
WS 2025/2026

Funktionale Programming
Woche 8 – Fold, List Comprehensions, Kalender Beispiel

René Thiemann
Philipp Dablander Joshua Ocker Michael Schaper Lilly Schönherr Adam Pescoller

Institut für Informatik

Letzte Vorlesung
• Funktionen höherer Ordnung

• Funktionen sind Werte
• Funktionen können Funktionen als Eingabe haben oder Funktionen als Ausgabe liefern

• Partielle Anwendung: für f :: a -> b -> c -> d sind folgende Ausdrücke möglich

f :: a -> b -> c -> d
f expr :: b -> c -> d
f expr expr :: c -> d

• Sektionen: (x >) und (> x)
• λ-Abstraktionen: \ pat1 ... patN -> expr
• η-Kontraktion: f pat1 ... patN x = expr x kürzen zu f pat1 ... patN = expr
• Beispiele von Funktionen höherer Ordnung
(.) :: (b -> c) -> (a -> b) -> (a -> c)
map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]

RT et al. (IFI @ UIBK) Woche 8 2/27

Fold-Funktionen für Listen

RT et al. (IFI @ UIBK) Woche 8 3/27

Die foldr Funktion

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x : xs) = x `f` (foldr f e xs)
• foldr f e bietet strukturelle Rekursion auf Listen

• e ist das Ergebnis des Basisfalls
• f beschreibt, wie das Ergebnis anhand des ersten Listenelements und des rekursiven

Ergebnisses berechnet wird

• foldr f e ersetzt : durch f und [] durch e

foldr f e

:

:

:

:

[]

x_1

x_2

x_3

x_4

=

f

f

f

f

e

x_1

x_2

x_3

x_4

foldr f e [x_1, x_2, x_3, x_4] = x_1 `f` (x_2 `f` (x_3 `f` (x_4 `f` e)))

RT et al. (IFI @ UIBK) Woche 8 4/27

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Ausdrucksstärke von foldr
• foldr f e ersetzt : durch f und [] durch e;
foldr f e [x_1, x_2, x_3, x_4] = x_1 `f` (x_2 `f` (x_3 `f` (x_4 `f` e)))

• foldr f e bietet strukturelle Rekursion auf Listen
• Konsequenz: alle Funktionsdefinitionen, die strukturelle Rekursion auf Listen verwenden,

können über foldr definiert werden
• Beispiel-Definitionen über foldr
sum = foldr (+) 0
product = foldr (*) 1
concat = foldr (++) [] -- merge list of lists into one list
xs ++ ys = foldr (:) ys xs
length = foldr (\ _ -> (+ 1)) 0
map f = foldr ((:) . f) []
all f = foldr ((&&) . f) True -- do all elements satisfy predicate?

RT et al. (IFI @ UIBK) Woche 8 5/27

Varianten von foldr

-- foldr from previous slide
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [x_1, x_2, x_3] = x_1 `f` (x_2 `f` (x_3 `f` e))

-- foldr without starting element, only for non-empty lists
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x_1, x_2, x_3] = x_1 `f` (x_2 `f` x_3)

-- application: maximum of list elements
maximum = foldr1 max

-- foldl, apply function starting from the left
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f e [x_1, x_2, x_3] = ((e `f` x_1) `f` x_2) `f` x_3

-- application: reverse
reverse = foldl (flip (:)) []

RT et al. (IFI @ UIBK) Woche 8 6/27

Weitere Prelude-Funktionen für Listen

RT et al. (IFI @ UIBK) Woche 8 7/27

Take-While, Drop-While
• takeWhile :: (a -> Bool) -> [a] -> [a] und
dropWhile :: (a -> Bool) -> [a] -> [a]

• takeWhile p xs nimmt Elemente von links von xs, solange p erfüllt ist
• dropWhile p xs entfernt Elemente von links von xs, solange p erfüllt ist
• Gleichheit: takeWhile p xs ++ dropWhile p xs = xs

• Kombinationen – effizientere Versionen der folgenden Definitionen
• splitAt :: Int -> [a] -> ([a], [a])
splitAt n xs = (take n xs, drop n xs)

• span :: (a -> Bool) -> [a] -> ([a], [a])
span p xs = (takeWhile p xs, dropWhile p xs)

RT et al. (IFI @ UIBK) Woche 8 8/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel Anwendung: Separiere Wörter
• Aufgabe: Schreibe eine Funktion words :: String -> [String], die eine Zeichenkette

in Wörter zerlegt
• Beispiel: words "I am fine. " = ["I", "am", "fine."]
• Implementierung:
words s = case dropWhile (== ' ') s of

"" -> []
s1 -> let (w, s2) = span (/= ' ') s1

in w : words s2
• Anmerkungen

• nicht-triviale Rekursion auf Listen
• words ist bereits vordefiniert
• unwords :: [String] -> String ist die Umkehrfunktion und fügt Leerzeichen ein
• ähnliche Funktionen zum Aufteilen an Zeilenumbrüchen oder zum Einfügen von

Zeilenumbrüchen
lines :: String -> [String]
unlines :: [String] -> String

RT et al. (IFI @ UIBK) Woche 8 9/27

Elementweise Verknüpfung Zweier Listen
• zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f [x1, . . . ,xm] [y1, . . . ,yn] = [x1 `f` y1, . . . ,xmin{m,n} `f` ymin{m,n}]

• die resultierende Liste hat die Länge der kürzeren Eingabe-Liste
• obige Gleichung ist kein Haskell-Code, denken Sie selbst über die rekursive Definition nach

• Spezialisierung zip
-- (,) :: a -> b -> (a, b) is the pair constructor
zip :: [a] -> [b] -> [(a, b)]
zip = zipWith (,)

• Umkehrfunktion: unzip :: [(a, b)] -> ([a], [b])
• Beispiele

• zip [1, 2, 3] "ab" = [(1, 'a'), (2, 'b')]
• unzip [(1, 'c'), (2, 'b'), (3, 'a')] = ([1, 2, 3], "cba")
• zipWith (*) [1, 2] [3, 4, 5] = [1*3, 2*4] = [3, 8]

RT et al. (IFI @ UIBK) Woche 8 10/27

Anwendung: Prüfung, ob eine Liste sortiert ist

isSorted :: Ord a => [a] -> Bool
isSorted xs = all id $ zipWith (<=) xs (tail xs)
• id :: a -> a ist die Identitäts-Funktion id x = x;

die als “Prädikat” genutzt wird, ob ein Boolean wahr ist
• ($) ist der Anwendungs-Operator mit geringer Präzedenz, f $ x = f x,

wird genutzt, um Klammern zu vermeiden
• Beispiel:

isSorted [1, 2, 5, 3]
= all id $ zipWith (<=) [1, 2, 5, 3] [2, 5, 3]
= all id [1 <= 2, 2 <= 5, 5 <= 3]
= all id [True, True, False]
= id True && id True && id False && True
= False

RT et al. (IFI @ UIBK) Woche 8 11/27

Operator-Tabelle mit Präzedenzen

Präzedenz Operator Assoziativität
9 !!, . links(!!), rechts(.)
8 ^, ^^, ** rechts
7 *, /, `div` rechts
6 +, - links
5 :, ++ rechts
4 ==, /=, <, <=, >, >= keine
3 && rechts
2 || rechts
1 >>, >>= links
0 $ rechts

• alle Operatoren ^, ^^, ** implementieren Potenzierung;
Unterschied liegt bei erlaubten Exponenten (N, Z, Q) und Typ der Basis

• Operatoren (>>) und (>>=) werden später erläutert

RT et al. (IFI @ UIBK) Woche 8 12/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

List Comprehension

RT et al. (IFI @ UIBK) Woche 8 13/27

List Comprehension
• List Comprehension ist vergleichbar mit Mengen-Schreibweise in der Mathematik
• präzise, lesbare Definition

• Summe der gerade Quadratzahlen bis 100:
∑

{x2 | x ∈ {0, . . . , 100}, even(x)}
• Beispiele von List Comprehensions in Haskell

evenSquares100 = sum [x^2 | x <- [0 .. 100], even x]

prime n = n >= 2 && null [x | x <- [2 .. n - 1], n `mod` x == 0]

pairs n = [(i, j) | i <- [0..n], even i, j <- [0..i]]

> pairs 5
[(0,0),(2,0),(2,1),(2,2),(4,0),(4,1),(4,2),(4,3),(4,4)]

RT et al. (IFI @ UIBK) Woche 8 14/27

List Comprehension – Struktur

foo zs = [x + y + z |
x <- [0..20],
even x,
let y = x * x,
y < 200,
Just z <- zs]

• eine List Comprehension hat die Form [e | Q] wobei
• e ein Haskell Ausdruck ist, z.B., x + y + z, und
• Q ein Qualifier ist, d.h., eine Komma-separierte Liste von:

• Generatoren der Form pat <- expr, wobei expr einen Listen-Typen hat,
z.B., x <- [0..20] oder Just z <- zs;
e und spätere Teile des Qualifiers können Variablen in pat nutzen

• Guards, d.h., Boolesche Ausdrücke, z.B., even x oder y < 200
• lokale Definitionen der Form let defs (kein in!);

e und spätere Teile des Qualifiers können Variables und Funktionen nutzen, die in defs
definiert wurden

wenn Q leer ist, schreibt man einfach [e]

RT et al. (IFI @ UIBK) Woche 8 15/27

List Comprehension – Übersetzung
[x + y | x <- [0..20], even x, let y = x * x, y < 200]
• List Comprehension hat Form [e | Q], wobei Q eine Liste aus Guards, Generatoren und

lokalen Definitionen ist
• Semantik: List Comprehensions werden mit Hilfe von concatMap übersetzt

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f

• Guards:
[e | b, Q] = if b then [e | Q] else []

• lokale Definitionen:
[e | let defs, Q] = let defs in [e | Q]

• Generatoren für vollständige Pattern (z.B., Variable oder Tupel von Variablen):
[e | pat <- xs, Q] = concatMap (\ pat -> [e | Q]) xs

• Generatoren für den allgemeinen Fall:
[e | pat <- xs, Q] = concatMap

(\ x -> case x of { pat -> [e | Q]; _ -> [] })
xs -- where x must be a fresh variable name

RT et al. (IFI @ UIBK) Woche 8 16/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

List Comprehension – Beispiel Übersetzungen

• Übersetzung

[e | b, Q] = if b then [e | Q] else []
[e | let defs, Q] = let defs in [e | Q]
[e | pat <- xs, Q] = concatMap (\ pat -> [e | Q]) xs

• Beispiele
[s | (s, g) <- xs, g == 1]

= concatMap (\ (s, g) -> [s | g == 1]) xs
= concatMap (\ (s, g) -> if g == 1 then [s] else []) xs

[y + z | x <- xs, let y = x * x, z <- [0 .. y]]
= concatMap (\ x -> [y + z | let y = x * x, z <- [0 .. y]]) xs
= concatMap (\ x -> let y = x * x in [y + z | z <- [0 .. y]]) xs
= concatMap (\ x -> let y = x * x in

concatMap (\ z -> [y + z]) [0 .. y]) xs

RT et al. (IFI @ UIBK) Woche 8 17/27

Beispiel Anwendung – Pythagoreische Tripel
• (x, y, z) ist Pythagoreisches Tripel gdw. x2 + y2 = z2

• Aufgabe: finde alle Pythagoreischen Tripel in gegebenen Zahlenbereich
ptriple x y z = x^2 + y^2 == z^2
ptriples n = [(x,y,z) |

x <- [1..n], y <- [1..n], z <- [1..n], ptriple x y z]
• es gibt Probleme mit Duplikaten wegen der Symmetrie
> ptriples 5
[(3,4,5),(4,3,5)]

• folgende Lösung eliminiert Symmetrien, und ist auch effizienter
ptriples n = [(x,y,z) |

x <- [1..n], y <- [x..n], z <- [y..n], ptriple x y z]

> ptriples 5
[(3,4,5)]

RT et al. (IFI @ UIBK) Woche 8 18/27

Anwendung – Erstellung eines Monats-Kalenders

RT et al. (IFI @ UIBK) Woche 8 19/27

Erstellung eines Kalenders
• Aufgabe: gegeben ein Monat und ein Jahr, erstelle einen Monats-Kalender
• Beispiel: November 2025

Mo Tu We Th Fr Sa Su
1 2

3 4 5 6 7 8 9
...

• Dekomposition liefert zwei Teil-Aufgaben
• Berechnungs-Phase (Monatsanfang, Schaltjahre, . . .)
• Layout und Darstellung

• hier: Fokus auf Layout und Darstellung, Berechnungs-Phase wird bereitgestellt
type Month = Int
type Year = Int
type Dayname = Int -- Mo = 0, Tu = 1, ..., So = 6
-- monthInfo returns name of 1st day in m. and number of days in m.
monthInfo :: Month -> Year -> (Dayname, Int)

RT et al. (IFI @ UIBK) Woche 8 20/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Der Picture Typ
• stelle Kalender als Bild dar, d.h., Liste von Zeilen,

wobei jede Zeile eine Liste von Zeichen ist
• Repräsentation in Haskell
type Height = Int
type Width = Int
type Picture = (Height, Width, [[Char]])

• betrachte Bild (h, w, rs)
• rs :: [[Char]] – “Liste von Zeilen”
• Invariante 1: Länge von rs ist genau die Höhe h
• Invariante 2: alle Zeilen (also die Elemente von rs) haben Länge w
• Erzeugung eines Bildes aus einer einzigen Zeile

row :: String -> Picture
row r = (1, length r, [r])

RT et al. (IFI @ UIBK) Woche 8 21/27

Stapeln von Bildern

Stapeln zweier Bilder

above :: Picture -> Picture -> Picture
(h, w, css) `above` (h', w', css')

| w == w' = (h + h', w, css ++ css')
| otherwise = error "above: different widths"

Stapeln mehrere Bilder

stack :: [Picture] -> Picture
stack = foldr1 above

RT et al. (IFI @ UIBK) Woche 8 22/27

Verschmelzen von nebeneinander stehenden Bildern

Verschmelzen von zwei benachbarten Bildern

beside :: Picture -> Picture -> Picture
(h, w, css) `beside` (h', w', css')

| h == h' = (h, w + w', zipWith (++) css css')
| otherwise = error "beside: different heights"

Verschmelzen mehrerer benachbarter Bilder
spread :: [Picture] -> Picture
spread = foldr1 beside

Kombination von Stapeln und Verschmelzen
tile :: [[Picture]] -> Picture -- [[pic1,pic2,pic3], -> pic1pic2pic3
tile = stack . map spread -- [pic4,pic5,pic6]] -> pic4pic5pic6

RT et al. (IFI @ UIBK) Woche 8 23/27

Erstellung von vielen Tages-Bildern
• wie erwähnt, nehmen wir an, dass folgende Funktion existiert

monthInfo :: Month -> Year -> (Dayname, Int) -- (first day, nr of days)
-- daynames are 0 (Monday), 1 (Tuesday), ...

daysOfMonth :: Month -> Year -> [Picture] -- 42 small pictures of size 1*3
daysOfMonth m y =

map (row . rjustify 3 . pic) [1 - d .. numSlots - d]
where

(d, t) = monthInfo m y
numSlots = 6 * 7 -- max 6 weeks * 7 days per week
pic n = if 1 <= n && n <= t then show n else ""

rjustify :: Int -> String -> String
rjustify n xs

| l <= n = replicate (n - l) ' ' ++ xs
| otherwise = error ("text (" ++ xs ++ ") too long")
where l = length xs

RT et al. (IFI @ UIBK) Woche 8 24/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Zusammenbau des Gesamt-Bildes
• daysOfMonth liefert 42 Bilder (der Größe 1× 3)
• benötigt: Layout + Kopfzeile für das Gesamt-Bild (der Größe 7× 21)

month :: Month -> Year -> Picture
month m y = above weekdays . tile . groupsOfSize 7 $ daysOfMonth m y

where weekdays = row " Mo Tu We Th Fr Sa Su"

-- groupsOfSize splits list into sublists of given length
groupsOfSize :: Int -> [a] -> [[a]]
groupsOfSize n [] = []
groupsOfSize n xs = ys : groupsOfSize n zs

where (ys, zs) = splitAt n xs

RT et al. (IFI @ UIBK) Woche 8 25/27

Ausgabe eines Monats
• transformiere Picture in String
showPic :: Picture -> String
showPic (_, _, css) = unlines css

• liefere Resultat von month m y als String
showMonth :: Month -> Year -> String
showMonth m y = showPic $ month m y

• Anzeige des Strings mittels putStr :: String -> IO (),
damit Zeilenumbrüche als solche ausgegeben werden
> showMonth 11 2025
" Mo Tu We Th Fr Sa Su\n 1 2\n 3 ..."
> putStr $ showMonth 11 2025
Mo Tu We Th Fr Sa Su

1 2
3 4 5 6 7 8 9

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

RT et al. (IFI @ UIBK) Woche 8 26/27

Zusammenfassung
• vielseite Funktion für Listen: foldr, foldl, foldr1
• weitere nützliche Funktionen
take, drop, splitAt, -- split list at position
takeWhile, dropWhile, span, -- split list via predicate
zipWith, zip, unzip, -- (un)zip two lists
concatMap, -- map with concat combined
($) -- application operator

• Tabelle der Operatoren mit Präzedenzen
• List Comprehension

• präzise Beschreibung von Listen, ähnlich zu Mengen-Schreibweise in der Mathematik
• wird in normale Ausdrücke mit Hilfe von concatMap übersetzt
• Beispiel:
[(x,y,z) | x <- [1..n], y <- [x..n], z <- [y..n], x^2 + y^2 == z^2]

• Anwendung: Monats-Kalender

RT et al. (IFI @ UIBK) Woche 8 27/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Fold-Funktionen für Listen
	
	Weitere Prelude-Funktionen für Listen
	
	List Comprehension
	
	Anwendung – Erstellung eines Monats-Kalenders

