M universitat WS 2025/2026

™ innsbruck

Funktionale Programming
Woche 8 — Fold, List Comprehensions, Kalender Beispiel

René Thiemann
Philipp Dablander Joshua Ocker Michael Schaper Lilly Schonherr Adam Pescoller

Institut fiir Informatik

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Letzte Vorlesung

® Funktionen hoherer Ordnung

® Funktionen sind Werte
® Funktionen kdnnen Funktionen als Eingabe haben oder Funktionen als Ausgabe liefern

® Partielle Anwendung: fiir £ :: a -> b -> ¢ -> d sind folgende Ausdriicke moglich
f:ra->b->c->d
f expr :: b ->c ->d
f expr expr :: ¢ ->d

e Sektionen: (x >) und (> x)

e \-Abstraktionen: \ patl ... patN -> expr

e n-Kontraktion: f patl ... patN x = expr x kiirzen zu f patl ... patN = expr

¢ Beispiele von Funktionen héherer Ordnung
(.) :: (b ->¢c) > (a->b) ->(a ->c)
map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]

RT et al. (IFI @ UIBK) Woche 8 2/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Fold-Funktionen fiir Listen

RT et al. (IFI @ UIBK) Woche 8 3/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Die foldr Funktion

foldr :: (a -=>b =>Db) ->b -> [a] -=> b

foldr f e [] = e
foldr f e (x : xs) = x “f° (foldr f e xs)

e foldr f e bietet strukturelle Rekursion auf Listen

® ¢ ist das Ergebnis des Basisfalls
® f beschreibt, wie das Ergebnis anhand des ersten Listenelements und des rekursiven

Ergebnisses berechnet wird

e foldr f e ersetzt : durch f und [] durch e
: f

7N\ 7N\
x_1 /Z x_1 f
foldr £ e .4 . = LN,
7N\ 7N\
x_3 : x_3 f
VAN / N\
x_4 0] x_4 e

foldr f e [x_1, x.2, x.3, x_4] = x_1 £ (x_2 “f° (x.3 “f° (x_4 “f ¢)))

RT et al. (IF1 @ UIBK) Woche 8

4/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Ausdrucksstarke von foldr

e foldr f e ersetzt : durch f und [] durch e;
foldr f e [x_1, x.2, x.3, x_4] = x_1 ~f° (x_2 “f° (x.3 “f° (x_4 “f° e)))

e foldr f e bietet strukturelle Rekursion auf Listen

e Konsequenz: alle Funktionsdefinitionen, die strukturelle Rekursion auf Listen verwenden,
konnen iiber foldr definiert werden
e Beispiel-Definitionen iiber foldr
sum = foldr (+) 0
product = foldr (%) 1
concat = foldr (++) [] -- merge list of lists into one list
xs ++ ys = foldr (:) ys xs
length = foldr (\ _ -> (+ 1)) 0
map f = foldr ((:) . £) [
all f = foldr ((&&) . f) True -- do all elements satisfy predicate?

RT et al. (IFI @ UIBK) Woche 8 5/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Varianten von foldr

-- foldr from previous slide
foldr :: (a2 -> b ->b) ->b -> [a] > b
foldr f e [x_1, x.2, x.3] =x_1 “f° (x_2 “f° (x_.3 “f° e))

-- foldr without starting element, only for non-empty lists
foldrl :: (a -> a -> a) -> [a] -> a
foldrl f [x_1, x_2, x.3] =x_1 “f° (x_2 “f° x_3)

-- application: maximum of list elements
maximum = foldrl max

-- foldl, apply function starting from the left
foldl :: (b ->a ->b) ->b -> [a] -> b
foldl f e [x_1, x.2, x.3] = ((e “f> x_1) “f> x_.2) “f° x.3

-- application: reverse
reverse = foldl (flip (:)) []

RT et al. (IF1 @ UIBK) Woche 8 6/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Weitere Prelude-Funktionen fiir Listen

RT et al. (IFI @ UIBK) Woche 8 7/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Take-While, Drop-While

® takeWhile :: (a -> Bool) -> [a] -> [a] und
dropWhile :: (a -> Bool) -> [a] -> [a]
® takeWhile p xs nimmt Elemente von links von xs, solange p erfiillt ist
® dropWhile p xs entfernt Elemente von links von xs, solange p erfiillt ist
® Gleichheit: takeWhile p xs ++ dropWhile p xs = xs
e Kombinationen — effizientere Versionen der folgenden Definitionen
® splitAt :: Int -> [a] -> ([a], [al)
splitAt n xs = (take n xs, drop n xs)
® span :: (a -> Bool) -> [a]l -> ([al, [al)
span p xs = (takeWhile p xs, dropWhile p xs)

RT et al. (IFI @ UIBK) Woche 8

8/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel Anwendung: Separiere Woérter

e Aufgabe: Schreibe eine Funktion words :: String -> [String], die eine Zeichenkette
in Worter zerlegt

® Beispiel: words "I am fine. " = ["I", "am", "fine."]
® |Implementierung:
words s = case dropWhile (== ' ') s of
i _s []
sl -> let (w, s2) = span (/= ' ') sl

in w : words s2

® Anmerkungen

nicht-triviale Rekursion auf Listen

words ist bereits vordefiniert

unwords :: [String] -> String ist die Umkehrfunktion und fiigt Leerzeichen ein
dhnliche Funktionen zum Aufteilen an Zeilenumbriichen oder zum Einfiigen von

Zeilenumbriichen
lines :: String -> [String]

unlines :: [String] -> String

RT et al. (IFI @ UIBK) Woche 8 9/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Elementweise Verkniipfung Zweier Listen

® zipWith :: (a -> b -> ¢) -> [a]l -> [b] -> [c]
zipWith £ [z1,...,2n] [yi, .o synd =[x "27 y1s oo Zninfmn) T Ymin{mon]
® die resultierende Liste hat die Lange der kiirzeren Eingabe-Liste
® obige Gleichung ist kein Haskell-Code, denken Sie selbst iiber die rekursive Definition nach
¢ Spezialisierung zip
-- () :: a->b -> (a, b) is the pair constructor
zip :: [a] -> [b] -> [(a, b)]
zip = zipWith (,)
¢ Umbkehrfunktion: unzip :: [(a, b)] -> ([al, [b])
® Beispiele
® zip [1, 2, 3] "ab" = [(1, 'a'), (2, 'b')]
® unzip [(1, 'c¢'), (2, 'B"), (3, 'a")] = ([1, 2, 3], "cba")
e zipWith (%) [1, 2] [3, 4, 5] = [1*3, 2%4] = [3, 8]

RT et al. (IFI @ UIBK) Woche 8 10/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Anwendung: Priifung, ob eine Liste sortiert ist

isSorted :: Ord a => [a] -> Bool
isSorted xs = all id $ zipWith (<=) xs (tail xs)
® id :: a -> aist die Identitats-Funktion id x = x;

die als "Pradikat” genutzt wird, ob ein Boolean wahr ist

e ($) ist der Anwendungs-Operator mit geringer Prazedenz, £ $ x = f x,
wird genutzt, um Klammern zu vermeiden
e Beispiel:
isSorted [1, 2, 5, 3]
= all id $ zipWith (<=) [1, 2, 5, 3] [2, 5, 3]
= all id [1 <= 2, 2 <=5, 5 <= 3]
= all id [True, True, False]
= id True && id True && id False && True
= False

RT et al. (IFI @ UIBK) Woche 8 11/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Operator-Tabelle mit Prazedenzen

e alle Operatoren

Unterschied liegt bei erlaubten Exponenten (N, Z, Q) und Typ der Basis

Prazedenz Operator Assoziativitat
9 . links(!!), rechts(.)
8 R rechts
7 *, /, "div’” rechts
6 +, - links
5 . rechts
4 == /=, <, <=, >, >= keine
3 && rechts
2 [rechts
1 >> >>= links
0 $ rechts

~ A~
'

, ** implementieren Potenzierung;

e QOperatoren (>>) und (>>=) werden spater erldutert

RT et al. (IFI @ UIBK)

Woche 8

12/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

List Comprehension

RT et al. (IFI @ UIBK) Woche 8 13/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

List Comprehension

e List Comprehension ist vergleichbar mit Mengen-Schreibweise in der Mathematik

e prazise, lesbare Definition
® Summe der gerade Quadratzahlen bis 100: >"{z? | = € {0,...,100}, even(z)}

e Beispiele von List Comprehensions in Haskell

evenSquares100 = sum [x"2 | x <- [0 .. 100], even x]
prime n = n >= 2 && null [x | x <- [2 .. n - 1], n "mod” x == 0]
pairs n = [(i, j) | i <- [0..n], even i, j <- [0..i]]

> pairs 5
[(0,0),(2,0),(2,1),(2,2),(4,0),(4,1),(4,2),(4,3),(4,4)]

RT et al. (IFI @ UIBK) Woche 8

14/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

List Comprehension — Struktur

foozs =[x +y+ 2z |
x <- [0..20],
even x,
let y = x * x,
y < 200,
Just z <- zs]

® cine List Comprehension hat die Form [e | Q] wobei
® ¢ ein Haskell Ausdruck ist, z.B., x + y + z, und
® () ein Qualifier ist, d.h., eine Komma-separierte Liste von:
® Generatoren der Form pat <- expr, wobei expr einen Listen-Typen hat,
z.B., x <- [0..20] oder Just z <- zs;
e und spéatere Teile des Qualifiers kdnnen Variablen in pat nutzen
® Guards, d.h., Boolesche Ausdriicke, z.B., even x oder y < 200
® |okale Definitionen der Form let defs (kein in!);
e und spatere Teile des Qualifiers konnen Variables und Funktionen nutzen, die in defs
definiert wurden

wenn Q leer ist, schreibt man einfach [e]

RT et al. (IFI @ UIBK) Woche 8 15/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

List Comprehension — Ubersetzung
[x +y | x<- [0..20], even x, let y = x * x, y < 200]

e List Comprehension hat Form [e | QJ, wobei Q eine Liste aus Guards, Generatoren und
lokalen Definitionen ist

® Semantik: List Comprehensions werden mit Hilfe von concatMap iibersetzt
concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f
® Guards:
[e | b, Q] = if b then [e | Q] else []
® |okale Definitionen:
[e | let defs, Q] = let defs in [e | Q]
® Generatoren fiir vollstindige Pattern (z.B., Variable oder Tupel von Variablen):
[e | pat <- xs, Q] = concatMap (\ pat -> [e | Q]) xs

® Generatoren fiir den allgemeinen Fall:
[e | pat <- xs, Q] = concatMap

(\ x -> case x of { pat -=> [e | Q]; _ -> [1 1})
XS -- where x must be a fresh variable name
RT et al. (IF1 @ UIBK) Woche 8

16/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

List Comprehension — Beispiel Ubersetzungen

 Ubersetzung

[e | b, Q] = if b then [e | Q] else []
[e | let defs, Q] = let defs in [e | Q]
[e | pat <- xs, Q] = concatMap (\ pat -> [e | Q) xs

e Beispiele

[s | (s, g) <- xs, g == 1]

= concatMap (\
= concatMap (\

[y + z | x <-
= concatMap (\
= concatMap (\
= concatMap (\

concatMap (

RT et al. (IFI @ UIBK)

(s, g) > [s | g==1]) xs
(s, g) -> if g == 1 then [s] else []) xs

xs, let y = x * x, z <- [0 .. y]]

x > [y+z]| lety=x*x, z<-[0..y]]) xs

x ->lety=x*xin [y +z | z <= [0 .. y]]) xs
x -> let y =x * x in

Nz ->1[y+2z]) [0..y]) xs

Woche 8 17/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel Anwendung — Pythagoreische Tripel

RT et al.

(z,y, z) ist Pythagoreisches Tripel gdw. 22 + y? = 22

Aufgabe: finde alle Pythagoreischen Tripel in gegebenen Zahlenbereich

ptriple x y z = x72 + y°2 == z72
ptriples n = [(x,y,z) |
x <- [1..n], y <- [1..n], z <- [1..n], ptriple x y z]
es gibt Probleme mit Duplikaten wegen der Symmetrie
> ptriples 5
[(3,4,5),(4,3,5)]
folgende Losung eliminiert Symmetrien, und ist auch effizienter
ptriples n = [(x,y,z) |
x <- [1..n], y <- [x..n], z <~ [y..n], ptriple x y z]

> ptriples 5
[(3,4,5)]

(IFI @ UIBK) Woche 8

18/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Anwendung — Erstellung eines Monats-Kalenders

RT et al. (IFI @ UIBK) Woche 8 19/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Erstellung eines Kalenders

e Aufgabe: gegeben ein Monat und ein Jahr, erstelle einen Monats-Kalender

e Beispiel: November 2025
Mo Tu We Th Fr Sa Su

1 2

3 4 5 6 7 8 9

e Dekomposition liefert zwei Teil-Aufgaben

® Berechnungs-Phase (Monatsanfang, Schaltjahre, .. .)
® Layout und Darstellung

e hier: Fokus auf Layout und Darstellung, Berechnungs-Phase wird bereitgestellt

type Month = Int

type Year = Int

type Dayname = Int -- Mo = 0, Tu =1, ..., So =6

-- monthInfo returns name of 1st day in m. and number of days in m.
monthInfo :: Month -> Year -> (Dayname, Int)

RT et al. (IFI @ UIBK) Woche 8 20/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Der Picture Typ

e stelle Kalender als Bild dar, d.h., Liste von Zeilen,
wobei jede Zeile eine Liste von Zeichen ist

® Reprasentation in Haskell

type Height Int

type Width = Int

type Picture = (Height, Width, [[Char]])
® betrachte Bild (h, w, rs)
e rs :: [[Char]] — “Liste von Zeilen"

® Invariante 1: Lange von rs ist genau die Hohe h

® Invariante 2: alle Zeilen (also die Elemente von rs) haben Lange w
® Erzeugung eines Bildes aus einer einzigen Zeile

row :: String -> Picture
row r = (1, length r, [r])

RT et al. (IFI @ UIBK) Woche 8 21/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Stapeln von Bildern

D
HD>>
D
Stapeln zweier Bilder
above :: Picture -> Picture -> Picture
(h, w, css) “above™ (h', w', css')
| w==w' = (th +h', w, css ++ css')

| otherwise = error "above: different widths"

Stapeln mehrere Bilder

stack :: [Picture] -> Picture
stack = foldrl above

RT et al. (IFI @ UIBK) Woche 8 22/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Verschmelzen von nebeneinander stehenden Bildern

NIRRT

Verschmelzen von zwei benachbarten Bildern

beside :: Picture -> Picture -> Picture
(h, w, css) “beside” (h', w', css')
| h == h' = (h, w + w', zipWith (++) css css')

| otherwise = error "beside: different heights"

Verschmelzen mehrerer benachbarter Bilder

spread :: [Picture] -> Picture

spread = foldrl beside

Kombination von Stapeln und Verschmelzen

tile :: [[Picturel] -> Picture -- [[picl,pic2,pic3], -> piclpic2pic3
tile = stack . map spread -- [pic4,pich,pic6]] -> pic4picbpic6

RT et al. (IFI @ UIBK) Woche 8 23/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Erstellung von vielen Tages-Bildern

e wie erwahnt, nehmen wir an, dass folgende Funktion existiert

monthInfo :: Month -> Year -> (Dayname, Int) -- (first day, nr of days)

-- daynames are 0 (Monday), 1 (Tuesday),

daysOfMonth :: Month -> Year -> [Picture] -- 42 small pictures of size 1%3

daysOfMonth m y =
map (row . rjustify 3 . pic) [1 - d .. numSlots - d]

where
(d, t) = monthInfo m y
numSlots = 6 * 7 -- max 6 weeks * 7 days per week

pic n = 1if 1 <= n && n <= t then show n else ""

rjustify :: Int -> String -> String

rjustify n xs
| 1 <= n = replicate (n - 1) ' ' ++ xs
| otherwise = error ("text (" ++ xs ++ ") too long")
where 1 = length xs

RT et al. (IF1 @ UIBK) Woche 8

24/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Zusammenbau des Gesamt-Bildes

¢ daysOfMonth liefert 42 Bilder (der GroRe 1 x 3)
® bendtigt: Layout + Kopfzeile fiir das Gesamt-Bild (der GroRe 7 x 21)
month :: Month -> Year -> Picture

month m y = above weekdays . tile . groupsO0fSize 7 $ daysOfMonth m y
where weekdays = row " Mo Tu We Th Fr Sa Su"

-- groups0fSize splits list into sublists of given length
groups0fSize :: Int -> [a] -> [[al]
groups0fSize n [] = []
groups0fSize n xs = ys : groups0fSize n zs
where (ys, zs) = splitAt n xs

RT et al. (IFI @ UIBK) Woche 8 25/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Ausgabe eines Monats

e transformiere Picture in String
showPic :: Picture -> String
showPic (_, _, css) = unlines css

e liefere Resultat von month m y als String
showMonth :: Month -> Year -> String
showMonth m y = showPic $ month m y

® Anzeige des Strings mittels putStr :: String -> I0 (),

damit Zeilenumbriiche als solche ausgegeben werden
> showMonth 11 2025
" Mo Tu We Th Fr Sa Su\n 1 2\n 3 ..."
> putStr $ showMonth 11 2025

Mo Tu We Th Fr Sa Su

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

RT et al. (IFI @ UIBK) Woche 8 26/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Zusammenfassung

RT et al.

vielseite Funktion furr Listen: foldr, foldl, foldril

weitere nutzliche Funktionen

take, drop, splitAt, -- split list at position
takeWhile, dropWhile, span, -- split list via predicate
zipWith, zip, unzip, -- (un)zip two lists
concatMap, -- map with concat combined
$ -- application operator

Tabelle der Operatoren mit Prézedenzen
List Comprehension

® prazise Beschreibung von Listen, dhnlich zu Mengen-Schreibweise in der Mathematik
® wird in normale Ausdriicke mit Hilfe von concatMap iibersetzt
® Beispiel:

[(x,y,2) | x <- [1..n], v <- [x..n], z <= [y..n], x°2 + y~2 == z~2]

Anwendung: Monats-Kalender

(IF1 @ UIBK) Woche 8 27/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Fold-Funktionen für Listen
	
	Weitere Prelude-Funktionen für Listen
	
	List Comprehension
	
	Anwendung – Erstellung eines Monats-Kalenders

