sim_M for the following NBA M?



- $\mathbf{A} \quad [\epsilon]_{\sim_{\mathsf{M}}} = \{\epsilon\}$
- **B** $ab \sim_M bb$
- **C** $a \sim_M x$ for all $x \in L(a(aa)^*)$
- **D** $ab \sim_M x$ for all $x \in L(ab^*)$

Outline

- 1. Summary of Previous Lecture
- 2. Complementation
- 3. Intermezzo
- 4. Monadic Second-Order Logic
- 5. Further Reading

ΔM_{-}

AM

Definitions

- first-order variables $V_1 = \{x, y, ...\}$ ranging over natural numbers
- \triangleright second-order variables $V_2 = \{X, Y, \ldots\}$ ranging over sets of natural numbers
- formulas of monadic second-order logic (MSO)

$$\varphi ::= \bot \mid x < y \mid X(x) \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \exists x. \varphi \mid \exists X. \varphi$$

with $x, y \in V_1$ and $X \in V_2$

- ▶ assignment α is mapping from variables $x \in V_1$ to \mathbb{N} and $X \in V_2$ to subsets of \mathbb{N}
- ▶ assignment α satisfies formula φ ($\alpha \models \varphi$):

$$\alpha \nvDash \bot$$

$$\alpha \models x < y \iff \alpha(x) < \alpha(y) \qquad \alpha \models \neg \varphi \iff \alpha \nvDash \varphi$$

$$\models \neg \varphi \iff \alpha \not\models \varphi$$

$$\alpha \models X(x) \iff \alpha(x) \in \alpha(X)$$

$$\alpha \models X(x) \iff \alpha(x) \in \alpha(X)$$
 $\alpha \models \varphi_1 \lor \varphi_2 \iff \alpha \models \varphi_1 \text{ or } \alpha \models \varphi_2$

$$\alpha \vDash \exists x. \varphi \iff \alpha[x \mapsto n] \vDash \varphi \text{ for some } n \in \mathbb{N}$$

$$\alpha \vDash \exists X. \varphi \iff \alpha[X \mapsto N] \vDash \varphi \text{ for some subset } N \subseteq \mathbb{N}$$

universität 25W Automata and Logic lecture 9

4. Monadic Second-Order Logic

ΔM_{-}

Example

formula $(\forall x. x = 0 \rightarrow X(x)) \land (\forall x. X(x) \rightarrow \exists y. x < y \land X(y))$

- satisfiable: $\alpha(X)$ is infinite subset of $\mathbb N$ containing 0
- not satisfiable in WMSO

Definitions

▶ assignment α for MSO formula φ with $FV(\varphi) = (x_1, ..., x_m, X_1, ..., X_n)$ is encoded as infinite string $\alpha \in (\{0,1\}^{m+n})^{\omega}$:

 $\alpha(x_i) = j$ if *i*-th entry of *j*-th symbol in α is 1

 $\alpha(X_i) = \{ j \mid (m+i) \text{-th entry of } j \text{-th symbol in } \alpha \text{ is } 1 \}$

- ▶ infinite string over $\{0,1\}^{m+n}$ is m-admissible if first m rows contain exactly one 1 each
- ▶ $L_a(\varphi) = \{x \in (\{0,1\}^{m+n})^{\omega} \mid x \text{ is } m\text{-admissible and } x \models \varphi\}$

Example

- $L_{a}(\varphi) = \binom{0}{1}^{*} \left[\binom{1}{0} + \binom{1}{1} \binom{0}{1}^{*} \binom{0}{0} \right] \left[\binom{0}{0} + \binom{0}{1} \right]^{\omega}$

Theorem

 $L_a(\varphi)$ is ω -regular for every MSO formula φ

Remark

proof similar to WMSO case, using (closure properties of) NBAs

Theorem

set $A \subseteq \Sigma^{\omega}$ is ω -regular if and only if A is MSO definable

Examples

lacksquare $\{x\in\{a,b\}^\omega\mid |x|_a=\infty\}$ is represented by MSO formula

$$\forall x. \exists y. x < y \land P_a(y)$$

• $\{x \in \{a,b\}^{\omega} \mid |x|_a \neq \infty\}$ is represented by MSO formula

$$\exists x. \forall y. x < y \rightarrow P_b(y)$$

■ universität 25W Automata and Logic lecture 9 4. Monadic Second-Order Logic 25/27

Important Concepts

 \sim_{M}

MSO

monadic second-order logic

► Ramsey's theorem

homework for December 5

homework for December 12

Outline

- 1. Summary of Previous Lecture
- 2. Complementation
- 3. Intermezzo
- 4. Monadic Second-Order Logic
- 5. Further Reading

Universität 25W Automata and Logic lecture 9 5. Further Reading 26/27