M universitat WS 2025/2026

™ innsbruck

L T ——
] E
et

Funktionale Programming
Woche 8 — Fold, List Comprehensions, Kalender Beispiel

René Thiemann
Philipp Dablander Joshua Ocker Michael Schaper Lilly Schonherr Adam Pescoller

Institut fiir Informatik

Fold-Funktionen fiir Listen

RT et al. (IFlI @ UIBK) Woche 8

Letzte Vorlesung

® Funktionen héherer Ordnung

® Funktionen sind Werte
® Funktionen kdnnen Funktionen als Eingabe haben oder Funktionen als Ausgabe liefern

® Partielle Anwendung: fiir f :: a -> b -> ¢ -> d sind folgende Ausdriicke méglich
f:ra->b->c->d
fexpr :: b ->c->d
f expr expr :: ¢ ->d

e Sektionen: (x >) und (> x)

® \-Abstraktionen: \ patl ... patN -> expr

® p-Kontraktion: £ patl ... patN x = expr x kiirzen zu f patl ... patN = expr

® Beispiele von Funktionen hoherer Ordnung
(.) :: (b ->¢c) ->(a->b) -> (a ->c)
map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]

RT et al. (IFl @ UIBK) Woche 8 2/27

Die foldr Funktion

foldr :: (a ->b ->b) ->b -> [a] -> b
foldr f e [] = e
foldr f e (x : xs) = x “f° (foldr f e xs)

e foldr f e bietet strukturelle Rekursion auf Listen

® ¢ ist das Ergebnis des Basisfalls
® f beschreibt, wie das Ergebnis anhand des ersten Listenelements und des rekursiven
Ergebnisses berechnet wird

e foldr f e ersetzt : durch f und [] durch e
: f

7N\ AN
x_1 /: x_1 f
foldr f e 4o . = LN
RN 7N
x_3 : x_3 f
VAN 7/ N\
x_4 [x_4 e

foldr f e [x_1, x_2, x_.3, x_4] = x_1 "> (x_2 “f° (x_3 “f° (x_4 “f° e)))

RT et al. (IFlI @ UIBK) Woche 8 4/27

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Ausdrucksstirke von foldr

® foldr f e ersetzt : durch £ und [] durch e;
foldr f e [x_1, x_2, x_.3, x_4] =x_1 "f° (x_2 “f° (x_.3 “f° (x_4 “f° e)))

e foldr f e bietet strukturelle Rekursion auf Listen

e Konsequenz: alle Funktionsdefinitionen, die strukturelle Rekursion auf Listen verwenden,
kénnen iiber foldr definiert werden
e Beispiel-Definitionen liber foldr
sum = foldr (+) O
product = foldr () 1
concat = foldr (++) [l -- merge list of lists into one list
xs ++ ys = foldr (:) ys xs
length = foldr (\ _ -> (+ 1)) 0
map f = foldr ((:) . f) []
all f = foldr ((&&) . f) True -- do all elements satisfy predicate?

RT et al. (IFI @ UIBK) Woche 8 5/27

Weitere Prelude-Funktionen fiir Listen

RT et al. (IFlI @ UIBK) Woche 8 7/27

Varianten von foldr

-- foldr from previous slide
foldr :: (@ -> b ->b) ->b -> [a] -> b
foldr f e [x_1, x_2, x.3] =x_1 “f° (x_2 “f° (x_3 “f° e))

-- foldr without starting element, only for non-empty lists
foldrl :: (a -> a -> a) -> [a] -> a
foldrl f [x_1, x_2, x.3] =x_1 “f° (x_2 “f° x_3)

-- application: maximum of list elements
maximum = foldrl max

-- foldl, apply function starting from the left
foldl :: (b ->a ->b) ->b -> [a] -> b
foldl f e [x_1, x_2, x.3] = ((e “f> x_1) “f° x_2) “f° x_3

-- application: reverse
reverse = foldl (flip (:)) []

RT et al. (IFl @ UIBK) Woche 8 6/27

Take-While, Drop-While

® takeWhile :: (a -> Bool) -> [a] -> [a] und
dropWhile :: (a -> Bool) -> [a] -> [al]
® takeWhile p xs nimmt Elemente von links von xs, solange p erfiillt ist
® dropWhile p xs entfernt Elemente von links von xs, solange p erfiillt ist
® Gleichheit: takeWhile p xs ++ dropWhile p xs = xs
e Kombinationen — effizientere Versionen der folgenden Definitionen
® splitAt :: Int -> [a]l -> ([al, [al)
splitAt n xs = (take n xs, drop n xs)
® span :: (a -> Bool) -> [a] -> ([a], [al)
span p xs = (takeWhile p xs, dropWhile p xs)

RT et al. (IFlI @ UIBK) Woche 8 8/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel Anwendung: Separiere Worter

e Aufgabe: Schreibe eine Funktion words ::
in Worter zerlegt

® Beispiel: words "I am fine. " = ["I", "am", "fine."]
® |mplementierung:
words s = case dropWhile (== ' ') s of
s []
sl -> let (w, s2) = span (/="' ') sl

in w : words s2

® Anmerkungen

nicht-triviale Rekursion auf Listen
words ist bereits vordefiniert

Zeilenumbriichen
lines :: String -> [String]
unlines :: [String] -> String

RT et al. (IFl @ UIBK) Woche 8

Anwendung: Priifung, ob eine Liste sortiert ist

isSorted :: Ord a => [a] -> Bool
isSorted xs = all id $§ zipWith (<=) xs (tail xs)
® id :: a -> a ist die Identitdts-Funktion id x = x;
die als “Pradikat” genutzt wird, ob ein Boolean wahr ist
® ($) ist der Anwendungs-Operator mit geringer Prizedenz, £ $ x = f x,
wird genutzt, um Klammern zu vermeiden
® Beispiel:
isSorted [1, 2, 5, 3]
= all id $ zipWith (=) [1, 2, 5, 3] [2, 5, 3]
= all id [1 <= 2, 2 <= 5, 5 <= 3]
= all id [True, True, False]
= id True && id True && id False && True
= False

RT et al. (IFl @ UIBK) Woche 8

unwords :: [String] -> String ist die Umkehrfunktion und fiigt Leerzeichen ein
dhnliche Funktionen zum Aufteilen an Zeilenumbriichen oder zum Einfiigen von

String -> [String], die eine Zeichenkette

9/27

11/27

Elementweise Verkniipfung Zweier Listen

® zipWith :: (a -> b -> ¢) -> [a]l -> [b] -> [c]
zipWith £ [z1,...,2p] [yi,..coynd = [0 "£7 y1s oo Zmingmn) £ Yminfmon}]
® die resultierende Liste hat die Lange der kiirzeren Eingabe-Liste
® obige Gleichung ist kein Haskell-Code, denken Sie selbst iiber die rekursive Definition nach
® Spezialisierung zip
-- () s a->b -> (a, b) is the pair constructor
zip :: [a] -> [b] -> [(a, b)]
zip = zipWith (,)
® Umkehrfunktion: unzip :: [(a, b)] -> ([a], [b])
® Beispiele
® zip [1, 2, 3] "ab" = [(1, 'a'), (2, ']
® unzip [(1, 'c'), (2, 'b'), (3, 'a")] = ([1, 2, 3], "cba")
® zipWith (x) [1, 2] [3, 4, 5] = [1*3, 2%4] = [3, 8]

RT et al. (IFl @ UIBK) Woche 8

Operator-Tabelle mit Priazedenzen

Prézedenz Operator Assoziativitat
9 ', . links(!!), rechts(.)
8 ST, Kk rechts
7 *, /, ~div” rechts
6 +, - links
5 D, rechts
4 ==, /=, <, <=, >, >= keine
3 && rechts
2 | rechts
1 >>, >>= links
0 $ rechts

® alle Operatoren =, ==, ** implementieren Potenzierung;
Unterschied liegt bei erlaubten Exponenten (N, Z, Q) und Typ der Basis

® Operatoren (>>) und (>>=) werden spater erlautert

RT et al. (IFl @ UIBK) Woche 8

10/27

12/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

List Comprehension

RT et al. (IFl @ UIBK) Woche 8

List Comprehension — Struktur

foozs=[x+y+ 2z |
x <- [0..20],
even x,
let y = x ¥ x,
y < 200,
Just z <- zs]

® cine List Comprehension hat die Form [e | Q] wobei

® ¢ ein Haskell Ausdruck ist, z.B., x + y + z, und
® (ein Qualifier ist, d.h., eine Komma-separierte Liste von:
® Generatoren der Form pat <- expr, wobei expr einen Listen-Typen hat,
z.B., x <- [0..20] oder Just z <- zs
e und spitere Teile des Qualifiers kénnen Variablen in pat nutzen
® Guards, d.h., Boolesche Ausdriicke, z.B., even x oder y < 200
® |okale Definitionen der Form let defs (kein inl);
e und spatere Teile des Qualifiers kdnnen Variables und Funktionen nutzen, die in defs
definiert wurden

wenn Q leer ist, schreibt man einfach [e]

RT et al. (IFl @ UIBK) Woche 8

13/27

15/27

RT et al. (IFI @ UIBK)

RT et al. (IFI @ UIBK)

List Comprehension

e List Comprehension ist vergleichbar mit Mengen-Schreibweise in der Mathematik
® prazise, lesbare Definition

® Summe der gerade Quadratzahlen bis 100: Y {z? | z € {0,...,100}, even(z)}
e Beispiele von List Comprehensions in Haskell

evenSquares100 = sum [x°2 | x <- [0 100], even x]

prime n = n > 2 & null [x | x <- [2 .. n - 1], n "mod” x == 0]

pairs n = [(i, j) | 1 <- [0..n], even i, j <- [0..i]]

> pairs 5
[€0,0),(2,0),(2,1),(2,2),(4,0),(4,1),(4,2),(4,3),(4,4)]

Woche 8

List Comprehension — Ubersetzung
[x+y | x<- [0..20], even x, let y = x * x, y < 200]
e |ist Comprehension hat Form [e | QJ], wobei Q eine Liste aus Guards, Generatoren und
lokalen Definitionen ist
® Semantik: List Comprehensions werden mit Hilfe von concatMap iibersetzt
(a -> [b]) -> [a] -> [b]
concatMap f = concat . map f

® Guards:
[e | b, Q] = if b then [e | Q] else []

concatMap ::

® |okale Definitionen:
[e | let defs, Q] = let defs in [e | Q]

® Generatoren fiir vollstiandige Pattern (z.B., Variable oder Tupel von Variablen):
[e | pat <- xs, Q] = concatMap (\ pat -> [e | Q]) xs

® Generatoren fiir den allgemeinen Fall:
[e | pat <- xs, Q] = concatMap
(\ x -> case x of { pat -> [e | Q]; _ ->[1 })

XS -- where x must be a fresh variable name
Woche 8

14/27

16/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

List Comprehension — Beispiel Ubersetzungen Beispiel Anwendung — Pythagoreische Tripel

® (z,y,2) ist Pythagoreisches Tripel gdw. 22 + y? = 22
e Aufgabe: finde alle Pythagoreischen Tripel in gegebenen Zahlenbereich
ptriple x y z = x72 + y~2 == z72
ptriples n = [(x,y,z) |
x <- [1..n], y <- [1..n], z <- [1..n], ptriple x y z]

o Ubersetzung

[e | b, Q] = if b then [e | Q] else []
[e | let defs, Q] = let defs in [e | Q]
[e | pat <- xs, Q] = concatMap (\ pat -> [e | Q]) xs
® Beispiele
[s | (s, g <- xs, g == 1]
= concatMap (\ (s, g) -> [s | g == 11) xs
= concatMap (\ (s, g) -> if g == 1 then [s] else []) xs

® es gibt Probleme mit Duplikaten wegen der Symmetrie
> ptriples 5
[(3,4,5),(4,3,5)]

e folgende Losung eliminiert Symmetrien, und ist auch effizienter

[y +z | x < xs, let y = x xx, z < [0 .. y]] priples n = [(xoy,2) |
= concatMap (\ x > [y +z | let y =x * x, z <- [0 .. y]]) xs x <- [1..n], y <- [x..n], z <- [y..nl, ptriple x y z]
= concatMap (\ x -> let y =x * x in [y + z | z <- [0 .. y]]) xs
= concatMap (\ x -> let y = x * x in > ptriples 5
concatMap (\ z -> [y + z]) [0 .. y]) xs [(3,4,5)]
RT et al. (IFI @ UIBK) Woche 8 17/27 RT et al. (IFI @ UIBK) Woche 8 18/27

Erstellung eines Kalenders
e Aufgabe: gegeben ein Monat und ein Jahr, erstelle einen Monats-Kalender

Beispiel: November 2025
Mo Tu We Th Fr Sa Su
1 2

3 4 5 6 7 8 9

Anwendung — Erstellung eines Monats-Kalenders
® Dekomposition liefert zwei Teil-Aufgaben

® Berechnungs-Phase (Monatsanfang, Schaltjahre, ...)
® Layout und Darstellung

e hier: Fokus auf Layout und Darstellung, Berechnungs-Phase wird bereitgestellt

type Month = Int
type Year = Int
type Dayname = Int -- Mo =0, Tu=1, ..., So =6

-- monthInfo returns name of 1st day in m. and number of days in m.
monthInfo :: Month -> Year -> (Dayname, Int)

RT et al. (IFI @ UIBK) Woche 8 19/27 RT et al. (IFI @ UIBK) Woche 8 20/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Der Picture Typ
e stelle Kalender als Bild dar, d.h., Liste von Zeilen,
wobei jede Zeile eine Liste von Zeichen ist
® Reprasentation in Haskell
type Height = Int
type Width = Int
type Picture = (Height, Width, [[Char]])
® betrachte Bild (h, w, rs)
e rs :: [[Char]] - “Liste von Zeilen”
® |nvariante 1: L3nge von rs ist genau die Hohe h
e Invariante 2: alle Zeilen (also die Elemente von rs) haben Lange w
® Erzeugung eines Bildes aus einer einzigen Zeile

row :: String -> Picture

row r = (1, length r, [r])

RT et al. (IFI @ UIBK)

Verschmelzen von nebeneinander stehenden Bildern

DB--[3

Verschmelzen von zwei benachbarten Bildern

Picture -> Picture -> Picture

(h, w, css) “beside” (h', w', css')
| h ==n' = (h, w + w', zipWith (++) css css')
| otherwise = error "beside: different heights"

beside ::

Verschmelzen mehrerer benachbarter Bilder

spread :: [Picture] -> Picture
spread = foldrl beside

Kombination von Stapeln und Verschmelzen

tile :: [[Picturel] -> Picture -- [[picl,pic2,pic3], -> piclpic2pic3
tile = stack . map spread -- [picé4,picb,pic6]] -> pic4picbpic6
RT et al. (IFlI @ UIBK) Woche 8 23/27

Woche 8 21/27

RT et al. (IFI @ UIBK)

Stapeln von Bildern

N
N

Picture -> Picture -> Picture

(h, w, css) “above™ (h', w', css')

=(h +h', w, css ++ css')

| otherwise = error "above: different widths"

D>>

Stapeln zweier Bilder

above ::
| w == w'

Stapeln mehrere Bilder

stack :: [Picture] -> Picture
stack = foldrl above

RT et al. (IFl @ UIBK) Woche 8
Erstellung von vielen Tages-Bildern
® wie erwahnt, nehmen wir an, dass folgende Funktion existiert
monthInfo :: Month -> Year -> (Dayname, Int) -- (first day, nr of days)
-- daynames are O (Monday), 1 (Tuesday),
daysOfMonth :: Month -> Year -> [Picture] -- 42 small pictures of size 1*3
daysOfMonth m y =
map (row . rjustify 3 . pic) [1 - d .. numSlots - d]
where

(d, t) = monthInfo m y
numSlots = 6 * 7 -- max 6 weeks * 7 days per week
pic n = if 1 <= n && n <= t then show n else ""

rjustify :: Int -> String -> String
rjustify n xs
| 1 <= n = replicate (n - 1) ' ' ++ xs

| otherwise = error ("text (" ++ xs ++ ") too long")
where 1 = length xs

Woche 8

22/27

24/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Ausgabe eines Monats

. ® transformiere Picture in Strin,
Zusammenbau des Gesamt-Bildes &

showPic :: Picture -> String
® daysOfMonth liefert 42 Bilder (der Grole 1 x 3) showPic (_, _, css) = unlines css
® bendtigt: Layout + Kopfzeile fiir das Gesamt-Bild (der GroRe 7 x 21) ® liefere Resultat von month m y als String
month :: Month -> Year -> Picture showMonth :: Month -> Year -> String
month m y = above weekdays . tile . groupsO0fSize 7 $ daysOfMonth m y showMonth m y = showPic $ month m y
where weekdays = row " Mo Tu We Th Fr Sa Su" ® Anzeige des Strings mittels putStr :: String -> I0 (),
damit Zeilenumbriiche als solche ausgegeben werden
-- groups0fSize splits list into sublists of given length > showMonth 11 2025

" Mo Tu We Th Fr Sa Su\n 1 2\n 3 ..."
> putStr $ showMonth 11 2025
Mo Tu We Th Fr Sa Su
1 2
where (ys, zs) = splitAt n xs 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

groups0fSize :: Int -> [a] -> [[a]]
groups0fSize n [] = []
groups0fSize n xs = ys : groups0fSize n zs

RT et al. (IFI @ UIBK) Woche 8 25/27 RT et al. (IFI @ UIBK) Woche 8 26/27

Zusammenfassung

® vielseite Funktion fiir Listen: foldr, foldl, foldr1

e weitere nitzliche Funktionen

take, drop, splitAt, -- split list at position
takeWhile, dropWhile, span, -- split list via predicate
zipWith, zip, unzip, -- (un)zip two lists
concatMap, -- map with concat combined
€)) -- application operator

® Tabelle der Operatoren mit Prazedenzen
e List Comprehension

® prizise Beschreibung von Listen, dhnlich zu Mengen-Schreibweise in der Mathematik
® wird in normale Ausdriicke mit Hilfe von concatMap iibersetzt
® Beispiel:

[(x,y,2) | x <- [1..n], y <- [x..n], z <- [y..n], x°2 + y~2 == z~2]

e Anwendung: Monats-Kalender

RT et al. (IFlI @ UIBK) Woche 8 27/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Fold-Funktionen für Listen
	
	Weitere Prelude-Funktionen für Listen
	
	List Comprehension
	
	Anwendung – Erstellung eines Monats-Kalenders

