
WS 2025/2026

Funktionale Programming
Woche 9 – Generisches Fold, Sichtbarkeit, Module

René Thiemann
Philipp Dablander Joshua Ocker Michael Schaper Lilly Schönherr Adam Pescoller

Institut für Informatik

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Letzte Vorlesung – Predule Funktionen
foldr :: (a -> b -> b) -> b -> [a] -> b -- also: foldr1, foldl

take, drop :: Int -> [a] -> [a]
splitAt :: Int -> [a] -> ([a], [a])

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]
span :: (a -> Bool) -> [a] -> ([a], [a])

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zip :: [a] -> [b] -> [(a, b)]
unzip :: [(a, b)] -> ([a], [b])

words, lines :: String -> [String]
unwords, unlines :: [String] -> String

concatMap :: (a -> [b]) -> [a] -> [b]

($) :: (a -> b) -> a -> b

RT et al. (IFI @ UIBK) Woche 9 2/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Letzte Vorlesung – List Comprehensions
• List Comprehension

• Gestalt: [(x,y,z) | x <- [1..n], let y = x ^ 2, y > 100, Just z <- f y]
• besteht aus Guards, Generatoren und lokalen Definitionen
• Übersetzung mittels concatMap

• Beispiele

prime n = n >= 2 && null [x | x <- [2 .. n - 1], n `mod` x == 0]

ptriples n = [(x,y,z) |
x <- [1..n], y <- [x..n], z <- [y..n], x^2 + y^2 == z^2]

RT et al. (IFI @ UIBK) Woche 9 3/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Weitere Beispiel-Anwendungen: Sortieren und Duplikat-Entfernung
• Beispiel für List Comprehension: Quicksort

qsort [] = []
qsort (x : xs) =

qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]

• Beispiel für foldr und List Comprehension: entfernen von Duplikaten

remdups = foldr (\ x xs -> [x | not $ x `elem` xs] ++ xs) []

RT et al. (IFI @ UIBK) Woche 9 4/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Fold für beliebige Datentypen

RT et al. (IFI @ UIBK) Woche 9 5/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Fold für beliebige Datentypen
• betrachten Sie foldr f e

• Idee: ersetze [] durch e und jedes (:) durch f
• generalisiere diese Idee für ein fold auf beliebigen Datentypen

fold ersetzt jeden n-stelligen Konstruktor durch eine n-stellige Funktion

• Beispiele (foldMaybe heißt maybe in Prelude und foldEither heißt either)
foldMaybe :: b -> (a -> b) -> Maybe a -> b
foldMaybe e f (Just x) = f x
foldMaybe e f Nothing = e

foldEither :: (a -> c) -> (b -> c) -> Either a b -> c
foldEither f g (Left x) = f x
foldEither f g (Right y) = g y

RT et al. (IFI @ UIBK) Woche 9 6/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel: Fold für arithmetische Ausdrücke
data Expr v a = Number a | Var v | Plus (Expr v a) (Expr v a)

foldExpr :: (a -> b) -> (v -> b) -> (b -> b -> b) -> Expr v a -> b
foldExpr fn _ _ (Number x) = fn x
foldExpr _ fv _ (Var v) = fv v
foldExpr fn fv fp (Plus e1 e2) = fp (foldExpr fn fv fp e1) (foldExpr fn fv fp e2)

eval :: Num a => (v -> a) -> Expr v a -> a
eval v = foldExpr id v (+)

variables :: Expr v a -> [v]
variables = foldExpr (const []) (\ v -> [v]) (++) -- const x = \ _ -> x

substitute :: (v -> Expr w a) -> Expr v a -> Expr w a
substitute s = foldExpr Number s Plus

renameVars :: (v -> w) -> Expr v a -> Expr w a
renameVars r = substitute (Var . r)

countAdditions :: Expr v a -> Int
countAdditions = foldExpr (const 0) (const 0) (\ n m -> n + m + 1)

RT et al. (IFI @ UIBK) Woche 9 7/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Zusammenfassung zu Fold
• eine fold-Funktion kann für viele Datentypen definiert werden

fold ersetzt Konstruktoren durch Funktionen
• nachdem fold für einen Datentyp definiert wurde, können viele rekursive Algorithmen

durch Aufrufe von fold ersetzt werden
• neben dem hier vorgestellten fold gibt es auch die Einschränkung auf binäre folds,

bei denen man alle Elemente (in einer Liste, einem Baum, etc.) binär verknüpft;
Details: siehe Übungsblatt 8 und Typklasse Foldable

Beispiel: der Typ von foldr ist nicht auf Listen beschränkt
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr :: (a -> b -> b) -> b -> Maybe a -> b
foldr :: (a -> b -> b) -> b -> Either a a -> b

RT et al. (IFI @ UIBK) Woche 9 8/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Sichtbarkeit

RT et al. (IFI @ UIBK) Woche 9 9/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scope
• betrachten Sie folgendes Programm (1 Compilier-Fehler)
radius = 15
area radius = pi^2 * radius

squares x = [x^2 | x <- [0 .. x]]

length [] = 0
length (_:xs) = 1 + length xs

data Rat = Rat Integer Integer
createRat n d = normalize $ Rat n d where normalize ... = ...

• Sichtbarkeit
• es benötigt Regeln, um Mehrdeutigkeit aufzulösen
• die Sichtbarkeits-Regeln definieren, welche Namen von Variablen, Funktionen, Typen, . . . an

welcher Programm-Position sichtbar sind
• Sichtbarkeit kann kontrolliert werden, um größere Programme besser zu strukturieren

(Import und Export, interne und externe Funktionalität)
RT et al. (IFI @ UIBK) Woche 9 10/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Sichtbarkeit von Namen (von Variablen, Funktionen, . . .)
radius = 15
area radius = pi^2 * radius
• wir nehmen an, dass name_i im wirklichen Programm nur name ist; das zusätzliche _i

wird in den Folien benutzt, um unterschiedliche Vorkommen von name zu unterscheiden
• umbenanntes Haskell-Programm
radius_1 = 15
area_1 radius_2 = pi_1^2 * radius_3

• Sichtbarkeit und Bezug von Namen in rechten Seiten von definierenden Gleichungen
• bezieht sich radius_3 auf radius_2 oder radius_1?
• worauf bezieht sich pi_1?

• Daumenregel für die Suche nach dem Bezug für name: man sucht von innen nach außen
• stellen Sie sich den abstrakten Syntax Baum eines Haskell-Ausdrucks vor
• immer wenn man ein let, where, case, oder eine Funktions-Definition sieht, in der name

gebunden wird, dann ist der Bezug dieser lokale Name
• wenn nichts gefunden wird, dann suche nach einer globalen Funktion name, auch in Prelude

• Beispiel: radius_3 bezieht sich auf radius_2, pi_1 auf Prelude.pi
RT et al. (IFI @ UIBK) Woche 9 11/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lokale Namen in Case-Ausdrücken
• betrachte case expr of { pat1 -> expr1; ...; patN -> exprN }

• jedes patI bindet die Variablen, die in patI vorkommen
• diese Variablen können in exprI genutzt werden
• diese neu gebundenen Variablen in patI binden stärken als alle zuvor gebundenen Variablen

• Beispiel Haskell Ausdruck
case xs_1 of -- renamed Haskell expression

[] -> xs_2
(x_1 : xs_3) -> case xs_4 ++ ys_1 of

[] -> ys_2
(x_2 : xs_5) -> x_3 : xs_6 ++ ys_3

• x_3 bezieht sich auf x_2 (da x_2 weiter innen ist als x_1)
• xs_6 bezieht sich auf xs_5 (da xs_5 weiter innen ist als xs_3)
• xs_4 bezieht sich auf xs_3
• xs_1, xs_2, ys_1, ys_2, und ys_3 sind in diesem Ausdruck nicht gebunden

(Bezüge müssen weiter außen hergestellt werden)

RT et al. (IFI @ UIBK) Woche 9 12/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lokale Namen in Let-Ausdrücken
let {

pat1 = expr1; ...; patN = exprN;
f1 pats1 = fexpr1; ...; fM patsM = fexprM

} in expr
• alle Variablen in pat1 . . . patN und alle Namen f1 . . . fM sind gebunden
• diese können in expr, in exprI und in jedem fexprJ genutzt werden
• Variablen in patsJ binden am stärksten, aber nur in fexprJ

• let (x_1, y_1) = (y_2 + 1, 5) -- renamed Haskell expression
f_1 x_2 = x_3 + g_1 y_3 id_1
g_2 y_4 f_2 = f_3 $ g_3 x_4 f_4

in (f_5, g_4, x_5, y_5)
• y_2, y_3 und y_5 beziehen sich auf y_1
• x_3 bezieht sich auf x_2 weil x_2 stärker bindet als x_1
• x_4 und x_5 beziehen sich auf x_1
• f_3 und f_4 beziehen sich auf f_2 da f_2 stärker bindet als f_1
• g_1, g_3 und g_4 beziehen sich auf g_2
• f_5 bezieht sich auf f_1
• id_1 ist nicht in diesem Ausdruck gebunden

RT et al. (IFI @ UIBK) Woche 9 13/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Globale Funktions-Definitionen
• betrachte definierende Gleichung fname pats = expr

• alle Variables in pats sind lokal gebunden und können in expr genutzt werden
• fname ist nicht lokal gebunden, wird aber in eine globale Namens-Tabelle eingetragen
• alle Namen in expr ohne lokalen Bezug werden in der globalen Namens-Tabelle gesucht
• die Suche in der globalen Tabelle muss ein eindeutiges Ergebnis liefern

• radius_1 = 15 -- renamed Haskell program
area_2 radius_2 = pi_1^2 * radius_3
length_1 [] = 0
length_2 (_:xs_1) = 1 + length_3 xs_2

• radius_1, area_2 und length_1/2 werden in globaler Tabelle gespeichert
• globale Tabelle hat Mehrdeutigkeit: length_1/2 vs. Prelude.length
• pi_1 ist nicht lokal gebunden und hat daher den Bezug zu Prelude.pi
• radius_3 bezieht sich lokal auf radius_2 und nicht global auf radius_1
• xs_2 bezieht sich auf xs_1
• length_3 ist nicht lokal gebunden, und führt wegen der Mehrdeutigkeit zu einem

Compilier-Fehler

RT et al. (IFI @ UIBK) Woche 9 14/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Globale vs. Lokale Definition
length :: [a] -> Int

-- choose definition 1,
length = foldr (const (1 +)) 0

-- definition 2,
length =

let { length [] = 0; length (x : xs) = 1 + length xs }
in length

-- or definition 3
length [] = 0
length (_ : xs) = 1 + length xs
• Definitionen 1 and 2 compilieren, weil sich kein length in einer rechten Seite befinden,

bei dem Suche in globaler Tabelle erforderlich ist
• Definition 3 compiliert nicht
• Definitionen 1 und 2 führen allerdings zu Mehrdeutigkeiten in der globalen Tabelle
→ betrachte Haskells Modul-System

RT et al. (IFI @ UIBK) Woche 9 15/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Module

RT et al. (IFI @ UIBK) Woche 9 16/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Module
• bislang

• ein Haskell Programm besteht aus einer Datei, die mehrere Definitionen enthalten kann
• alle globalen Definitionen sind für AnwenderIn sichtbar

-- functions on rational numbers
data Rat = Rat Integer Integer -- internal definition of datatype
normalize (Rat n d) = ... -- internal function
createRat n d = normalize $ Rat n d -- function for external usage
...
-- application: approximate pi to a certain precision
piApprox :: Integer -> Rat
piApprox p = ...

• Motivation für Module
• strukturiere Programme in kleinere wiederverwendbare Teile, ohne dabei Kopien zu erstellen
• unterscheide zwischen internen und externen Definitionen

• klare Schnittstelle für AnwenderInnen des Moduls
• stelle Invarianten sicher
• verbessere Wartbarkeit der Programme

RT et al. (IFI @ UIBK) Woche 9 17/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Module in Haskell

-- first line of file ModuleName.hs
module ModuleName(exportList) where
-- standard Haskell type and function definitions

• jeder ModuleName beginnt mit einem Großbuchstaben
• jedes Modul wird normalerweise in Datei ModuleName.hs gespeichert
• wenn eine Haskell-Datei keine module Deklaration enthält, fügt ghci module Main where

zu Beginn ein
• exportList ist eine Komma-getrennte Liste von Funktions-Namen und Typ-Namen,

nur diese Funktionen und Typen werden für AnwenderInnen des Moduls sichtbar
• wenn (exportList) fehlt, dann wird alles exportiert
• für Typen gibt es unterschiedliche Grade des Exports

• module Name(Type) exportiert den Typ Type, aber nicht die Konstruktoren von Type
• module Name(Type(..)) exportiert Typ Type und die Konstruktoren

RT et al. (IFI @ UIBK) Woche 9 18/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel: Rationale Zahlen
module Rat(Rat, createRat, numerator, denominator) where
data Rat = Rat Integer Integer
normalize = ... -- cancels fractions: 2 / 4 -> 1 / 2
createRat n d = normalize $ Rat n d
numerator (Rat n d) = n
...
instance Num Rat where ...
instance Show Rat where ...

• externe AnwenderInnen wissen, dass ein Typ Rat existiert
• sie sehen Funktionen createRat, numerator and denominator
• sie haben keinen Zugriff auf Konstruktor Rat und können daher nicht Ausdrücke wie
Rat 2 4 bilden, die eine Invariante verletzen, z.B. gekürzte Brüche

• sie können Berechnungen mit rationalen Zahlen durchführen, da Sie Zugriff auf (+) der
Klasse Num haben, insbesondere auch für die Num-Instanz Rat

• ebenso können sie rationale Zahlen mittels show anzeigen
RT et al. (IFI @ UIBK) Woche 9 19/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel: Rationale Zahlen – Verbesserte Implementierung
da externe Nutzer kein Ausdrücke wie Rat 2 4 bilden können, können wir davon ausgehen,
dass alle Funktionen nur normalisierte rationale Zahlen entgegennehmen, unter der Annahme,
dass die eigene Implementierung in diesem Modul nur normalisierte Brüche generiert
module Rat(Rat, createRat, numerator, denominator) where
data Rat = Rat Integer Integer

deriving Eq -- sound because of invariant

instance Show Rat where -- no normalization required
show (Rat n d) = if d == 1 then show n else show n ++ "/" ++ show d

normalize = ...
createRat n d = normalize $ Rat n d

instance Num Rat where
-- for negation no further normalization required
negate (Rat n d) = Rat (- n) d

-- multiplication requires normalization to obey invariant
Rat n1 d1 * Rat n2 d2 = createRat (n1 * n2) (d1 * d2)

RT et al. (IFI @ UIBK) Woche 9 20/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel Anwendung
module PiApprox(piApprox, Rat) where
-- Prelude is implicitly imported

-- import everything that is exported by module Rat
import Rat

-- or only import certain parts
import Rat(Rat, createRat)

-- import declarations must be before other definitions
piApprox :: Integer -> Rat
piApprox n = let initApprox = createRat 314 100 in ...

• es kann mehrere import Deklarationen geben
• importierte Namen werden nicht automatisch exportiert

• wenn man PiApprox importiert, wird Rat sichtbar, aber nicht createRat
• um Rat und PiApprox zu verwenden, müssen beide Module importiert werden:
import PiApprox
import Rat

RT et al. (IFI @ UIBK) Woche 9 21/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Umgang mit Mehrdeutigkeiten
-- Foo.hs
module Foo where pi = 3.1415

-- Problem.hs
module Problem where

import Foo

pi = 3.1415
area r = pi * r^2
• Problem: Worauf bezieht sich pi in Definition von area? (globaler Name)
• globale Tabelle ist mehrdeutig: pi ist definiert in Prelude, Foo, und in Problem
• Mehrdeutigkeit bleibt, auch wenn die Definitionen identisch sind
• eine Lösung wird durch Qualifier geboten: Mehrdeutigkeit manuell auflösen durch

Verwendung von ModuleName.name anstelle von name
• definiere area r = Problem.pi * r^2 in Problem.hs

(oder area r = Prelude.pi * r^2)
RT et al. (IFI @ UIBK) Woche 9 22/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Qualifizierte Importe

module Foo where pi = 3.1415
module SomeLongModuleName where fun x = x + x

module ExampleQualifiedImports where

-- all imports of Foo have to use qualifier
import qualified Foo
-- result: no ambiguity on unqualified "pi"

import qualified SomeLongModuleName as S
-- "as"-syntax changes name of qualifier

area r = pi * r^2
myfun x = S.fun (x * x)

RT et al. (IFI @ UIBK) Woche 9 23/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Zusammenfassung
• Sichtbarkeits-Regeln klären den Bezug von Funktions- und Variablen-Namen
• größere Programme können in Module strukturiert werden

• explizite export-Listen dienen der Unterscheidung von interner und externer Funktionalität
• Vorteil: Änderungen der internen Teile eines Moduls M sind möglich, ohne dabei den Code

anpassen zu müssen, der M importiert, solange die exportierten Funktionen die gleichen
Namen und Typen haben

• wenn kein Modul angegeben wird, wird Main als Modul-Name genutzt
• weitere Informationen zu Modulen
https://www.haskell.org/onlinereport/haskell2010/haskellch5.html

RT et al. (IFI @ UIBK) Woche 9 24/24

https://www.haskell.org/onlinereport/haskell2010/haskellch5.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Fold für beliebige Datentypen
	
	Sichtbarkeit
	
	Module

