VO Funktionale Programming

WS 2025,2026

LVA 703024 Testklausur
Nachname:
Vorname:
Matrikelnummer:
Aufgabe Points | Score
Programmanalyse mit Modulen und I/0 20
Programmieren mit Listen 32
Datatypen und Funktionen Hoherer Ordnung 26
Auswertung und Typen 12
> 90

In der wirklichen Klausur haben folgende Regeln gegolten:

e Sie haben 90 Minuten Bearbeitungszeit.

e Die Klausur besteht aus 4 Aufgaben, in denen Sie 90 Punkte erreichen kénnen

e Die erreichbaren Punkte sind am Rand notiert.
e Entfernen Sie nicht die Heftklammer.

Verwenden Sie keinen roten Stift.

Sie konnen bereits jetzt fast alle Aufgaben l6sen.

Antworten koénnen in deutscher oder englischer Sprache verfasst werden.

e Bei der Bearbeitung von Aufgabe 1 sollten Sie noch auf Vorlesung 10 warten.

e Aufgabe 4(c) konnen Sie zum Zeitpunkt der Abgabe noch nicht mit dem Vorlesungswissen 16sen.

Die Bearbeitung der Klausur ist freiwillig und wird nicht bewertet. Sie kénnen die bearbeitete Klausur
jedoch bis zum 7. Januar 2026 in OLAT hochladen (z.B. durch Anfertigung von Fotos der einzelnen
Seiten, die dann in einem PDF zusammengefasst werden und dann als 1 PDF hochgeladen werden). Alle
hochgeladenen Klausuren werden vollstdndig korrigiert und im Proseminar am 14. Januar zuriickgegeben.

An diesem Termin wird dann auch die Lésung besprochen.

Seite 1 von 8

© 00 O U W

VO Funktionale Programming Testklausur WS 2025,/2026

Aufgabe 1: Programmanalyse mit Modulen und I/0
Betrachten Sie folgendes Programm.

import Text.Read(readEither)
data Expr = Div Expr Expr | Num Double deriving Read

eval :: Expr -> IO Double
eval (Num x) = return x
eval e@(Div el e2) = do
x1 <- eval el
x2 <- eval e2

if x2 /=0
then return (x1 / x2)
else let message = "div-by-0 error in expression " ++ show e

in putStrLn message

main :: I0 ()
main = do
putStrLn "enter expression:"
s <- getLine
case readMaybe s of
Nothing -> main
Just e -> do
let result = eval e
putStrln $ "the result is " ++ show result

Das Programm enthélt vier Fehler, die zu einem Compile-Fehler fiihren.

e Identifizieren Sie die Fehler durch Angabe der Zeilennummern,
e durch eine kurze Erklarung, warum einer Fehler vorliegt, und
e geben Sie an, wie man den Fehler beheben kann.

Beachten Sie, dass alle vier Fehler unabhéngig von einander sind.

Beachten Sie weiters, dass readMaybe :: Read a => String -> Maybe avom Modul Text.Read exportiert
wird.

(a) Fehler #1 (5)

Seite 2 von 8

VO Funktionale Programming

Testklausur

WS 2025,/2026

(b) Fehler #2

(c) Fehler #3

(d) Fehler #4

Seite 3 von 8

VO Funktionale Programming Testklausur WS 2025,/2026

Aufgabe 2: Programmieren mit Listen
Ein Wort w ist ein Palindrom, wenn es vorwérts und riickwérts gelesen gleich ist. Die Worter "hannah",
"refer", und "a" sind Palindrome, aber "paul" und "valid" sind es nicht.

Ein Palindrom kann man fiir beliebige Listen definieren, z. B. ist [1,2,7,2,1] auch ein Palindrom, aber
[1,8,9,1] nicht.

Fiir die folgenden Aufgaben aufier Aufgabe (b) diirfen Sie beliebige Prelude Funktionen nutzen, z.B., map,
length, take, drop, words, unwords, [i .. j], und so weiter.

(a) Definieren Sie eine Haskell-Funktion palindrome die bestimmt, ob eine Eingabe-Liste ein Palindrom
ist. Geben Sie auch den Typ von palindrome an, der so allgemein wie mdoglich sein sollte.

Beispiele:
e palindrome "kayak" && palindrome "" && palindrome [1,2,7,2,1] sollte zu True auswerten.
e palindrome "paul" || palindrome [1,2] sollte zu False auswerten.
(b) Definieren Sie eine Funktion partition :: (a -> Bool) -> [a] -> ([al, [al) mit folgender Funk-

tionalitdt. Wenn partition p xs = (ys, zs), dann enthélt ys die Elemente von xs, die das Pradikat
p erfiillen, und zs enthélt all anderen Elemente von xs.

Zum Beispiel sollte partition (> 5) [4,10,7,3,2] zu ([10,7], [4,3,2]) auswerten.

Fiir diese Aufgabe ist es nicht erlaubt, irgendwelche vordefinierten Funktionen auf Listen zu verwenden,
aufler die Listen-Konstruktoren. List-Comprehension ist ebenfalls nicht erlaubt.

(¢) Definieren Sie eine Haskell-function magicSentence :: String -> Bool die bestimmt, ob ein Satz
magisch ist, d.h., ob mindestens die Hélfte der Worter in dem Satz Palindrome sind.

e The Eingabe ist ein Satz, der als Haskell String reprisentiert wird, und die Worter innerhalb des
Satzes sind mit Leerzeichen getrennt.

e Jedes Vorkommen eines Wortes wird einzeln gezdhlt, d.h. "a bob is a fast vehicle" ist ein Satz
mit 6 Worten, und er ist magisch, da (mindestens) 3 davon Palindrome sind: "a", "bob" and "a".

e "malayalam is a nice language" ist nicht magisch, da es nur 2 Palindrome gibt, aber 5 Wérter.

Anmerkung: Natiirlich diirfen Sie palindrome und partition verwenden, auch wenn Sie die entsprechen-
den Aufgaben nicht gelost haben.

(d) Definieren Sie eine Haskell-Funktion subPalindromes, so dass subPalindromes xs eine Liste aller
nicht-trivialen Palindrome erzeugt, die als Teil-Listen von xs vorkommen.

e ein nicht-triviales Palindrom hat eine Lénge von mindestens 3.

e eine Teil-Liste von xs bekommt man, indem ein beliebiges Anfangsstiick und Endstiick von xs
entfernt.

Beispiel: subPalindromes "hello to otto and hannah" sollte eine Liste erzeugt, die genau die Strings
"to ot", "o o"," otto ", "otto", "hannah" und "anna" enthilt, wobei die Reihenfolge egal ist.

Tipp: List-Comprehensions kénnten sinnvoll sein.

Seite 4 von 8

(4)

(8)

(8)

(12)

VO Funktionale Programming Testklausur WS 2025,/2026

Seite 5 von 8

VO Funktionale Programming Testklausur

WS 2025,/2026

Aufgabe 3: Datatypen und Funktionen H6herer Ordnung
Betrachten Sie folgendes Programm.

import Data.List(nub, sort)

-- nub :: Eq a => [a] -> [a]

-- "nub" removes all duplicates from the given list

-- sort :: Ord a => [a] -> [a]

-- sum :: Num a => [a] -> a

-- "sum" computes the sum of all elements in a list of numbers
--map :: (a -> b) -> [a] -> [b]

data Tree a = Tree a [Tree a]

node (Tree x _) = x

subtrees (Tree _ ts) = ts

mapTree f (Tree x ts) = Tree (f x) (map (mapTree f) ts)
foldTree f (Tree x ts) = f x (map (foldTree f) ts)

(a) Geben Sie den allgemeinsten Typ von node, subtrees und mapTree an.

(b) Angenommen, wir mdchten eine Funktion sumTrees :: [Tree Int] -> Int definieren, die die Summe (4)

aller Knoten in einer Liste von Integer-Bdumen berechnen soll.

Beispiel: sumTrees [Tree 3 [], Tree 2 [Tree 1 [], Tree 4 [11] =3 + 2+ 1 + 4 =10

Genau eine der folgenden Gleichungen stellt eine geeignete Implementierung dar. Identifizieren Sie diese.
(4 Punkte fiir die korrekte Antwort, 1 Punkt fiir keine Antwort, 0 Punkte fiir eine falsche Antwort)

0 sumTrees = sum . subtrees
0 sumTrees = sum . map node
0 sumTrees = sum . map (mapTree id)

O sumTrees = sum . map (foldTree (\ x xs -> x + sum xs))

Seite 6 von 8

VO Funktionale Programming Testklausur WS 2025,/2026

(¢) Wir mochten eine Funktion cumulativeSum :: Tree Integer -> Tree Integer definieren, die jeden

Knoten in einem Integer-Baum durch die Summe aller Zahlen in dem entsprechenden Teilbaum ersetzt.
Beispiel: cumulativeSum (Tree 1 [Tree 1 [], Tree 1 [Tree 1 []1, Tree 1 [1]]) =

Tree 5 [Tree 1 [],Tree 3 [Tree 1 [],Tree 1 []1]]
Nehmen Sie an, die Implementierung soll iiber foldTree erfolgen.
cumulativeSum = foldTree undefined

Ersetzen Sie undefined durch einen entsprechenden A-Ausdruck oder erkliren Sie, warum cumulativeSum
nicht mittels foldTree definiert werden kann.

Nun betrachten Sie die Funktion set :: Ord a => Tree a -> [a], die einen Baum in eine sortierte
Liste von Knoten tiberfiihrt, wobei alle doppelten Vorkommen entfernt werden sollen.

Beispiel: set (Tree 1 [Tree 1 [], Tree 2 [Tree 1 [], Tree 1 []]]) = [1,2]. Betrachten Sie
drei mogliche Versuche, set zu implementieren:

setl = sort . nub . foldTree (\x -> concat)
set2 = nub . sort . foldTree (\x ts -> x : concat ts)
set3 = sort . nub . mapTree id

Geben Sie fiir jede der Funktionen set1, set2 und set3, an, ob Sie eine korrekte Implementierung von
set sind oder nicht; fiir die fehlerhaften Funktionen sollen Sie zudem kurz das Problem beschreiben.

Seite 7 von 8

(12)

VO Funktionale Programming Testklausur WS 2025,/2026

Aufgabe 4: Auswertung und Typen
Zu jeder Frage gibt es genau eine richtige Antwort. Das Ankreuzen dieser Antwort ergibt 4 Punkte; kein
Kreuz zu machen ergibt 1 Punkt; das Ankreuzen einer falschen oder mehrerer Antworten ergibt 0 Punkte.

Betrachten Sie folgendes Programm.

foo = bar 0

bar _ [1 =[]

bar x (y:ys) = (x + y) : bar (x +y) ys

(a) Was ist der allgemeinste Typ von foo?
O [Int] -> Int
O Num a => [a] -> [al
O [Int] -> [Int]
O [a] -> [a]

(b) Was ist das Ergebnis der Auswertung von foo [1,2,3,4,5]7
O [1,3,6,10,15]
O [0,1,3,6,10]
O 15
O Keine der obigen Antworten.

(¢) Nicht mit dem Wissen aus Vorlesungen 1-10 lésbar!
Angenommen, foo xs wird fiir eine endliche Liste xs :: [Int] aufgerufen.
Welche Aussage ist korrekt?

O Keine der folgenden Antworten.

O Der Speicherverbrauch ist konstant, sowohl fiir die Innermost-Strategie und fiir Lazy-Evaluation.

O Der Speicherbedarf wird bei der Innermost-Strategie kontinuierlich wachsen, da die Auswer-
tung mit Innermost-Strategie zu einer unendlichen Berechnung fiihrt.

O Der Speicherbedarf ist konstant mit Lazy-Evaluation, aber steigt linear in der Lange von xs
bei Innermost-Strategie.

Seite 8 von 8

