
VO Funktionale Programming
LVA 703024 Testklausur

WS 2025/2026

Nachname:

Vorname:

Matrikelnummer:

Aufgabe Points Score

Programmanalyse mit Modulen und I/O 20

Programmieren mit Listen 32

Datatypen und Funktionen Höherer Ordnung 26

Auswertung und Typen 12∑
90

In der wirklichen Klausur haben folgende Regeln gegolten:

• Sie haben 90 Minuten Bearbeitungszeit.

• Die Klausur besteht aus 4 Aufgaben, in denen Sie 90 Punkte erreichen können

• Die erreichbaren Punkte sind am Rand notiert.

• Entfernen Sie nicht die Heftklammer.

• Verwenden Sie keinen roten Stift.

• Antworten können in deutscher oder englischer Sprache verfasst werden.

Sie können bereits jetzt fast alle Aufgaben lösen.

• Bei der Bearbeitung von Aufgabe 1 sollten Sie noch auf Vorlesung 10 warten.

• Aufgabe 4(c) können Sie zum Zeitpunkt der Abgabe noch nicht mit dem Vorlesungswissen lösen.

Die Bearbeitung der Klausur ist freiwillig und wird nicht bewertet. Sie können die bearbeitete Klausur
jedoch bis zum 7. Januar 2026 in OLAT hochladen (z.B. durch Anfertigung von Fotos der einzelnen
Seiten, die dann in einem PDF zusammengefasst werden und dann als 1 PDF hochgeladen werden). Alle
hochgeladenen Klausuren werden vollständig korrigiert und im Proseminar am 14. Januar zurückgegeben.
An diesem Termin wird dann auch die Lösung besprochen.

Seite 1 von 8

VO Funktionale Programming Testklausur WS 2025/2026

Aufgabe 1: Programmanalyse mit Modulen und I/O 20
Betrachten Sie folgendes Programm.

1 import Text.Read(readEither)
2
3 data Expr = Div Expr Expr | Num Double deriving Read
4
5 eval :: Expr -> IO Double
6 eval (Num x) = return x
7 eval e@(Div e1 e2) = do
8 x1 <- eval e1
9 x2 <- eval e2

10 if x2 /= 0
11 then return (x1 / x2)
12 else let message = "div-by-0 error in expression " ++ show e
13 in putStrLn message
14
15 main :: IO ()
16 main = do
17 putStrLn "enter expression:"
18 s <- getLine
19 case readMaybe s of
20 Nothing -> main
21 Just e -> do
22 let result = eval e
23 putStrLn $ "the result is " ++ show result

Das Programm enthält vier Fehler, die zu einem Compile-Fehler führen.

• Identifizieren Sie die Fehler durch Angabe der Zeilennummern,

• durch eine kurze Erklärung, warum einer Fehler vorliegt, und

• geben Sie an, wie man den Fehler beheben kann.

Beachten Sie, dass alle vier Fehler unabhängig von einander sind.
Beachten Sie weiters, dass readMaybe :: Read a => String -> Maybe a vom Modul Text.Read exportiert
wird.

(a) (5)Fehler #1

Seite 2 von 8

VO Funktionale Programming Testklausur WS 2025/2026

(b) (5)Fehler #2

(c) (5)Fehler #3

(d) (5)Fehler #4

Seite 3 von 8

VO Funktionale Programming Testklausur WS 2025/2026

Aufgabe 2: Programmieren mit Listen 32
Ein Wort w ist ein Palindrom, wenn es vorwärts und rückwärts gelesen gleich ist. Die Wörter "hannah",
"refer", und "a" sind Palindrome, aber "paul" und "valid" sind es nicht.

Ein Palindrom kann man für beliebige Listen definieren, z. B. ist [1, 2, 7, 2, 1] auch ein Palindrom, aber
[1, 8, 9, 1] nicht.

Für die folgenden Aufgaben außer Aufgabe (b) dürfen Sie beliebige Prelude Funktionen nutzen, z.B., map,
length, take, drop, words, unwords, [i .. j], und so weiter.

(a) (4)Definieren Sie eine Haskell-Funktion palindrome die bestimmt, ob eine Eingabe-Liste ein Palindrom
ist. Geben Sie auch den Typ von palindrome an, der so allgemein wie möglich sein sollte.
Beispiele:

• palindrome "kayak" && palindrome "" && palindrome [1,2,7,2,1] sollte zu True auswerten.
• palindrome "paul" || palindrome [1,2] sollte zu False auswerten.

(b) (8)Definieren Sie eine Funktion partition :: (a -> Bool) -> [a] -> ([a], [a]) mit folgender Funk-
tionalität. Wenn partition p xs = (ys, zs), dann enthält ys die Elemente von xs, die das Prädikat
p erfüllen, und zs enthält all anderen Elemente von xs.
Zum Beispiel sollte partition (> 5) [4,10,7,3,2] zu ([10,7], [4,3,2]) auswerten.
Für diese Aufgabe ist es nicht erlaubt, irgendwelche vordefinierten Funktionen auf Listen zu verwenden,
außer die Listen-Konstruktoren. List-Comprehension ist ebenfalls nicht erlaubt.

(c) (8)Definieren Sie eine Haskell-function magicSentence :: String -> Bool die bestimmt, ob ein Satz
magisch ist, d.h., ob mindestens die Hälfte der Wörter in dem Satz Palindrome sind.

• The Eingabe ist ein Satz, der als Haskell String repräsentiert wird, und die Wörter innerhalb des
Satzes sind mit Leerzeichen getrennt.

• Jedes Vorkommen eines Wortes wird einzeln gezählt, d.h. "a bob is a fast vehicle" ist ein Satz
mit 6 Worten, und er ist magisch, da (mindestens) 3 davon Palindrome sind: "a", "bob" and "a".

• "malayalam is a nice language" ist nicht magisch, da es nur 2 Palindrome gibt, aber 5 Wörter.

Anmerkung: Natürlich dürfen Sie palindrome und partition verwenden, auch wenn Sie die entsprechen-
den Aufgaben nicht gelöst haben.

(d) (12)Definieren Sie eine Haskell-Funktion subPalindromes, so dass subPalindromes xs eine Liste aller
nicht-trivialen Palindrome erzeugt, die als Teil-Listen von xs vorkommen.

• ein nicht-triviales Palindrom hat eine Länge von mindestens 3.
• eine Teil-Liste von xs bekommt man, indem ein beliebiges Anfangsstück und Endstück von xs

entfernt.

Beispiel: subPalindromes "hello to otto and hannah" sollte eine Liste erzeugt, die genau die Strings
"to ot", "o o", " otto ", "otto", "hannah" und "anna" enthält, wobei die Reihenfolge egal ist.

Tipp: List-Comprehensions könnten sinnvoll sein.

Seite 4 von 8

VO Funktionale Programming Testklausur WS 2025/2026

Seite 5 von 8

VO Funktionale Programming Testklausur WS 2025/2026

Aufgabe 3: Datatypen und Funktionen Höherer Ordnung 26
Betrachten Sie folgendes Programm.
import Data.List(nub, sort)
-- nub :: Eq a => [a] -> [a]
-- "nub" removes all duplicates from the given list
-- sort :: Ord a => [a] -> [a]
-- sum :: Num a => [a] -> a
-- "sum" computes the sum of all elements in a list of numbers
-- map :: (a -> b) -> [a] -> [b]
data Tree a = Tree a [Tree a]

node (Tree x _) = x
subtrees (Tree _ ts) = ts
mapTree f (Tree x ts) = Tree (f x) (map (mapTree f) ts)
foldTree f (Tree x ts) = f x (map (foldTree f) ts)

(a) (4)Geben Sie den allgemeinsten Typ von node, subtrees und mapTree an.

(b) (4)Angenommen, wir möchten eine Funktion sumTrees :: [Tree Int] -> Int definieren, die die Summe
aller Knoten in einer Liste von Integer-Bäumen berechnen soll.
Beispiel: sumTrees [Tree 3 [], Tree 2 [Tree 1 [], Tree 4 []]] = 3 + 2 + 1 + 4 = 10
Genau eine der folgenden Gleichungen stellt eine geeignete Implementierung dar. Identifizieren Sie diese.
(4 Punkte für die korrekte Antwort, 1 Punkt für keine Antwort, 0 Punkte für eine falsche Antwort)

□ sumTrees = sum . subtrees
□ sumTrees = sum . map node
□ sumTrees = sum . map (mapTree id)
□ sumTrees = sum . map (foldTree (\ x xs -> x + sum xs))

Seite 6 von 8

VO Funktionale Programming Testklausur WS 2025/2026

(c) (6)Wir möchten eine Funktion cumulativeSum :: Tree Integer -> Tree Integer definieren, die jeden
Knoten in einem Integer-Baum durch die Summe aller Zahlen in dem entsprechenden Teilbaum ersetzt.
Beispiel: cumulativeSum (Tree 1 [Tree 1 [], Tree 1 [Tree 1 [], Tree 1 []]]) =

Tree 5 [Tree 1 [],Tree 3 [Tree 1 [],Tree 1 []]]
Nehmen Sie an, die Implementierung soll über foldTree erfolgen.
cumulativeSum = foldTree undefined
Ersetzen Sie undefined durch einen entsprechenden λ-Ausdruck oder erklären Sie, warum cumulativeSum
nicht mittels foldTree definiert werden kann.

(d) (12)Nun betrachten Sie die Funktion set :: Ord a => Tree a -> [a], die einen Baum in eine sortierte
Liste von Knoten überführt, wobei alle doppelten Vorkommen entfernt werden sollen.
Beispiel: set (Tree 1 [Tree 1 [], Tree 2 [Tree 1 [], Tree 1 []]]) = [1,2]. Betrachten Sie
drei mögliche Versuche, set zu implementieren:

set1 = sort . nub . foldTree (\x -> concat)
set2 = nub . sort . foldTree (\x ts -> x : concat ts)
set3 = sort . nub . mapTree id

Geben Sie für jede der Funktionen set1, set2 und set3, an, ob Sie eine korrekte Implementierung von
set sind oder nicht; für die fehlerhaften Funktionen sollen Sie zudem kurz das Problem beschreiben.

Seite 7 von 8

VO Funktionale Programming Testklausur WS 2025/2026

Aufgabe 4: Auswertung und Typen 12
Zu jeder Frage gibt es genau eine richtige Antwort. Das Ankreuzen dieser Antwort ergibt 4 Punkte; kein
Kreuz zu machen ergibt 1 Punkt; das Ankreuzen einer falschen oder mehrerer Antworten ergibt 0 Punkte.

Betrachten Sie folgendes Programm.
foo = bar 0
bar _ [] = []
bar x (y:ys) = (x + y) : bar (x + y) ys

(a) (4)Was ist der allgemeinste Typ von foo?
□ [Int] -> Int
□ Num a => [a] -> [a]
□ [Int] -> [Int]
□ [a] -> [a]

(b) (4)Was ist das Ergebnis der Auswertung von foo [1,2,3,4,5]?
□ [1,3,6,10,15]
□ [0,1,3,6,10]
□ 15
□ Keine der obigen Antworten.

(c) (4)Nicht mit dem Wissen aus Vorlesungen 1–10 lösbar!
Angenommen, foo xs wird für eine endliche Liste xs :: [Int] aufgerufen.
Welche Aussage ist korrekt?

□ Keine der folgenden Antworten.
□ Der Speicherverbrauch ist konstant, sowohl für die Innermost-Strategie und für Lazy-Evaluation.
□ Der Speicherbedarf wird bei der Innermost-Strategie kontinuierlich wachsen, da die Auswer-

tung mit Innermost-Strategie zu einer unendlichen Berechnung führt.
□ Der Speicherbedarf ist konstant mit Lazy-Evaluation, aber steigt linear in der Länge von xs

bei Innermost-Strategie.

Seite 8 von 8

