M universitat WS 2025/2026

™ innsbruck

L)
L] E
Memomezm

Funktionale Programming
Woche 9 — Generisches Fold, Sichtbarkeit, Module

René Thiemann
Philipp Dablander Joshua Ocker Michael Schaper Lilly Schonherr Adam Pescoller

Institut fiir Informatik

Letzte Vorlesung — List Comprehensions

e |ist Comprehension
® Gestalt: [(x,y,z) | x <- [1..n], let y = x =~ 2, y > 100, Just z <- f y]
° l_)_esteht aus Guards, Generatoren und lokalen Definitionen
® Ubersetzung mittels concatMap
® Beispiele
prime n = n > 2 & null [x | x <- [2 .. n - 1], n "mod” x == 0]
ptriples n = [(x,y,z) |
x <- [1..n], vy <- [x..n], z <- [y..n], x°2 + y~2 == z~2]

RT et al. (IFlI @ UIBK) Woche 9 3/24

Letzte Vorlesung — Predule Funktionen
foldr :: (a -=> b ->b) -=>b -> [a] -> b -- also: foldrl, foldl

take, drop :: Int -> [a] -> [a]
splitAt :: Int -> [a] -> ([al, [al)

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [al
span :: (a -> Bool) -> [a] -> ([a], [a])

zipWith :: (a -> b -> ¢) -> [a] -> [b] -> [c]
zip :: [a] -> [b] -> [(a, b)]
unzip :: [(a, b)] -> ([al, [bl)

String -> [String]
[String] -> String

words, lines ::
unwords, unlines ::

(a => [p]) -> [a] -> [b]

concatMap ::

($) :: (@ ->b) >a ->b

RT et al. (IFl @ UIBK) Woche 9 2/24

Weitere Beispiel-Anwendungen: Sortieren und Duplikat-Entfernung

® Beispiel fiir List Comprehension: Quicksort

gsort [1 = []
gsort (x : xs) =
gsort [y | v <- xs, y < x] ++ [x] ++ gsort [y | y <- xs, y >= x]

® Beispiel fiir foldr und List Comprehension: entfernen von Duplikaten

remdups = foldr (\ x xs -> [x | not $ x “elem” xs] ++ xs) []

RT et al. (IFlI @ UIBK) Woche 9 4/24

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Fold fiir beliebige Datentypen

® betrachten Sie foldr f e

® |dee: ersetze [] durch e und jedes (:) durch £
® generalisiere diese Idee fiir ein fold auf beliebigen Datentypen

fold ersetzt jeden n-stelligen Konstruktor durch eine n-stellige Funktion
Fold fiir beliebige Datentypen ® Beispiele (foldMaybe heift maybe in Prelude und foldEither heift either)
foldMaybe :: b -> (a -> b) -> Maybe a -> b
foldMaybe e f (Just x) = f x
foldMaybe e f Nothing = e

foldEither :: (a -> ¢c) -> (b -> ¢c) -> Either a b -> ¢

foldEither f g (Left x) = f x
foldEither f g (Right y) =gy
RT et al. (IFl @ UIBK) Woche 9 5/24 RT et al. (IFl @ UIBK) Woche 9 6/24
Beispiel: Fold fiir arithmetische Ausdriicke
data Expr v a = Number a | Var v | Plus (Expr v a) (Expr v a) Zusammenfassung zu Fold
foldExpr :: (a ->b) -> (v -=> b) => (b => b -> b) -> Expr v a -> b ® eine fold-Funktion kann fiir viele Datentypen definiert werden
foldExpr fn _ _ (Number x) = fn x fold ersetzt Konstruktoren durch Funktionen
foldExpr _ fv _ (Var v) = fv v L. -
foldExpr fn fv fp (Plus el e2) = fp (foldExpr fn v fp el) (foldExpr fn £v £p e2) ® nachdem fold fiir einen Datentyp definiert wurde, kdnnen viele rekursive Algorithmen
durch Aufrufe von fold ersetzt werden
eval :: Num a => (Y > a) -> Expr va ->a ® neben dem hier vorgestellten fold gibt es auch die Einschrankung auf bindre folds,
eval v = foldExpr id v (+) - ..
bei denen man alle Elemente (in einer Liste, einem Baum, etc.) binar verkniipft;
variables :: Expr v a -> [v] Details: sieche Ubungsblatt 8 und Typklasse Foldable
variables = foldExpr (const [1) (\ v -> [v]) (++) -- const x =\ _ ->x L.
P Beispiel: der Typ von foldr ist nicht auf Listen beschrinkt
substitute :: (v -> Expr w a) -> Expr v a -> Expr w a foldr :: Foldable t => (a -=> b ->Db) ->b ->t a ->b
substitute s = foldExpr Number s Plus foldr :: (a -=>b ->Db) ->b -> [a] -> b
renameVars :: (v -> w) -> Expr v a -> Expr w a foldr :: (a ->b ->b) ->b -> Mz~iybe a->b
renameVars r = substitute (Var . r) foldr :: (a -> b ->Db) -> b -> Either a a -> Db
countAdditions :: Expr v a -> Int
countAdditions = foldExpr (const 0) (comnst 0) (\'nm ->n +m + 1)
8/24

RT et al. (IFlI @ UIBK) Woche 9 7/24 RT et al. (IFlI @ UIBK) Woche 9

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Sichtbarkeit

RT et al. (IFl @ UIBK) Woche 9 9/24

Sichtbarkeit von Namen (von Variablen, Funktionen, ...)

radius = 15
area radius = pi~2 * radius
® wir nehmen an, dass name_i im wirklichen Programm nur name ist; das zusatzliche _i
wird in den Folien benutzt, um unterschiedliche Vorkommen von name zu unterscheiden
® umbenanntes Haskell-Programm
radius_1 = 15
area_1l radius_2 = pi_172 * radius_3
® Sichtbarkeit und Bezug von Namen in rechten Seiten von definierenden Gleichungen
® bezieht sich radius_3 auf radius_2 oder radius_17
® worauf bezieht sich pi_1?
® Daumenregel fiir die Suche nach dem Bezug fiir name: man sucht von innen nach aulen

® stellen Sie sich den abstrakten Syntax Baum eines Haskell-Ausdrucks vor

® immer wenn man ein let, where, case, oder eine Funktions-Definition sieht, in der name
gebunden wird, dann ist der Bezug dieser lokale Name

® wenn nichts gefunden wird, dann suche nach einer globalen Funktion name, auch in Prelude

® Beispiel: radius_3 bezieht sich auf radius_2, pi_1 auf Prelude.pi
RT et al. (IFl @ UIBK) Woche 9 11/24

Scope
® betrachten Sie folgendes Programm (1 Compilier-Fehler)
radius = 15
area radius = pi~2 * radius

squares x = [x"2 | x <- [0 .. x]]

length []
length (_:xs) = 1 + length xs

data Rat = Rat Integer Integer
createRat n d = normalize $ Rat n d where normalize ... =

® Sichtbarkeit

® es benétigt Regeln, um Mehrdeutigkeit aufzuldsen

® die Sichtbarkeits-Regeln definieren, welche Namen von Variablen, Funktionen, Typen, ...an
welcher Programm-Position sichtbar sind

® Sichtbarkeit kann kontrolliert werden, um groRere Programme besser zu strukturieren

(Import und Export, interne und externe Funktionalitit)
RT et al. (IFI @ UIBK) Woche 9 10/24

Lokale Namen in Case-Ausdriicken

® betrachte case expr of { patl -> exprl; ...; patN -> exprN }
® jedes patI bindet die Variablen, die in patI vorkommen
® diese Variablen kdnnen in exprI genutzt werden

® diese neu gebundenen Variablen in patI binden starken als alle zuvor gebundenen Variablen
® Beispiel Haskell Ausdruck

case xs_1 of -- renamed Haskell expression

[->xs_2
(x_1 : xs_3) -> case xs_4 ++ ys_1 of
0 ->ys_2

(x_2 @ xs_B) -> x.3 : xs_6 ++ ys_3
x_3 bezieht sich auf x_2 (da x_2 weiter innen ist als x_1)
xs_6 bezieht sich auf xs_5 (da xs_5 weiter innen ist als xs_3)
xs_4 bezieht sich auf xs_3
xs_1, xs_2, ys_1, ys_2, und ys_3 sind in diesem Ausdruck nicht gebunden
(Bezilige miissen weiter auBen hergestellt werden)

RT et al. (IFI @ UIBK) Woche 9 12/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lokale Namen in Let-Ausdriicken
let {
patl = expri; .; patN = exprN;
f1 patsl = fexprl;
} in expr
® alle Variablen in pat1 ...patN und alle Namen £1 ... fM sind gebunden
® diese kdnnen in expr, in exprI und in jedem fexprJ genutzt werden
® Variablen in patsJ binden am stdrksten, aber nur in fexprJ
e let (x_1, y_1) = (y_2 + 1, 5)
f1x2=x3+g1y.3id.1
g2y 4f2=£f3%g3x4fd
in (£_5, g_4, x_5, y_5)
y_2, y_3 und y_5 beziehen sich auf y_1
%_3 bezieht sich auf x_2 weil x_2 stirker bindet als x_1
%x_4 und x_5 beziehen sich auf x_1
f_3 und £_4 beziehen sich auf £_2 da f_2 stdrker bindet als £_1
g_1, g_3 und g_4 beziehen sich auf g_2
f_5 bezieht sich auf £_1

id_1 ist nicht in diesem Ausdruck gebunden
RT et al. (IFI @ UIBK) Woche 9

.; fM patsM = fexprM

-- renamed Haskell expression

13/24

Globale vs. Lokale Definition

length :: [a] -> Int

-- choose definition 1,

length = foldr (const (1 +)) O

-- definition 2,

length =
let { length [] = 0; length (x :
in length

xs) = 1 + length xs }

-- or definition 3
length [] =0
length (_ : xs) = 1 + length xs
® Definitionen 1 and 2 compilieren, weil sich kein length in einer rechten Seite befinden,
bei dem Suche in globaler Tabelle erforderlich ist

e Definition 3 compiliert nicht

® Definitionen 1 und 2 fiihren allerdings zu Mehrdeutigkeiten in der globalen Tabelle

— betrachte Haskells Modul-System
RT et al. (IFl @ UIBK) Woche 9 15/24

Globale Funktions-Definitionen

® betrachte definierende Gleichung fname pats = expr

® alle Variables in pats sind lokal gebunden und kdnnen in expr genutzt werden
fname ist nicht lokal gebunden, wird aber in eine globale Namens-Tabelle eingetragen
alle Namen in expr ohne lokalen Bezug werden in der globalen Namens-Tabelle gesucht
die Suche in der globalen Tabelle muss ein eindeutiges Ergebnis liefern

e radius_1 = 15
area_2 radius_2 = pi_172 * radius_3
length_ 1 [1 =0
length_2 (_:xs_1) = 1 + length_3 xs_2
® radius_1, area_2 und length_1/2 werden in globaler Tabelle gespeichert
globale Tabelle hat Mehrdeutigkeit: length_1/2 vs. Prelude.length
pi_1 ist nicht lokal gebunden und hat daher den Bezug zu Prelude.pi
radius_3 bezieht sich lokal auf radius_2 und nicht global auf radius_1
xs_2 bezieht sich auf xs_1
length_3 ist nicht lokal gebunden, und fiihrt wegen der Mehrdeutigkeit zu einem
Compilier-Fehler

-- renamed Haskell program

RT et al. (IFI @ UIBK) Woche 9 14/24
Module
RT et al. (IFl @ UIBK) Woche 9 16/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Module
® bislang
® ein Haskell Programm besteht aus einer Datei, die mehrere Definitionen enthalten kann
® alle globalen Definitionen sind fiir Anwenderln sichtbar
-- functions on rational numbers
data Rat = Rat Integer Integer
normalize (Rat n d) = ... -- internal function
createRat n d = normalize $ Rat n d -- function for external usage

-- internal definition of datatype

-- application: approximate pi to a certain precision
piApprox Integer -> Rat
piApprox p =

® Motivation fiir Module

® strukturiere Programme in kleinere wiederverwendbare Teile, ohne dabei Kopien zu erstellen
® unterscheide zwischen internen und externen Definitionen

® klare Schnittstelle fiir Anwenderlnnen des Moduls
® stelle Invarianten sicher
® verbessere Wartbarkeit der Programme
RT et al. (IFl @ UIBK) Woche 9 17/24

Beispiel: Rationale Zahlen

module Rat(Rat, createRat, numerator, denominator) where
data Rat = Rat Integer Integer

normalize = -- cancels fractions: 2 /4 > 1/ 2

createRat n d = normalize $ Rat n d
numerator (Rat n d) = n

instance Num Rat where
instance Show Rat where

® externe Anwenderlnnen wissen, dass ein Typ Rat existiert
® sie sehen Funktionen createRat, numerator and denominator

® sie haben keinen Zugriff auf Konstruktor Rat und kdnnen daher nicht Ausdriicke wie
Rat 2 4 bilden, die eine Invariante verletzen, z.B. gekiirzte Briiche

® sie kdnnen Berechnungen mit rationalen Zahlen durchfiihren, da Sie Zugriff auf (+) der
Klasse Num haben, insbesondere auch fiir die Num-Instanz Rat

® ebenso kdnnen sie rationale Zahlen mittels show anzeigen
RT et al. (IFl @ UIBK) Woche 9 19/24

Module in Haskell

-- first line of file ModuleName.hs
module ModuleName (exportList) where
-- standard Haskell type and function definitions

® jeder ModuleName beginnt mit einem GroRbuchstaben

® jedes Modul wird normalerweise in Datei ModuleName.hs gespeichert

e wenn eine Haskell-Datei keine module Deklaration enthalt, fiigt ghci module Main where
zu Beginn ein

® exportList ist eine Komma-getrennte Liste von Funktions-Namen und Typ-Namen,
nur diese Funktionen und Typen werden fiir Anwenderlnnen des Moduls sichtbar

e wenn (exportList) fehlt, dann wird alles exportiert

e fiir Typen gibt es unterschiedliche Grade des Exports

® module Name(Type) exportiert den Typ Type, aber nicht die Konstruktoren von Type
® module Name(Type(..)) exportiert Typ Type und die Konstruktoren

RT et al. (IFI @ UIBK) Woche 9 18/24

Beispiel: Rationale Zahlen — Verbesserte Implementierung

da externe Nutzer kein Ausdriicke wie Rat 2 4 bilden kénnen, kdnnen wir davon ausgehen,
dass alle Funktionen nur normalisierte rationale Zahlen entgegennehmen, unter der Annahme,
dass die eigene Implementierung in diesem Modul nur normalisierte Briiche generiert

module Rat(Rat, createRat, numerator, denominator) where

data Rat = Rat Integer Integer

deriving Eq -- sound because of invariant
instance Show Rat where -- no normalization required

show (Rat n d) = if d == 1 then show n else show n ++ "/" ++ show d
normalize = ...

createRat n d = normalize $ Rat n d

instance Num Rat where
-- for negation no further normalization required
negate (Rat n d) = Rat (- n) d

-- multiplication requires normalization to obey invariant
Rat nl dl * Rat n2 d2 = createRat (nl * n2) (dl * d2)

RT et al. (IFI @ UIBK) Woche 9 20/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel Anwendung

module PiApprox(piApprox, Rat) where

-- Prelude is implicitly imported

-- import everything that is exported by module Rat
import Rat

-- or only import certain parts

import Rat(Rat, createRat)

-- import declarations must be before other definitions
piApprox :: Integer -> Rat

piApprox n = let initApprox = createRat 314 100 in ...

® es kann mehrere import Deklarationen geben
e importierte Namen werden nicht automatisch exportiert
® wenn man PiApprox importiert, wird Rat sichtbar, aber nicht createRat

® um Rat und PiApprox zu verwenden, miissen beide Module importiert werden:

import PiApprox
import Rat

RT et al. (IFI @ UIBK) Woche 9

Qualifizierte Importe

module Foo where pi = 3.1415
module SomeLongModuleName where fun x = x + x

module ExampleQualifiedImports where
-- all imports of Foo have to use qualifier
import qualified Foo

-- result: no ambiguity on unqualified "pi"

import qualified SomeLongModuleName as S
"as"-syntax changes name of qualifier

area r = pi * r°2
myfun x = S.fun (x * %)

RT et al. (IFlI @ UIBK) Woche 9

21/24

23/24

Umgang mit Mehrdeutigkeiten

-- Foo.hs
module Foo where pi = 3.1415

-- Problem.hs
module Problem where

import Foo

pi = 3.1415
area r = pi * r~2
e Problem: Worauf bezieht sich pi in Definition von area? (globaler Name)
e globale Tabelle ist mehrdeutig: pi ist definiert in Prelude, Foo, und in Problem
® Mehrdeutigkeit bleibt, auch wenn die Definitionen identisch sind
® eine Losung wird durch Qualifier geboten: Mehrdeutigkeit manuell auflésen durch
Verwendung von ModuleName.name anstelle von name

® definiere area r = Problem.pi * r~2 in Problem.hs
(oder area r = Prelude.pi * r~2)
RT et al. (IFl @ UIBK) Woche 9 22/24

Zusammenfassung

e Sichtbarkeits-Regeln kldren den Bezug von Funktions- und Variablen-Namen
e groRere Programme kdnnen in Module strukturiert werden
® explizite export-Listen dienen der Unterscheidung von interner und externer Funktionalitit
® Vorteil: Anderungen der internen Teile eines Moduls 11 sind mdglich, ohne dabei den Code
anpassen zu miissen, der M importiert, solange die exportierten Funktionen die gleichen
Namen und Typen haben
® wenn kein Modul angegeben wird, wird Main als Modul-Name genutzt
® weitere Informationen zu Modulen
https://www.haskell.org/onlinereport/haskel12010/haskellch5.html

RT et al. (IFlI @ UIBK) Woche 9 24/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://www.haskell.org/onlinereport/haskell2010/haskellch5.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Fold für beliebige Datentypen
	
	Sichtbarkeit
	
	Module

