
Funktionale Programmierung WS 2025/2026 LVA 703025

Übungsblatt 8, 10 Punkte Abgabefrist: Mittwoch, 03. Dezember 2025, 6 Uhr

• Kreuzen Sie gelöste Aufgaben im OLAT Kurs des Proseminars an.

• Lösen Sie Programmieraufgaben in Template_08.hs und laden Sie diese Datei in OLAT hoch.

• Ihre Template-Datei sollte mit ghci ohne Fehlermeldung kompilieren.

Aufgabe 1 List Comprehension 5 P.

Für die folgenden Aufgaben darf keine Rekursion verwendet werden, sondern ausschließlich List Comprehen-
sion.

1. Erstellen Sie die Funktion divisors :: Int -> [Int], welche eine positive ganze Zahl als Argument
nimmt und die Liste aller Teiler zurückgibt (außer die Zahl selbst). (0.5Punkte)

Beispiel: divisors 28 = [1,2,4,7,14]

2. Eine Zahl wird als perfekt bezeichnet, wenn sie gleich der Summe all ihrer Teiler ist. Implementieren Sie
die Funktion isPerfect :: Int -> Bool, welche prüft ob eine Zahl perfekt ist. Anschließend sollen Sie
die Funktion perfectNumberUpTo :: Int -> [Int] implementieren, welche eine positive ganze Zahl n
nimmt und als Ergebnis die Liste aller perfekten Zahlen bis zu n zurückgibt. (0.5 Punkte)

Beispiel: perfectNumberUpTo 28 = [6,28]

3. Schreiben Sie die Funktion pairNumbers :: Int -> [(Int,Int)], welche als Eingabe eine positive Zahl
n nimmt und als Ergebnis eine Liste geordneter Paare der Form (a, b) liefert, wobei 1 ≤ a < b ≤ n, b gleich
der Summe der echten Teiler von a ist und a gleich der Summe der echten Teiler von b ist. (1Punkt)

Beispiel: pairNumbers 300 = [(220,284)]

4. Erstellen Sie die Funktion removeNonLetters :: String -> String, welche alle Zeichen eines Strings
entfernt, die keine Buchstaben sind oder Leerzeichen. (1 Punkt)

Beispiel: removeNonLetters "Da2s i1s,t ein_ Test" = "Das ist ein Test"

5. Gegeben sind die importierten Funktionen ord und chr, welche nützlich sind, um einen Char in ein Int
umzuwandeln und umgekehrt. Nutzen Sie diese Funktionen, um die
Funktion shiftRight :: Int -> String -> String zu erstellen, welche alle Kleinbuchstaben eines Strings
um n Stellen nach rechts verschiebt. Ist n zum Beispiel 3, so wird aus einem c ein f und aus einem x ein
a. (1 Punkt)

6. Zum Schluss sollen Sie die Funktion everyNth :: Int -> String -> String erstellen, welche aus einem
String nur jeden n-ten Buchstaben auswählt. (1 Punkt)

Beispiel: everyNth 2 "abcdefg" = "bdf"
Wenn Sie die Funktionen removeNonLetters, shiftRight und everyNth korrekt implementiert haben,
können Sie diese in der Funktion crackingTheCode :: String -> [String] kombinieren, um ein ge-
gebenes Codewort zu entschlüsseln. Dabei sollen im Text zuerst alle Zeichen entfernt werden, die keine
Buchstaben oder Leerzeichen sind, dann jeder n-te Buchstabe extrahiert werden und schließlich jeder
Kleinbuchstabe um m Stellen verschoben werden. Um die richtigen Werte für n und m herauszufinden,
kann mit einer List Comprehension experimentiert werden. Dabei ist m ≤ 7 und n ≤ 5.



Aufgabe 2 Fold Functions 5 P.

Gegeben ist der folgende Datentyp für einen binären Baum.

data Tree a = Leaf | Node (Tree a) a (Tree a)

tree1, tree2 :: Tree Int
tree1 = Node (Node Leaf 1 Leaf) 2 (Node Leaf 3 Leaf)
tree2 = Node tree1 4 (Node Leaf 5 (Node (Node Leaf 6 Leaf) 7 Leaf))

Der Baum tree2 kann wie folgt dargestellt werden:

4

2

1 3

5

7

6

(i) Implementieren Sie die Funktion foldT :: (b -> a -> b -> b) -> b -> Tree a -> b, wobei die Funk-
tion foldT f e t jeden Knoten Node in dem Baum t mit f und jedes Blatt Leaf in dem Baum t mit e
ersetzt.

Beispiel: foldT (\accL x accR -> accL + x + accR) 0 tree2 == 28 (1 Punkt)

(ii) Implementieren Sie folgende Funktionen mit Hilfe von foldT: (1 Punkt)

• height berechnet die Höhe des Baums.

Beispiel: height tree2 == 4

• size berechnet die Größe (Anzahl der Knoten) des Baums.

Beispiel: size tree2 == 7

• sumT berechnet die Summe der Knoten des Baums.

Beispiel: sumT tree2 == 28

(iii) Implementieren Sie die folgenden Funktionen auf Bäumen mit Hilfe von foldT: (1 Punkt)

• mirror soll den linken und rechten Teilbaum jedes Knotens vertauschen.

Beispiel: mirror tree1 == Node (Node Leaf 3 Leaf) 2 (Node Leaf 1 Leaf)

• mapT soll eine Funktion auf jeden Knoten im Baum anwenden, wobei die Baumstruktur erhalten bleibt.

Beispiel: mapT (*2) tree1 == Node (Node Leaf 2 Leaf) 4 (Node Leaf 6 Leaf)

(iv) Implementieren Sie die folgenden Traversierungsfunktionen mit Hilfe von foldr und foldT: (1 Punkt)

• inOrder soll die Werte eines Baums in der Reihenfolge left → root → right ausgeben.

Beispiel: inOrder tree2 == [1,2,3,4,5,6,7]

• preOrder soll die Werte eines Baums in der Reihenfolge root → left → right ausgeben.

Beispiel: inOrder tree2 == [4,2,1,3,5,7,6]

• postOrder soll die Werte eines Baums in der Reihenfolge left → right → root ausgeben.

Beispiel: postOrder tree2 == [1,3,2,6,7,5,4]

• fromList soll aus einer gegebenen Liste einen Baum erzeugen, wobei inOrder (fromList xs) == xs.

(v) Schauen Sie sich die Data.Foldable Klasse an. Implementieren Sie eine Instanz für Foldable Tree, sodass
toList t == inOrder t für jeden Baum t gilt. (1Punkt)

https://hackage.haskell.org/package/base-4.21.0.0/docs/Data-Foldable.html

