B universitat
Innsbruck

Funktionale Programmierung WS 2025/2026 LVA 703025

Ubungsblatt 9, 10 Punkte Abgabefrist: Mittwoch, 10. Dezember 2025, 6 Uhr

e Kreuzen Sie geloste Aufgaben im OLAT Kurs des Proseminars an.

e Losen Sie die Programmieraufgaben: Und laden Sie die Dateien DList_09.hs, OList_09.hs, Tests_09.hs
einzeln in OLAT hoch.

Aufgabe 1 Sichtbarkeit von Variablen und Funktionen 3P

In den folgenden Ubungen geht es um die Sichtbarkeit von Variablen und Funktionen.

1. Analysieren Sie die Sichtbarkeit von radius in den drei Funktionen operationA, operationB und operationC
aus dem Haskell-Programm unten. Geben Sie auch an, auf welches radius (global oder lokal) sich die je-
weilige Funktion bezieht und begriinden Sie ihre Antworten. (1 Punkt)

radius :: Double
radius = 10 -- global radius

computeVolume :: Double -> Double
computeVolume rad = (4/3)*pi*rad~3

operationA :: Double -> Double
operationA radius = computeVolume radius

operationB :: Double
operationB = computeVolume radius
operationC :: Double -> Double

operationC = computeVolume

2. Analysieren Sie die Implementierung von reverseList. Funktioniert die Funktion wie erwartet? Fiihren
Sie eine Variablenumbenennung entsprechend der Folien von Woche 9 durch. (1 Punkt)

reverselList :: [a] -> [a]
reverselist xs =
let reverseListAux xs ys = case xs of
(x:x8) -> reverseListAux xs (x:ys)
_ =>ys
in reverseListAux xs []

3. Wir betrachten das folgende Programm und die Funktion squareRootTwo, welche die Wurzel von 2 ba-

sierend auf einer anfanglichen Schétzung iiber n Iterationen approximiert. Funktionieren squareRootTwoA
und squareRootTwoB wie erwartet? Begriinden Sie Ihre Antworten. (1 Punkt)


http://cl-informatik.uibk.ac.at/teaching/ws25/fp/slides/09x1.pdf#page=11

squareRootTwo :: Double -> Integer -> Double
squareRootTwo guess n
| n == 0 = guess
| otherwise = squareRootTwo ((guess + 2/guess) / 2) (n-1)

squareRootTwoA :: Double -> Integer -> Double
squareRootTwoA guess n
| n == 0 = guess
| otherwise = squareRootTwoA ((guess + 2/guess) / 2) (n-1) where n=n

squareRootTwoB :: Double -> Integer -> Double
squareRootTwoB guess n
| n == 0 = guess
| otherwise = let n = n-1 in squareRootTwoB ((guess + 2/guess) / 2) n

Aufgabe 2 Mengen 7P.

In der Programmierung muss man oft Mengen von Elementen speichern, d. h. mathematische Mengen, in
denen {1,3} = {1,1,3} gilt, da keine Duplikate gez&hlt werden. Es gibt mehrere Moglichkeiten, Mengen zu
implementieren, und in dieser Ubung betrachten wir zwei Varianten.

1. Eine mogliche Implementierung stellt Mengen durch Duplikat-freie Listen dar, d. h. Listen, in denen kein

Element mehr als einmal vorkommt. Beispielsweise sind sowohl [1,3] als auch [3,1] giiltige Darstellungen
der Menge {1, 3}, [1,1,3] hingegen nicht.
Betrachten Sie den folgenden Haskell-Code in der Datei DList_09.hs, der Mengen als Duplikat-freie Listen
implementiert. Hier entsprechen die Operationen empty, member, insert und remove der leeren Menge,
der Mitgliedschaftspriifung, dem Einfiigen eines einzelnen Elements und dem Entfernen eines einzelnen
Elements. Fiir Letzteres ist zu beachten, dass A\ {a} = A gilt, wenn a ¢ A.

data DList a = DList [a]

empty = DList []

member x (DList xs) = x “elem” xs
insert x a@(DList xs)

| member x a = a
| otherwise = DList $ x : xs

remove x a@(DList xs) = case span (/= x) xs of

, 1) ->a
(first, _ : last) -> DList $ first ++ last

Identifizieren Sie die Teile der Implementierung, die davon abhéngen, dass die Listen Duplikat-frei sind,
d. h. die bei Listen mit Duplikaten falsche Ergebnisse liefern konnen.

Fiigen Sie aufierdem eine sinnvolle Moduldeklaration hinzu, sodass ein externer Benutzer auf alle Mengen-
operationen zugreifen kann, aber keine Elemente vom Typ DList a erstellen kann, die gegen die Duplikat-
Freiheit verstofsen. (1 Punkt)

2. Machen Sie DList zu einer Instanz von Show.

Beispiel:
show $ foldr insert empty [1..5] = "{1, 2, 3, 4, 5}"
show $ foldr insert empty "abcba" = "{'c', 'b', 'a'l}"

show $ foldr insert empty [] = "{}"
Thre Implementierung muss auf einer Variante von fold basieren, d. h. explizite Rekursion ist nicht zulassig.
(1 Punkt)

3. Machen Sie DList zu einer Instanz von Eq.

Beispiel:



foldr insert empty ([1..5] ++ [2..4]) == foldr insert empty [5,4..1]

Versuchen Sie, die Duplikat-Freiheit in Threr Implementierung auszunutzen. (1 Punkt)

. Stellen Sie eine alternative Implementierung von Mengen bereit, die auf geordneten Listen basiert, d. h.
Listen [z1,...,x,] mit der Eigenschaft x; < x;41 fiir alle 1 < i < n. Kopieren Sie dazu die aktuelle
Implementierung in eine neue Datei OList_09.hs fiir geordnete Listen, ersetzen Sie den Modulnamen
DList_09 durch 0List_09, benennen Sie den Typ DList in OList um und passen Sie die Implementierung
so an, dass sie nun die neue Invariante der Ordnung beriicksichtigt. (2 Punkte)

. Schreiben Sie Thre eigenen Tests. Andern Sie Tests_09.hs so, dass es Tests enthilt, mit denen iiberpriift
wird, ob die Eigenschaft

foldr insert empty (xs ++ xs) == foldr insert empty (reverse xs)

fiir beliebige Listen xs und fiir beide Set-Implementierungen erfiillt ist. Neben der oben genannten Eigen-
schaft sollten Sie auch einen Test fiir eine weitere Eigenschaft hinzufiigen, die Sie selbst definieren. Die
Eigenschaft sollte eine Beziehung zwischen remove und insert ausdriicken und kann sich auch auf einige
andere Funktionen beziehen.

Beachten Sie, dass eine Testfunktion beliebige Argumente vom Typ Int, [Int] und Bool haben kann, aber
sie darf weder DList noch OList als Argumenttyp verwenden. Aufierdem muss der Riickgabetyp Bool sein.
(2 Punkte)



