B universitat
Innsbruck

Funktionale Programmierung WS 2025/2026 LVA 703025

Ubungsblatt 8, 10 Punkte Abgabefrist: Mittwoch, 03. Dezember 2025, 6 Uhr

e Kreuzen Sie geloste Aufgaben im OLAT Kurs des Proseminars an.
e Losen Sie Programmieraufgaben in Template 08.hs und laden Sie diese Datei in OLAT hoch.

e Thre Template-Datei sollte mit ghci ohne Fehlermeldung kompilieren.

Aufgabe 1 List Comprehension 5P.
Fiir die folgenden Aufgaben darf keine Rekursion verwendet werden, sondern ausschliefilich List Comprehen-
sion.

1. Erstellen Sie die Funktion divisors :: Int -> [Int], welche eine positive ganze Zahl als Argument

nimmt und die Liste aller Teiler zuriickgibt (aufer die Zahl selbst). (0.5 Punkte)
Beispiel: divisors 28 = [1,2,4,7,14]

2. Eine Zahl wird als perfekt bezeichnet, wenn sie gleich der Summe all ihrer Teiler ist. Implementieren Sie
die Funktion isPerfect :: Int -> Bool, welche priift ob eine Zahl perfekt ist. Anschlieffend sollen Sie

die Funktion perfectNumberUpTo :: Int -> [Int] implementieren, welche eine positive ganze Zahl n
nimmt und als Ergebnis die Liste aller perfekten Zahlen bis zu n zuriickgibt. (0.5 Punkte)

Beispiel: perfectNumberUpTo 28 = [6,28]
3. Schreiben Sie die Funktion pairNumbers :: Int -> [(Int,Int)], welche als Eingabe eine positive Zahl

n nimmt und als Ergebnis eine Liste geordneter Paare der Form (a, b) liefert, wobei 1 < a < b < n, b gleich
der Summe der echten Teiler von a ist und a gleich der Summe der echten Teiler von b ist. (1 Punkt)

Beispiel: pairNumbers 300 = [(220,284)]

4. Erstellen Sie die Funktion removeNonLetters :: String -> String, welche alle Zeichen eines Strings
entfernt, die keine Buchstaben sind oder Leerzeichen. (1 Punkt)
Beispiel: removeNonLetters "Da2s ils,t ein_ Test" = "Das ist ein Test"

5. Gegeben sind die importierten Funktionen ord und chr, welche niitzlich sind, um einen Char in ein Int
umzuwandeln und umgekehrt. Nutzen Sie diese Funktionen, um die

Funktion shiftRight :: Int -> String -> String zu erstellen, welche alle Kleinbuchstaben eines Strings
um n Stellen nach rechts verschiebt. Ist n zum Beispiel 3, so wird aus einem c ein f und aus einem x ein
a. (1 Punkt)

6. Zum Schluss sollen Sie die Funktion everyNth :: Int -> String -> String erstellen, welche aus einem
String nur jeden n-ten Buchstaben auswéhlt. (1 Punkt)
Beispiel: everyNth 2 "abcdefg" = "bdf"
Wenn Sie die Funktionen removeNonLetters, shiftRight und everyNth korrekt implementiert haben,
kénnen Sie diese in der Funktion crackingTheCode :: String -> [String] kombinieren, um ein ge-

gebenes Codewort zu entschliisseln. Dabei sollen im Text zuerst alle Zeichen entfernt werden, die keine
Buchstaben oder Leerzeichen sind, dann jeder n-te Buchstabe extrahiert werden und schlieflich jeder
Kleinbuchstabe um m Stellen verschoben werden. Um die richtigen Werte fiir n und m herauszufinden,
kann mit einer List Comprehension experimentiert werden. Dabei ist m < 7 und n < 5.



Aufgabe 2 Fold Functions 5P.

Gegeben ist der folgende Datentyp fiir einen bindren Baum.

data Tree a = Leaf | Node (Tree a) a (Tree a)

treel, tree2 :: Tree Int
treel = Node (Node Leaf 1 Leaf) 2 (Node Leaf 3 Leaf)
tree2 = Node treel 4 (Node Leaf 5 (Node (Node Leaf 6 Leaf) 7 Leaf))

Der Baum tree2 kann wie folgt dargestellt werden:

(i) Implementieren Sie die Funktion foldT :: (b -> a -> b -> b) -> b -> Tree a -> b, wobei die Funk-
tion foldT f e t jeden Knoten Node in dem Baum t mit £ und jedes Blatt Leaf in dem Baum t mit e
ersetzt.

Beispiel: fo1dT (\accL x accR -> accL + x + accR) 0 tree2 == 28 (1 Punkt)

(ii) Implementieren Sie folgende Funktionen mit Hilfe von foldT: (1 Punkt)

e height berechnet die Hohe des Baums.
Beispiel: height tree2 ==

o size berechnet die Grofie (Anzahl der Knoten) des Baums.
Beispiel: size tree2 ==

e sumT berechnet die Summe der Knoten des Baums.

Beispiel: sumT tree2 == 28

(iii) Implementieren Sie die folgenden Funktionen auf Béumen mit Hilfe von foldT: (1 Punkt)
e mirror soll den linken und rechten Teilbaum jedes Knotens vertauschen.
Beispiel: mirror treel == Node (Node Leaf 3 Leaf) 2 (Node Leaf 1 Leaf)

e mapT soll eine Funktion auf jeden Knoten im Baum anwenden, wobei die Baumstruktur erhalten bleibt.

Beispiel: mapT (*2) treel == Node (Node Leaf 2 Leaf) 4 (Node Leaf 6 Leaf)

(iv) Implementieren Sie die folgenden Traversierungsfunktionen mit Hilfe von foldr und foldT: (1 Punkt)
e inOrder soll die Werte eines Baums in der Reihenfolge left — root — right ausgeben.
Beispiel: inOrder tree2 == [1,2,3,4,5,6,7]
e prelrder soll die Werte eines Baums in der Reihenfolge root — left — right ausgeben.
Beispiel: inOrder tree2 == [4,2,1,3,5,7,6]
e postOrder soll die Werte eines Baums in der Reihenfolge left — right — root ausgeben.
Beispiel: postOrder tree2 == [1,3,2,6,7,5,4]
e fromList soll aus einer gegebenen Liste einen Baum erzeugen, wobei inOrder (fromList xs) == xs.

(v) Schauen Sie sich die Data.Foldable Klasse an. Implementieren Sie eine Instanz fiir Foldable Tree, sodass
toList t == inOrder t fiir jeden Baum t gilt. (1 Punkt)


https://hackage.haskell.org/package/base-4.21.0.0/docs/Data-Foldable.html

