
Funktionale Programmierung WS 2025/2026 LVA 703025

Übungsblatt 9, 10 Punkte Abgabefrist: Mittwoch, 10. Dezember 2025, 6 Uhr

• Kreuzen Sie gelöste Aufgaben im OLAT Kurs des Proseminars an.

• Lösen Sie die Programmieraufgaben: Und laden Sie die Dateien DList_09.hs, OList_09.hs, Tests_09.hs
einzeln in OLAT hoch.

Aufgabe 1 Sichtbarkeit von Variablen und Funktionen 3 P.

In den folgenden Übungen geht es um die Sichtbarkeit von Variablen und Funktionen.

1. Analysieren Sie die Sichtbarkeit von radius in den drei Funktionen operationA, operationB und operationC
aus dem Haskell-Programm unten. Geben Sie auch an, auf welches radius (global oder lokal) sich die je-
weilige Funktion bezieht und begründen Sie ihre Antworten. (1Punkt)

radius :: Double
radius = 10 -- global radius

computeVolume :: Double -> Double
computeVolume rad = (4/3)*pi*rad^3

operationA :: Double -> Double
operationA radius = computeVolume radius

operationB :: Double
operationB = computeVolume radius

operationC :: Double -> Double
operationC = computeVolume

2. Analysieren Sie die Implementierung von reverseList. Funktioniert die Funktion wie erwartet? Führen
Sie eine Variablenumbenennung entsprechend der Folien von Woche 9 durch. (1Punkt)

reverseList :: [a] -> [a]
reverseList xs =

let reverseListAux xs ys = case xs of
(x:xs) -> reverseListAux xs (x:ys)
_ -> ys

in reverseListAux xs []

3. Wir betrachten das folgende Programm und die Funktion squareRootTwo, welche die Wurzel von 2 ba-
sierend auf einer anfänglichen Schätzung über n Iterationen approximiert. Funktionieren squareRootTwoA
und squareRootTwoB wie erwartet? Begründen Sie Ihre Antworten. (1 Punkt)

http://cl-informatik.uibk.ac.at/teaching/ws25/fp/slides/09x1.pdf#page=11


squareRootTwo :: Double -> Integer -> Double
squareRootTwo guess n

| n == 0 = guess
| otherwise = squareRootTwo ((guess + 2/guess) / 2) (n-1)

squareRootTwoA :: Double -> Integer -> Double
squareRootTwoA guess n

| n == 0 = guess
| otherwise = squareRootTwoA ((guess + 2/guess) / 2) (n-1) where n=n

squareRootTwoB :: Double -> Integer -> Double
squareRootTwoB guess n

| n == 0 = guess
| otherwise = let n = n-1 in squareRootTwoB ((guess + 2/guess) / 2) n

Aufgabe 2 Mengen 7 P.

In der Programmierung muss man oft Mengen von Elementen speichern, d. h. mathematische Mengen, in
denen {1, 3} = {1, 1, 3} gilt, da keine Duplikate gezählt werden. Es gibt mehrere Möglichkeiten, Mengen zu
implementieren, und in dieser Übung betrachten wir zwei Varianten.

1. Eine mögliche Implementierung stellt Mengen durch Duplikat-freie Listen dar, d. h. Listen, in denen kein
Element mehr als einmal vorkommt. Beispielsweise sind sowohl [1,3] als auch [3,1] gültige Darstellungen
der Menge {1, 3}, [1,1,3] hingegen nicht.

Betrachten Sie den folgenden Haskell-Code in der Datei DList_09.hs, der Mengen als Duplikat-freie Listen
implementiert. Hier entsprechen die Operationen empty, member, insert und remove der leeren Menge,
der Mitgliedschaftsprüfung, dem Einfügen eines einzelnen Elements und dem Entfernen eines einzelnen
Elements. Für Letzteres ist zu beachten, dass A \ {a} = A gilt, wenn a /∈ A.
data DList a = DList [a]

empty = DList []

member x (DList xs) = x `elem` xs

insert x a@(DList xs)
| member x a = a
| otherwise = DList $ x : xs

remove x a@(DList xs) = case span (/= x) xs of
(_, []) -> a
(first, _ : last) -> DList $ first ++ last

Identifizieren Sie die Teile der Implementierung, die davon abhängen, dass die Listen Duplikat-frei sind,
d. h. die bei Listen mit Duplikaten falsche Ergebnisse liefern können.

Fügen Sie außerdem eine sinnvolle Moduldeklaration hinzu, sodass ein externer Benutzer auf alle Mengen-
operationen zugreifen kann, aber keine Elemente vom Typ DList a erstellen kann, die gegen die Duplikat-
Freiheit verstoßen. (1 Punkt)

2. Machen Sie DList zu einer Instanz von Show.

Beispiel:
show $ foldr insert empty [1..5] = "{1, 2, 3, 4, 5}"
show $ foldr insert empty "abcba" = "{'c', 'b', 'a'}"
show $ foldr insert empty [] = "{}"

Ihre Implementierung muss auf einer Variante von fold basieren, d. h. explizite Rekursion ist nicht zulässig.
(1 Punkt)

3. Machen Sie DList zu einer Instanz von Eq.

Beispiel:



foldr insert empty ([1..5] ++ [2..4]) == foldr insert empty [5,4..1]

Versuchen Sie, die Duplikat-Freiheit in Ihrer Implementierung auszunutzen. (1 Punkt)

4. Stellen Sie eine alternative Implementierung von Mengen bereit, die auf geordneten Listen basiert, d. h.
Listen [x1, . . . , xn] mit der Eigenschaft xi < xi+1 für alle 1 ≤ i < n. Kopieren Sie dazu die aktuelle
Implementierung in eine neue Datei OList_09.hs für geordnete Listen, ersetzen Sie den Modulnamen
DList_09 durch OList_09, benennen Sie den Typ DList in OList um und passen Sie die Implementierung
so an, dass sie nun die neue Invariante der Ordnung berücksichtigt. (2 Punkte)

5. Schreiben Sie Ihre eigenen Tests. Ändern Sie Tests_09.hs so, dass es Tests enthält, mit denen überprüft
wird, ob die Eigenschaft

foldr insert empty (xs ++ xs) == foldr insert empty (reverse xs)

für beliebige Listen xs und für beide Set-Implementierungen erfüllt ist. Neben der oben genannten Eigen-
schaft sollten Sie auch einen Test für eine weitere Eigenschaft hinzufügen, die Sie selbst definieren. Die
Eigenschaft sollte eine Beziehung zwischen remove und insert ausdrücken und kann sich auch auf einige
andere Funktionen beziehen.

Beachten Sie, dass eine Testfunktion beliebige Argumente vom Typ Int, [Int] und Bool haben kann, aber
sie darf weder DList noch OList als Argumenttyp verwenden. Außerdem muss der Rückgabetyp Bool sein.
(2 Punkte)


