M universitat WS 2025/2026

™ innsbruck

Funktionale Programming
Woche 9 — Generisches Fold, Sichtbarkeit, Module

René Thiemann
Philipp Dablander Joshua Ocker Michael Schaper Lilly Schonherr Adam Pescoller

Institut fiir Informatik

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Letzte Vorlesung — Predule Funktionen
foldr :: (a -=>b ->Db) ->b -> [a] -> b -- also: foldrl, foldl

take, drop :: Int -> [a] -> [a]
splitAt :: Int -> [a] -> ([a], [al)

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]
span :: (a -> Bool) -> [a] -> ([a], [al)

zipWith :: (a -=> b -> ¢) -> [a] -> [b] -> [c]
zip :: [a]l -> [b] -> [(a, b)]
unzip :: [(a, b)] -> ([al, [bl)

words, lines :: String -> [String]
unwords, unlines :: [String] -> String

concatMap :: (a -> [b]) -> [a] -> [b]

($) :: (a ->b) ->a ->0bD

RT et al. (IFI @ UIBK) Woche 9 2/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Letzte Vorlesung — List Comprehensions
e List Comprehension
® Gestalt: [(x,y,z) | x <- [1..n], let y =x =~ 2, y > 100, Just z <- f y]
° l_)_esteht aus Guards, Generatoren und lokalen Definitionen
® Ubersetzung mittels concatMap
® Beispiele
prime n = n > 2 && null [x | x <- [2 .. n - 1], n "mod” x == 0]

ptriples n = [(x,y,z) |
x <- [1..n], v <- [x..n], z <- [y..n], x"2 + y~2 == z~2]

RT et al. (IFI @ UIBK) Woche 9

3/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Weitere Beispiel-Anwendungen: Sortieren und Duplikat-Entfernung

e Beispiel fiir List Comprehension: Quicksort

gsort [1 = []
gsort (x : xs) =
gsort [y | y <- xs, y < x] ++ [x] ++ gsort [y | y <- xs, y >= x]

e Beispiel fiir foldr und List Comprehension: entfernen von Duplikaten

remdups = foldr (\ x xs -> [x | not $§ x “elem™ xs] ++ xs) []

RT et al. (IFI @ UIBK) Woche 9 4/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Fold fiir beliebige Datentypen

RT et al. (IFI @ UIBK) Woche 9 5/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Fold fiir beliebige Datentypen

® betrachten Sie foldr f e

® |dee: ersetze [] durch e und jedes (:) durch £
® generalisiere diese Idee fiir ein fold auf beliebigen Datentypen

fold ersetzt jeden n-stelligen Konstruktor durch eine n-stellige Funktion

* Beispiele (foldMaybe heilt maybe in Prelude und foldEither heilt either)
foldMaybe :: b -> (a -> b) -> Maybe a -> b
foldMaybe e f (Just x) = f x
foldMaybe e f Nothing = e

foldEither :: (a -> ¢) -> (b -> ¢) -> Either a b -> ¢
foldEither f g (Left x) = f x
foldEither f g (Right y) = gy

RT et al. (IFI @ UIBK) Woche 9 6/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel: Fold fiir arithmetische Ausdriicke

data Expr v a = Number a | Var v | Plus (Expr v a) (Expr v a)

foldExpr :: (a ->b) -> (v ->b) -> (b -=> b ->Db) ->Expr va->b
foldExpr fn _ _ (Number x) = fn x
foldExpr _ fv _ (Var v) = fv v

foldExpr fn fv fp (Plus el e2) = fp (foldExpr fn fv fp el) (foldExpr fn fv fp e2)

eval :: Num a => (v -> a) -> Expr v a -> a
eval v = foldExpr id v (+)

variables :: Expr v a -> [v]
variables = foldExpr (const [1) (\ v -> [v]) (#+) -- const x =\ _ -> x
substitute :: (v -> Expr w a) -> Expr v a -> Expr w a

substitute s = foldExpr Number s Plus

renameVars :: (v -> w) -> Expr v a -> Expr w a
renameVars r = substitute (Var . r)

countAdditions :: Expr v a -> Int

countAdditions = foldExpr (const 0) (const 0) (\nm ->n +m + 1)
RT et al. (IF1 @ UIBK) Woche 9 7/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Zusammenfassung zu Fold

e cine fold-Funktion kann fiir viele Datentypen definiert werden
fold ersetzt Konstruktoren durch Funktionen

e nachdem fold fiir einen Datentyp definiert wurde, kénnen viele rekursive Algorithmen
durch Aufrufe von fold ersetzt werden

® neben dem hier vorgestellten fold gibt es auch die Einschrankung auf binare folds,
bei denen man alle Elemente (in einer Liste, einem Baum, etc.) binar verkniipft;
Details: sieche Ubungsblatt 8 und Typklasse Foldable

Beispiel: der Typ von foldr ist nicht auf Listen beschrankt
foldr :: Foldable t => (a -> b ->b) ->b ->t a ->b
foldr :: (a ->b ->b) ->b -> [a] -> b

foldr :: (a -> b -> b) -> b -> Maybe a -> b

foldr :: (a -> b -> b) -> b -> Either a a -> b

RT et al. (IF1 @ UIBK) Woche 9 8/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Sichtbarkeit

RT et al. (IFI @ UIBK) Woche 9 9/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Scope
® betrachten Sie folgendes Programm (1 Compilier-Fehler)
radius = 15
area radius = pi~2 * radius

squares x = [x"2 | x <- [0 .. x]]

length []
length (_:xs) = 1 + length xs

data Rat = Rat Integer Integer
createRat n d = normalize $ Rat n d where normalize

e Sichtbarkeit

® es bendtigt Regeln, um Mehrdeutigkeit aufzuldsen

o die Sichtbarkeits-Regeln definieren, welche Namen von Variablen, Funktionen, Typen, ...an
welcher Programm-Position sichtbar sind

® Sichtbarkeit kann kontrolliert werden, um groBere Programme besser zu strukturieren

(Import und Export, interne und externe Funktionalitit)
RT et al. (IFI @ UIBK) Woche 9 10/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Sichtbarkeit von Namen (von Variablen, Funktionen, ...)

radius = 15
area radius = pi~2 * radius

e wir nehmen an, dass name_i im wirklichen Programm nur name ist; das zusitzliche _i
wird in den Folien benutzt, um unterschiedliche Vorkommen von name zu unterscheiden
e umbenanntes Haskell-Programm
radius_1 = 15
area_1 radius_2 = pi_172 * radius_3

® Sichtbarkeit und Bezug von Namen in rechten Seiten von definierenden Gleichungen
® bezieht sich radius_3 auf radius_2 oder radius_17
® worauf bezieht sich pi_17?
® Daumenregel fiir die Suche nach dem Bezug fiir name: man sucht von innen nach aulen

® stellen Sie sich den abstrakten Syntax Baum eines Haskell-Ausdrucks vor

® immer wenn man ein let, where, case, oder eine Funktions-Definition sieht, in der name
gebunden wird, dann ist der Bezug dieser lokale Name

® wenn nichts gefunden wird, dann suche nach einer globalen Funktion name, auch in Prelude

® Beispiel: radius_3 bezieht sich auf radius_2, pi_1 auf Prelude.pi
RT et al. (IFI @ UIBK) Woche 9 11/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lokale Namen in Case-Ausdriicken

® betrachte case expr of { patl -> exprl; ...; patN -> exprN }

® jedes patI bindet die Variablen, die in patI vorkommen
® diese Variablen kénnen in exprI genutzt werden
® diese neu gebundenen Variablen in patI binden stdrken als alle zuvor gebundenen Variablen

e Beispiel Haskell Ausdruck

case xs_1 of -- renamed Haskell expression
[l -> xs_2
(x_1 : xs_3) -> case xs_4 ++ ys_1 of
1 ->ys_2

(x_2 : xs_5) -> x.3 : xs_6 ++ ys_3
x_3 bezieht sich auf x_2 (da x_2 weiter innen ist als x_1)
xs_6 bezieht sich auf xs_5 (da xs_5 weiter innen ist als xs_3)
xs_4 bezieht sich auf xs_3
xs_1, xs_2, ys_1, ys_2, und ys_3 sind in diesem Ausdruck nicht gebunden
(Beziige miissen weiter auRen hergestellt werden)

RT et al. (IFI @ UIBK) Woche 9 12/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lokale Namen in Let-Ausdriicken

let {

patl = exprl; ...; patN = exprN;

f1 patsl = fexprl; ...; fM patsM = fexprM
} in expr

® alle Variablen in pat1 ...patl und alle Namen f1 ...fM sind gebunden
® diese kdnnen in expr, in exprI und in jedem fexprJ genutzt werden
® Variablen in patsJ binden am stirksten, aber nur in fexprJ
e let (x_1, y_1) = (y_2 + 1, 5) -- renamed Haskell expression
f1x2=x3+g.1y.3id.1
g2y 4f2=Ff38$g3x4fid
in (£_5, g_4, x_5, y_b)
y_2, y_3 und y_5 beziehen sich auf y_1
x_3 bezieht sich auf x_2 weil x_2 stérker bindet als x_1
%x_4 und x_5 beziehen sich auf x_1
f_3 und f_4 beziehen sich auf £_2 da £_2 stdrker bindet als £_1
g_1, g_3 und g_4 beziehen sich auf g_2
f_5 bezieht sich auf £_1

id_1 ist nicht in diesem Ausdruck gebunden
RT et al. (IF1 @ UIBR) Woche 9

13/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Globale Funktions-Definitionen

® betrachte definierende Gleichung fname pats = expr

® alle Variables in pats sind lokal gebunden und kdnnen in expr genutzt werden

fname ist nicht lokal gebunden, wird aber in eine globale Namens-Tabelle eingetragen
alle Namen in expr ohne lokalen Bezug werden in der globalen Namens-Tabelle gesucht
die Suche in der globalen Tabelle muss ein eindeutiges Ergebnis liefern

e radius_1 = 15 -- renamed Haskell program

area_2 radius_2 = pi_172 * radius_3

length_1 [1 =0

length_2 (_:xs_1) = 1 + length_3 xs_2

® radius_1, area_2 und length_1/2 werden in globaler Tabelle gespeichert

globale Tabelle hat Mehrdeutigkeit: length_1/2 vs. Prelude.length
pi_1 ist nicht lokal gebunden und hat daher den Bezug zu Prelude.pi
radius_3 bezieht sich lokal auf radius_2 und nicht global auf radius_1
xs_2 bezieht sich auf xs_1
length_3 ist nicht lokal gebunden, und fiihrt wegen der Mehrdeutigkeit zu einem
Compilier-Fehler

RT et al. (IFI @ UIBK) Woche 9 14/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Globale vs. Lokale Definition
length :: [a] -> Int

-- choose definition 1,
length = foldr (const (1 +)) O

-- definition 2,
length =
let { length [] = 0; length (x : xs) = 1 + length xs }
in length
-- or definition 3
length [] = 0
length (_ : xs) = 1 + length xs
e Definitionen 1 and 2 compilieren, weil sich kein length in einer rechten Seite befinden,
bei dem Suche in globaler Tabelle erforderlich ist
e Definition 3 compiliert nicht

e Definitionen 1 und 2 fiihren allerdings zu Mehrdeutigkeiten in der globalen Tabelle

— betrachte Haskells Modul-System
RT et al. (IFI @ UIBK) Woche 9 15/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Module

RT et al. (IFI @ UIBK) Woche 9 16/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Module

e bislang
® ein Haskell Programm besteht aus einer Datei, die mehrere Definitionen enthalten kann
® alle globalen Definitionen sind fiir Anwenderln sichtbar

-- functions on rational numbers

data Rat = Rat Integer Integer -- internal definition of datatype
normalize (Rat n d) = ... -- internal function
createRat n d = normalize $ Rat n d -- function for external usage

-- application: approximate pi to a certain precision
piApprox :: Integer -> Rat
piApprox p =
e Motivation fiir Module
® strukturiere Programme in kleinere wiederverwendbare Teile, ohne dabei Kopien zu erstellen
® unterscheide zwischen internen und externen Definitionen
® klare Schnittstelle fiir Anwenderlnnen des Moduls

® stelle Invarianten sicher
® verbessere Wartbarkeit der Programme

RT et al. (IFI @ UIBK) Woche 9 17/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Module in Haskell

-- first line of file ModuleName.hs
module ModuleName (exportlList) where
-- standard Haskell type and function definitions

RT et al.

jeder ModuleName beginnt mit einem GroBbuchstaben

jedes Modul wird normalerweise in Datei ModuleName.hs gespeichert

wenn eine Haskell-Datei keine module Deklaration enthalt, fligt ghci module Main where
zu Beginn ein

exportList ist eine Komma-getrennte Liste von Funktions-Namen und Typ-Namen,

nur diese Funktionen und Typen werden fiir Anwenderlnnen des Moduls sichtbar

wenn (exportList) fehlt, dann wird alles exportiert

fiir Typen gibt es unterschiedliche Grade des Exports

® module Name(Type) exportiert den Typ Type, aber nicht die Konstruktoren von Type
® module Name(Type(..)) exportiert Typ Type und die Konstruktoren

(IF1 @ UIBK) Woche 9 18/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel: Rationale Zahlen

module Rat(Rat, createRat, numerator, denominator) where
data Rat = Rat Integer Integer

normalize = ... -- cancels fractions: 2 / 4 -> 1 / 2
createRat n d = normalize $ Rat n d

numerator (Rat n d) = n

instance Num Rat where
instance Show Rat where

e externe Anwenderlnnen wissen, dass ein Typ Rat existiert
® sie sehen Funktionen createRat, numerator and denominator

® sie haben keinen Zugriff auf Konstruktor Rat und kdnnen daher nicht Ausdriicke wie
Rat 2 4 bilden, die eine Invariante verletzen, z.B. gekiirzte Briiche

® sie konnen Berechnungen mit rationalen Zahlen durchfiihren, da Sie Zugriff auf (+) der
Klasse Num haben, insbesondere auch fiir die Num-Instanz Rat

® ebenso kdnnen sie rationale Zahlen mittels show anzeigen
RT et al. (IFI @ UIBK) Woche 9 19/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel: Rationale Zahlen — Verbesserte Implementierung

da externe Nutzer kein Ausdriicke wie Rat 2 4 bilden kdnnen, kénnen wir davon ausgehen,
dass alle Funktionen nur normalisierte rationale Zahlen entgegennehmen, unter der Annahme,
dass die eigene Implementierung in diesem Modul nur normalisierte Briiche generiert

module Rat(Rat, createRat, numerator, denominator) where

data Rat = Rat Integer Integer

deriving Eq -- sound because of invariant
instance Show Rat where -- no normalization required

show (Rat n d) = if d == 1 then show n else show n ++ "/" ++ show d
normalize = ...

createRat n d = normalize $ Rat n d

instance Num Rat where
-- for negation no further normalization required
negate (Rat n d) = Rat (- n) d

-- multiplication requires normalization to obey invariant
Rat nl dl * Rat n2 d2 = createRat (nl * n2) (di * d2)

RT et al. (IFI @ UIBK) Woche 9 20/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel Anwendung

module PiApprox(piApprox, Rat) where

-- Prelude is implicitly imported

-- import everything that is exported by module Rat
import Rat

-- or only import certain parts
import Rat(Rat, createRat)

-- import declarations must be before other definitions
piApprox :: Integer -> Rat
piApprox n = let initApprox = createRat 314 100 in ...

® es kann mehrere import Deklarationen geben
e importierte Namen werden nicht automatisch exportiert
® wenn man PilApprox importiert, wird Rat sichtbar, aber nicht createRat
® um Rat und PiApprox zu verwenden, miissen beide Module importiert werden:
import PiApprox
import Rat

RT et al. (IFI @ UIBK) Woche 9 21/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Umgang mit Mehrdeutigkeiten
-- Foo.hs

module Foo where pi = 3.1415

-- Problem.hs
module Problem where

import Foo

pi = 3.1415
area r = pi * r~2

¢ Problem: Worauf bezieht sich pi in Definition von area? (globaler Name)

globale Tabelle ist mehrdeutig: pi ist definiert in Prelude, Foo, und in Problem

Mehrdeutigkeit bleibt, auch wenn die Definitionen identisch sind
e cine Losung wird durch Qualifier geboten: Mehrdeutigkeit manuell auflésen durch
Verwendung von ModuleName.name anstelle von name

® definiere area r = Problem.pi * r~2 in Problem.hs

(oder area r = Prelude.pi * r~2)
RT et al. (IFI @ UIBK) Woche 9 22/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Qualifizierte Importe

module Foo where pi = 3.1415
module SomeLongModuleName where fun x = x + x

module ExampleQualifiedImports where
-- all imports of Foo have to use qualifier
import qualified Foo

-- result: no ambiguity on unqualified "pi"

import qualified SomeLongModuleName as S
- "as"-syntax changes name of qualifier

area r = pi * r~2
myfun x = S.fun (x * x)

RT et al. (IFI @ UIBK) Woche 9 23/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Zusammenfassung

® Sichtbarkeits-Regeln kldren den Bezug von Funktions- und Variablen-Namen

e groBere Programme kdnnen in Module strukturiert werden

® explizite export-Listen dienen der Unterscheidung von interner und externer Funktionalitat

® Vorteil: Anderungen der internen Teile eines Moduls M sind méglich, ohne dabei den Code
anpassen zu miissen, der M importiert, solange die exportierten Funktionen die gleichen
Namen und Typen haben

® wenn kein Modul angegeben wird, wird Main als Modul-Name genutzt

® weitere Informationen zu Modulen
https://www.haskell.org/onlinereport/haskell12010/haskellch5.html

RT et al. (IFI @ UIBK) Woche 9 24/24

https://www.haskell.org/onlinereport/haskell2010/haskellch5.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Fold für beliebige Datentypen
	
	Sichtbarkeit
	
	Module

