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Definition

▶ generalized Büchi automaton (GBA) is automaton M = (Q,Σ,∆,S, {F1, . . . , Fk }) with

F1, . . . , Fk ⊆ Q

▶ ∞(r) = {q ∈ Q | q occurs infinitely often in run r}
▶ run r of GBA is accepting if ∞(r) ∩ Fi ̸= ∅ for all 1 ⩽ i ⩽ k

Remark

NBA (Q,Σ,∆,S, F) is equivalent to GBA (Q,Σ,∆,S, {F})

Lemma

every GBA can be transformed into equivalent NBA

Remark

minimal DBAs are not unique
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Definition

LTL (linear–time temporal logic) formulas are built from propositional atoms, logical

connectives and temporal connectives X, F, G, U, W, R, according to following grammar:

φ ::= ⊥ | ⊤ | p | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | Xφ | Fφ | Gφ | φUφ | φWφ | φRφ

Definitions

▶ transition system (model) is triple M = (S, →, L) with

1 set of states S

2 transition relation → ⊆ S× S such that ∀ s ∈ S ∃ t ∈ S with s→ t (" no deadlock ")

3 labeling function L : S→ 2atoms

▶ path in model M is infinite sequence s1 → s2 → · · ·

▶ ∀ paths π = s1 → s2 → · · · ∀ i ⩾ 1 π i = s i → s i+1 → · · ·
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Definition

satisfaction of LTL formula φ (π ⊨ φ) with respect to path π = s1 → s2 → · · · in model

M = (S, →, L) is defined by induction on φ:

π ⊨ ⊤ π ⊭ ⊥ π ⊨ φ ∧ ψ ⇐⇒ π ⊨ φ and π ⊨ ψ

π ⊨ p ⇐⇒ p ∈ L(s1) π ⊨ φ ∨ ψ ⇐⇒ π ⊨ φ or π ⊨ ψ

π ⊨ ¬φ ⇐⇒ π ⊭ φ π ⊨ φ→ ψ ⇐⇒ π ⊭ φ or π ⊨ ψ

π ⊨ Xφ ⇐⇒ π2 ⊨ φ π ⊨ Fφ ⇐⇒ ∃ i ⩾ 1 π i ⊨ φ

π ⊨ Gφ ⇐⇒ ∀ i ⩾ 1 π i ⊨ φ

π ⊨ φUψ ⇐⇒ ∃ i ⩾ 1 π i ⊨ ψ and ∀ j < i π j ⊨ φ

π ⊨ φWψ ⇐⇒
(
∃ i ⩾ 1 π i ⊨ ψ and ∀ j < i π j ⊨ φ

)
or ∀ i ⩾ 1 π i ⊨ φ

π ⊨ φRψ ⇐⇒
(
∃ i ⩾ 1 π i ⊨ φ and ∀ j ⩽ i π j ⊨ ψ

)
or ∀ i ⩾ 1 π i ⊨ ψ
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Definitions

▶ model M = (S, →, L), state s ∈ S, LTL formula φ

M, s ⊨ φ ⇐⇒ ∀ paths π = s→ · · · π ⊨ φ " formula φ holds in state s of M "

▶ LTL formulas φ and ψ are semantically equivalent (φ ≡ ψ) if π ⊨ φ ⇐⇒ π ⊨ ψ

for all models M = (S, →, L) and paths π in M

Theorem

▶ ¬ Xφ ≡ X¬φ φUψ ≡ ¬(¬ψ U (¬φ ∧ ¬ψ)) ∧ Fψ

¬ Fφ ≡ G¬φ Fφ ≡ ⊤Uφ F(φ ∨ ψ) ≡ Fφ ∨ Fψ

¬ Gφ ≡ F¬φ Gφ ≡ ⊥Rφ G(φ ∧ ψ) ≡ Gφ ∧ Gψ

¬(φUψ) ≡ ¬φR¬ψ φWψ ≡ ψ R (φ ∨ ψ) φUψ ≡ φWψ ∧ Fψ

¬(φRψ) ≡ ¬φU¬ψ φRψ ≡ ψW (φ ∧ ψ) φWψ ≡ φUψ ∨ Gφ

▶ {X,U}, {X,W} and {X,R} are adequate sets of temporal connectives for LTL
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Automata

▶ (deterministic, nondeterministic, alternating) finite automata

▶ regular expressions

▶ (alternating) Büchi automata

Logic

▶ (weak) monadic second–order logic

▶ Presburger arithmetic

▶ linear–time temporal logic
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Basic Strategy

M, s ⊨ φ ?

1 construct GBA A¬φ for ¬φ

2 combine A¬φ and M, s into single automaton A¬φ × AM, s

3 test emptiness of L(A¬φ × AM, s)

Notation

AP is (finite) set of propositional atoms used in M and φ

Definition

trace is infinite string over alphabet 2AP

Plan

GBA A¬φ accepts all traces that violate φ
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formula φ in LTL fragment with U and X as only temporal operators

Definitions

▶ L(φ) = {x ∈ (2AP)ω | x ⊨ φ}
▶ x ⊨ φ is defined inductively (x = x0x1x2 · · · )

x ⊨ ⊤
x ⊨ p ⇐⇒ p ∈ x0

x ⊨ ¬φ ⇐⇒ x ⊭ φ

x ⊨ φ ∧ ψ ⇐⇒ x ⊨ φ and x ⊨ ψ

x ⊨ Xφ ⇐⇒ x1x2 · · · ⊨ φ

x ⊨ φUψ ⇐⇒ ∃ i ⩾ 0 ( xi xi+1 · · · ⊨ ψ and ∀ j < i xj xj+1 · · · ⊨ φ )

Plan

GBA Aφ will accept L(φ)
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Basic Idea

▶ given infinite string x = x0x1x2 · · · ∈ L(φ)

expand xi ⊆ AP by subformulas ψ of φ to obtain infinite string y = y0y1y2 · · · such that

ψ ∈ yi ⇐⇒ xi xi+1xi+2 · · · ⊨ ψ

negations of subformulas are also considered

▶ y0, y1, . . . are states in Aφ

▶ transition relation and acceptance conditions of Aφ ensure that y is accepting run for x

Example

φ = aU (¬a ∧ b) and x = {a}{a,b}{b} · · ·

y0 = {a,¬b,¬(¬a ∧ b), φ} y1 = {a,b,¬(¬a ∧ b), φ} y2 = {¬a,b,¬a ∧ b, φ}
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Definition

closure C(φ) of φ consists of all subformulas of φ and their negations, identifying ¬¬ψ and ψ

Example

C(aU (¬a ∧ b)) = {a, b, ¬a, ¬b, ¬a ∧ b, ¬(¬a ∧ b), aU (¬a ∧ b), ¬(aU (¬a ∧ b))}
▶ {a, b, ¬a ∧ b, aU (¬a ∧ b)} not elementary

▶ {a, b, aU (¬a ∧ b)} not elementary

▶ {a, b, ¬(¬a ∧ b), aU (¬a ∧ b)} elementary

▶ {¬a, ¬b, ¬(¬a ∧ b), aU (¬a ∧ b)} not elementary

▶ {a, b, ¬(¬a ∧ b), ¬(aU (¬a ∧ b))} elementary

▶ {a, ¬b, ¬(¬a ∧ b), ¬(aU (¬a ∧ b))} elementary
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Definition

set B ⊆ C(φ) is elementary if it is

1 consistent with respect to propositional logic: for all φ1 ∧ φ2 ∈ C(φ) and ψ ∈ C(φ)

▶ φ1 ∧ φ2 ∈ B ⇐⇒ φ1 ∈ B and φ2 ∈ B

▶ ψ ∈ B =⇒ ¬ψ /∈ B

▶ ⊤ ∈ C(φ) =⇒ ⊤ ∈ B

2 locally consistent with respect to U: for all φ1 Uφ2 ∈ C(φ)

▶ φ2 ∈ B =⇒ φ1 Uφ2 ∈ B

▶ φ1 Uφ2 ∈ B and φ2 /∈ B =⇒ φ1 ∈ B

3 maximal: for all ψ ∈ C(φ)

▶ ψ /∈ B =⇒ ¬ψ ∈ B
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Lemma

φUψ ≡ ψ ∨ (φ ∧ X(φUψ))

Definition

GBA Aφ = (Q,2AP,∆,S, F) for LTL formula φ with atoms in AP:

▶ Q = {B ⊆ C(φ) | B is elementary}

▶ S = {B ∈ Q | φ ∈ B}

▶ ∆(B,A) =

{
∅ if A ̸= B ∩ AP

{C | C ∈ Q and . . . } if A = B ∩ AP
with

1 for all Xψ ∈ C(φ) Xψ ∈ B ⇐⇒ ψ ∈ C

2 for all φ1 Uφ2 ∈ C(φ) φ1 Uφ2 ∈ B ⇐⇒ φ2 ∈ B or both φ1 ∈ B and φ1 Uφ2 ∈ C

▶ F = {{B ∈ Q | φ1 Uφ2 /∈ B or φ2 ∈ B} | φ1 Uφ2 ∈ C(φ)}
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Example

φ = X a

▶ C(φ) = {a,¬a,X a,¬ X a}

▶ states ➊ {a, X a} ➋ {a, ¬ X a} ➌ {¬a, X a} ➍ {¬a, ¬ X a}

▶ start states ➊ ➌

▶ transitions ➊ ➋ ➌ ➍

➊ ✓ ✓ {a}
➋ ✓ ✓ {a}
➌ ✓ ✓ ∅
➍ ✓ ✓ ∅

➊ ➋

➌ ➍

{a}

{a}

{a}
{a}

∅
∅

∅

∅

▶ acceptance condition ∅ =⇒ all runs are accepting

25W Automata and Logic lecture 12 2. LTL Model Checking 15/31



Example

φ = aUb

▶ C(φ) = {a, ¬a, b, ¬b, aUb, ¬(aUb)}

▶ states ➊ {a, b, φ} ➋ {¬a, b, φ} ➌ {a, ¬b, φ} ➍ {a, ¬b, ¬φ} ➎ {¬a, ¬b, ¬φ}

▶ start states ➊ ➋ ➌

▶ transitions ➊ ➋ ➌ ➍ ➎

➊ ✓ ✓ ✓ ✓ ✓ {a, b}
➋ ✓ ✓ ✓ ✓ ✓ {b}
➌ ✓ ✓ ✓ {a}
➍ ✓ ✓ {a}
➎ ✓ ✓ ✓ ✓ ✓ ∅

▶ acceptance condition {{➊,➋,➍,➎}} =⇒ runs cycling in state ➌ are not accepting

▶ {a}ω /∈ L(Aφ) and {b}∅{a}ω ∈ L(Aφ)
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Theorem

L(φ) ⊆ L(Aφ)

Proof

▶ GBA Aφ = (Q,2AP,∆,S, F)

▶ let x = x0x1x2 · · · ∈ L(φ) and define yi = {ψ ∈ C(φ) | xi xi+1 · · · ⊨ ψ} for all i ⩾ 0

▶ y0, y1, y2, · · · ∈ Q and y0y1y2 · · · is accepting run for x

yi+1 ∈ ∆(yi, xi): xi = yi ∩ AP and for all Xψ ∈ C(φ)

Xψ ∈ yi ⇐⇒ xixi+1 · · · ⊨ Xψ ⇐⇒ xi+1 · · · ⊨ ψ ⇐⇒ ψ ∈ yi+1

and for all φ1 Uφ2 ∈ C(φ)
φ1 Uφ2 ∈ yi ⇐⇒ xi xi+1 · · · ⊨ φ1 Uφ2

⇐⇒ xi xi+1 · · · ⊨ φ2 or (xi xi+1 · · · ⊨ φ1 and xi+1 · · · ⊨ φ1 Uφ2)

⇐⇒ φ2 ∈ yi or (φ1 ∈ yi and φ1 Uφ2 ∈ yi+1)
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Theorem

L(φ) ⊆ L(Aφ)

Proof (cont’d)

▶ GBA Aφ = (Q,2AP,∆,S, F)

▶ let x = x0x1x2 · · · ∈ L(φ) and define yi = {ψ ∈ C(φ) | xi xi+1 · · · ⊨ ψ} for all i ⩾ 0

▶ y0, y1, y2, · · · ∈ Q and y0y1y2 · · · is accepting run for x

let φ1 Uφ2 ∈ C(φ) and suppose yi /∈ {B ∈ Q | φ1 Uφ2 /∈ B or φ2 ∈ B} for some i

φ1 Uφ2 ∈ yi and φ2 /∈ yi =⇒ xi xi+1 · · · ⊨ φ1 Uφ2 and xi xi+1 · · · ⊭ φ2

=⇒ xkxk+1 · · · ⊨ φ2 for some k > i

=⇒ φ2 ∈ yk for some k > i

=⇒ yk ∈ {B ∈ Q | φ1 Uφ2 /∈ B or φ2 ∈ B} for some k > i

yk ∈ {B ∈ Q | φ1 Uφ2 /∈ B or φ2 ∈ B} for infinitely many k
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Theorem

L(Aφ) ⊆ L(φ)

Proof

▶ GBA Aφ = (Q,2AP,∆,S, F)

▶ let x = x0x1x2 · · · ∈ L(Aφ) with accepting run y = y0y1y2 · · ·
▶ ∆(B,A) = ∅ if A ̸= B ∩ AP =⇒ x = (y0 ∩ AP)(y1 ∩ AP)(y2 ∩ AP) · · ·
▶ claim: x ⊨ φ

more general claim: if y is "accepting run" (without requiring y0 is start state) for x then

ψ ∈ y0 ⇐⇒ x ⊨ ψ

for all ψ ∈ C(φ)
▶ y0 is start state =⇒ φ ∈ y0 =⇒ x ⊨ φ
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with session ID 4957 9500

Question

Which of the following statements hold for φ = (a ∧ Xb)U¬a ?

A ¬ X a ∈ C(φ)

B {b, a ∧ Xb, φ} is locally consistent with respect to U

C {¬a, b, ¬ Xb, ¬(a ∧ Xb), φ}
{b}
−−−→ {a, ¬b, Xb, a ∧ Xb, ¬φ} in Aφ

D {¬a, b, ¬ Xb, ¬(a ∧ Xb), φ} ∅←−−− {a, b, Xb, a ∧ Xb, ¬φ} in Aφ
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Remark

bit vectors can be used to represent 2AP : if AP = {a,b, c} then

{a}∅{a, c}{b, c} · · · =
(

1
0
0

)(
0
0
0

)(
1
0
1

)(
0
1
1

)
· · ·
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Basic Strategy

M, s ⊨ φ ?

1 construct GBA A¬φ for ¬φ

2 combine A¬φ and M, s into single automaton A¬φ × AM, s

3 test emptiness of L(A¬φ × AM, s)

Remark

model M is not GBA

Definition

GBA AM, s = (S,2AP,∆, {s},∅) for model M = (S, →, L) and state s ∈ S

▶ ∆(p,A) = {q | L(p) = A and p→ q}
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Example

model M GBA AM,0

0 1

2 3

a a b

b

0 1

2 3

{a}
{a}

∅ {b}

{a}

{a,b}
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Intersection of GBAs

▶ A = L(M1) for GBA M1 = (Q1,Σ,∆1,S1, F1) and B = L(M2) for GBA M2 = (Q2,Σ,∆2,S2, F2)

▶ A ∩ B = L(M) for GBA M = (Q,Σ,∆,S, F) with

1 Q = Q1 × Q2

2 S = S1 × S2

3 ∆((p,q), a) = {(p′,q′) | p′ ∈ ∆1(p, a) and q′ ∈ ∆2(q, a)}

4 F = {X × Q2 | X ∈ F1} ∪ {Q1 × Y | Y ∈ F2}

Theorem

problem

instance: GBA M

question: L(M) = ∅ ?

is decidable

25W Automata and Logic lecture 12 4. LTL Model Checking 26/31



Proof

1 consider transition graph of GBA M = (Q,Σ,∆,S, {F1, . . . , Fk })
2 eliminate unreachable states

3 compute non–trivial strongly connected components (SCCs) C1, . . . , Cn

4 return no (yes) if there exists (no) SCC Ci such that Ci ∩ Fj ̸= ∅ for all 1 ⩽ j ⩽ k

Example

▶ GBA M with acceptance sets
0 1 2

4 5 6

8 9 10

3

7

11

b a

b

b

a

b

a

b

b
a

b

a

a

a b
a

b

b

b

a

ba

{0,9}, {0,3,10}, {5,10,11}
▶ three SCCs:

1 C1 = {0,1}
2 C2 = {2,4,5,6,8,9,10}
3 C3 = {7,11}

▶ L(M) ̸= ∅
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Basic Strategy

M, s ⊨ φ ?

1 construct GBA A¬φ for ¬φ

2 combine A¬φ and M, s into single automaton A¬φ × AM, s

3 test emptiness of L(A¬φ × AM, s)

Theorem

M, s ⊨ φ ⇐⇒ L(A¬φ × AM, s) = ∅
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Example

GBA A¬φ for φ = aUb

➊ ➋ ➌ ➍ ➎

{a, b, φ} ➊ ✓ ✓ ✓ ✓ ✓
{¬a, b, φ} ➋ ✓ ✓ ✓ ✓ ✓
{a, ¬b, φ} ➌ ✓ ✓ ✓

→ {a, ¬b, ¬φ} ➍ ✓ ✓
→{¬a, ¬b, ¬φ} ➎ ✓ ✓ ✓ ✓ ✓

acceptance condition {{➊,➋,➍,➎}}

model M

0 1

2 3

a a b

b

▶ product automaton A¬φ × AM, 0

→ ➍ 0 {

➍ 1, ➍ 2, ➍ 3, ➎ 1,

➎ 2

, ➎ 3

}
→ ➎ 0 ∅

➎ 2 {

➊ 3,

➋ 3

, ➌ 3, ➍ 3, ➎ 3

}
➋ 3 {

➊ 3,

➋ 3

, ➌ 3, ➍ 3, ➎ 3

}

▶ accepting run ➍ 0
{a}−−→ ➎ 2

∅−→ ➋ 3
{b}−−→ ➋ 3

{b}−−→ · · · =⇒ M, 0 ⊭ φ
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Baier and Katoen

▶ Section 5.2 of Principles of Model Checking (MIT Press 2008)

Important Concepts

▶ AM, s ▶ Aφ ▶ elementary set

homework for January 16

next lecture (January 19): online evaluation in presence =⇒ bring device
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