M universitat WS 2025/2026

™ innsbruck

Funktionale Programming
Woche 10 — Eingabe und Ausgabe, Vier Gewinnt

René Thiemann
Philipp Dablander Joshua Ocker Michael Schaper Lilly Schonherr Adam Pescoller

Institut fiir Informatik

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Letzte Vorlesung

e Sichtbarkeitsregeln fiir Funktions- und Variablennamen
e groBere Programme sollten in Modulen strukturiert werden

® explizite Export-Listen differenzieren zwischen internen und externen Teilen eines Moduls
® Module werden durch Importe verfiigbar, nicht durch Kopieren des Codes

® qualifizierte Importe und Qualifier vermeiden Namenskonflikte oder [6sen diese auf

® Standard-Module und -Importe

® wenn Programm keine Modul-Deklaration enthilt, wird module Main where hinzugefiigt
® wenn Programm Prelude nicht selber importiert, wird import Prelude hinzugefiigt

e Beispiel

module Rat(Rat,createRat) where ...

module Application where

import Prelude hiding (pi) -- hide import of pi

import Rat

pi :: Rat -- so that here there won't be a conflict
pi = createRat -- pi with precision of 70 digits

314159265358979323846264338327950288419716939937510568209749445923078164
100

RT et al. (IFI @ UIBK) Woche 10 2/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Eingabe und Ausgabe in Haskell

RT et al. (IFI @ UIBK) Woche 10 3/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

I/O: Eingabe und Ausgabe (Input und Output)

e Ziel: Kommunikation mit der Welt (Anwenderln, Dateisystem, Netzwerk, . ..)

lese Eingaben von Anwenderln

gebe Antworten aus

aulerhalb des read-eval-print-loops von ghci

erstelle Programme, deren Ausfiihrung weder ghc-Installation noch Haskell-Kenntnis
erfordern

® |/O kann vielseitig verstanden werden
® Dateizugriff
(z.B. transformieren Compiler .hs zu .exe, oder .tex zu .pdf)
® Speicherzugriff
(veranderbare Variablen, Arrays)
® Netzwerkzugriff
(z.B. um einen Web-Server oder Internet-Browser zu entwickeln)
starte externe Programme und kommuniziere mit diesen
Audioaufnahme und -wiedergabe
Kommunikation mit GUI

RT et al. (IFI @ UIBK) Woche 10 4/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Ein

RT et al.

erstes 1/O-Beispiel
main = do -- file: WelcomelIO.hs
putStrLn "Greetings! Please tell me your name."
name <- getLine
putStrLn $ "Welcome to Haskell's IO, " ++ name ++ "I
Compilierung mit GHC (nicht mit GHCI) mittels:
$ ghc --make WelcomeIO.hs

Ausfiihrung

$./WelcomelO # WelcomeIO.exe on Windows
Greetings! Please tell me your name.

Homer # this was typed in

Welcome to Haskell's IO, Homer!

Anmerkungen
® putStrLn — gibt einen String aus und springt in nichste Zeile
® getLine — liest eine Zeile ein
® neue Syntax: do und <-

(IF1 @ UIBK) Woche 10

5/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

/O und das Typsystem

RT et al.

ghci> :1 WelcomelO.hs
ghci> :t putStrln
putStrLn :: String -> I0 O
ghci> :t getline
getLine :: IO String
ghci> :t main
main :: I0 O
I0 a ist der Typ von |/O-Aktionen, die ein Resultat vom Typ a liefern
(und zusatzlich 1/O-Operationen durchfiihren knnen)
Beispiele
® String -> I0 () — berechne eine Aktion basierend auf einem String
(im Fall von putStrLn ist die Aktion, den String auszugeben)
® I0 () — fiihre nur eine Aktion durch (das Ergebnis () hat keine Bedeutung)
(im Fall von main, fiihre das Programm aus)

® 10 String - fiihre eine Aktion aus, die einen String liefert
(im Fall von getLine, lese eine Zeile ein)

(IF1 @ UIBK) Woche 10

6/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Kombination von 1/0O-Aktionen

® |/O-Aktionen kdnnen sequentiell kombiniert werden

® Sequenz-Operator: Bind (Syntax >>=)

(>>=) :: I0a ->(a ->I0b) ->1I00D

® betrachte act1 >>= \ x -> act?2

® bei der Auswertung des Ausdrucks wird zuerst Aktion act1 durchgefiihrt

das Resultat von Aktion act1 wird in x gespeichert
anschlieBend wird act?2 ausgefiihrt (und act2 darf von x abhdngen)

® insgesamt werden beide Aktionen ausgefiihrt, und das finale Resultat ist das von act?2

® schwaches Bind: (>>)

® Beispiel

putStrLn "Hi. What's your name?" >>

getLine >>= \ name ->
let answer = "Hello " ++ name in
putStrLn answer

I0 a -> I0 b

I0 b, al > a2 = al >>= _ -> a2

-- ignore result, which is ()

-- store result in variable name
-- no I/0 in this line

-- final result from putStrLn: ()

® Typ des Ausdrucks ist I0 (), also genau der Typ der letzten 1/O-Aktion putStrln answer
® die Ausfiihrung von mehreren Aktionen ist sequentiell, wie in der imperativen Programming

RT et al. (IFI @ UIBK) Woche 10

7/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Do-Notation

® es gibt eine Spezial-Syntax fiir Kombinationen von Bind, A\-Abstraktionen und let

do x <- act = act >>= \ x -> do block
block

do act = act >> do block
block

do let x = e = let x = e in do block
block

® putStrLn "Hi. What's your name?" >>
getlLine >>= \ name ->
let answer = "Hello " ++ name in
putStrLn answer
kann mittels do-Notation wie folgt geschrieben werden

do putStrLn "Hi. What's your name?"
name <- getlLine
let answer = "Hello " ++ name -- no "in"!
putStrLn answer

® wie bei 1let konnen do-Blécke auch geklammert werden: do {..; ..; ..}
RT et al. (IFI @ UIBK) Woche 10 8/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Weitere Anmerkungen

® innerhalb eines do-Blocks ist die Reihenfolge wichtig; |/O-Aktionen werden sequentiell
ausgefiihrt; Resultat eines Blocks ist das der letzten Aktion
¢ Auslesen des Results einer Aktion mittels x <- a ist nur innerhalb 1/O-Aktionen moglich;

es gibt keine Funktion vom Typ I0 a -> a, die das Ergebnis einer |/O-Aktion extrahiert,
ohne dabei selber eine 1/O-Aktion zu sein

® sobald wir innerhalb einer |/O-Aktion sind, kénnen wir 1/O nicht verlassen
® strikte Trennung zwischen rein-funktionalem Code und /O
® wenn I0 a nicht im Typ vorkommt, kdnnen wir sicher sein,
dass keine 1/O-Aktionen (also auch keine Seiteneffekte) durchgefiihrt werden

® main :: I0 () ist die |/O-Aktion, die ausgefiihrt wird, wenn man eine Datei mittels
ghc --make Prog.hs compiliert und anschlieBend mittels . /Prog startet
(Prog.hs muss Modul Main beinhalten und main exportieren)

® gibt man in ghci einen Ausdruck act :: I0 a ein,
dann wird erst act ausgefiihrt,
und danach der Wert des Resultats ausgegeben, falls a nicht () ist

RT et al. (IFI @ UIBK) Woche 10 9/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Nutzung von Rein-Funktionalem Code innerhalb von 1/0O-Aktionen

-- reply is purely functional: no IO in type

reply :: String -> String

reply name =
"Pleased to meet you, " ++ name ++ ".\n" ++
"Your name contains " ++ n ++ " characters."
where n = show $ length name

-- pure code can be invoked from I/0-part
main :: I0 O
main = do
putStrLn "Greetings again. What's your name?"
name <- getLine
let niceReply = reply name
putStrLn niceReply
e der Aufruf von rein funktionalem Code von I/O ist einfach

® die andere Richtung ist nicht méglich!

RT et al. (IFI @ UIBK) Woche 10 10/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Vordefinierte Funktionen mit 1/0O-Aktionen

® return :: a -> I0 a— verwandle Wert in |/O-Aktion, die den Wert als Resultat liefert
® System.Environment.getArgs :: I0 [String] - liefert Kommandozeilen Argumente
® putChar :: Char -> I0 () — gebe einzelnes Zeichen aus

® putStr :: String -> I0 () — gebe String aus

® putStrLn :: String -> I0 () — gebe String aus mit Zeilenumbruch

® getChar :: IO Char — lese einzelnes Zeichen von stdin

® getlLine :: I0 String — lese Zeile (Zeilenumbruch ist nicht im Resultat)

® interact :: (String -> String) -> I0 () — verwandle gesamte Eingabe in
Ausgabe mittels einer Funktion

® type FilePath = String

® readFile :: FilePath -> IO String — lese gesamte Datei
® yriteFile :: FilePath -> String -> I0 ()

® appendFile :: FilePath -> String -> I0 O

RT et al. (IFI @ UIBK) Woche 10 11/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Rekursive |/O-Aktionen

¢ Verzweigung und Rekursion sind auch mit |/O-Aktionen mdglich
® Beispiel: implementiere getLine mittels getChar

import Prelude hiding (getLine)

getLine = do
c <- getChar
if ¢ == '"\n' -- branching
then return ""
else do
1 <- getLine -- recursion

return $ ¢ : 1

RT et al. (IFI @ UIBK) Woche 10 12/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiele — Imitation einiger GNU Programme

® cat.hs — gebe Dateiinhalt aus
import System.Environment (getArgs)

main = do
[file] <- getArgs -- assume there is exactly one file
s <- readFile file
putStr s

® wc.hs — z3hle Anzahl von Zeilen/Wortern/Zeichen in Eingabe
count s = nl ++ " " 4+ nw ++ " " 4+ nc ++ "\n"
where nl = show $ length $ lines s
nw = show $ length $ words s
nc = show $ length s
main = interact count
® sort.hs — sortiere Eingabe zeilenweise
import Data.List (sort)
main = interact (unlines . sort . lines)

RT et al. (IFI @ UIBK) Woche 10 13/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lazy-Evaluation und 1/0O-Aktionen

® betrachten Sie ein einfaches Programm, um Dateien zu kopieren

main = do -- imports omitted

[src, dest] <- getArgs
s <- readFile src

writeFile dest s
® readFile und writeFile haben eine verzogerte Auswertung (lazy-Evaluation), d.h.,

readFile liest Zeichen nur bei Bedarf
® positiver Effekt: kopiere groRe Dateien, ohne diese vollstdndig in den Speicher zu laden

® | azy-Evaluation kann auch Probleme verursachen

main = do -- imports omitted

[file] <- getArgs

s <- readFile file

writeFile file (map toUpper s)

® weil readFile lazy ist, wird bei s <- readFile file nichts direkt gelesen

® danach wird versucht, dieselbe Datei schreibend zu 6ffnen; fiihrt zu Programm-Abbruch

® Losung: feinere Kontrolle, in der Dateien explizit geoffnet und geschlossen werden kénnen;
siehe Vorlesungen Betriebssysteme und Fortgeschrittene Funktionale Programming

RT et al. (IF1 @ UIBK) Woche 10

14/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Higher-Order und 1/0O-Aktionen

® foreach :: [a] -> (a -> I0 b) -> I0 ()
foreach [] io = return ()
foreach (a:as) io = do { io a; foreach as io }
® bessere Variante von cat.hs
main = do
files <- getArgs
if null files then interact id else do
foreach files readAndPrint
where readAndPrint f = readFile f >>= putStr

RT et al. (IFI @ UIBK) Woche 10 15/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel Anwendung: Vier Gewinnt

RT et al. (IFI @ UIBK) Woche 10 16/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Vier Gewinnt

e Ziel: Implementierung von Vier Gewinnt, MB Spiele

® mit einer textuellen Benutzeroberflache
0123456

.X0.X..
.X000X0
X0X0X0X
0XX0X00
XX0X00X

Player X to go
Choose one of [0,1,2,3,4,5,6]

RT et al. (IFI @ UIBK) Woche 10 17/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Vier Gewinnt: Implementierung

e klare Trennung von zwei Teilen
® Benutzeroberfliche (1/0)

® Einlesen eines Zuges

® Ausgabe des aktuellen Spielstands
[]

® Spiellogik (rein funktionaler Code)

® Typ, um Spielstand zu reprasentieren (Brett + nachster Spieler)
® Durchfiihrung eines Zugs

® Priifung, ob jemand gewonnen hat

® Darstellung eines Spielstands als String

[]

e jeder Teil ist in eigenem Modul implementiert

® Logic beinhaltet die Spiellogik
® Main beinhaltet Benutzeroberfliche und die main Funktion

RT et al. (IFI @ UIBK) Woche 10 18/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Spiellogik: Bereitgestellte Funktionalitat
® Typen: State, Move und Player

® Konstante initState :: State

® Funktion showPlayer :: Player -> String

® Funktion showState :: State -> String

® Funktion winningPlayer :: State -> Maybe Player
® Funktion validMoves :: State -> [Move]

® Funktion dropTile :: Move -> State -> State

® in Summe

module Logic(State, Move, Player,
initState, showPlayer, showState,
winningPlayer, validMoves, dropTile) where
-- details, which the user interface doesn't have to know

RT et al. (IFI @ UIBK) Woche 10 19/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Die Read-Klasse

¢ Klasse Read bietet Methoden an, um Strings in andere Typen zu verwandeln
® read :: Read a => String -> a
® readMaybe :: Read a => String -> Maybe a
Import von Modul Text.Read wird bendtigt
® bei Benutzung von read wird oft der Typ a explizit angegeben

® Beispiele
® (read "(41, True)" :: (Integer,Bool)) = (41, True)
® (read "(41, True)" :: (Integer,Integer)) = error ...
® (readMaybe "1" :: Maybe Integer) = Just 1
® (readMaybe "one" :: Maybe Integer) = Nothing

e fiir das Logic Modul nehmen wir an, dass Typ Move eine Instanz von Show und Read ist

RT et al. (IFI @ UIBK) Woche 10 20/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Benutzeroberfldche
module Main(main) where -- module name must be "Main" for
import Logic
main = do
putStrLn "Welcome to Connect Four"
game initState
game state = do
putStrLn $ showState state
case winningPlayer state of
Just player -> putStrLn $ showPlayer player ++ " wins!"
Nothing -> let moves = validMoves state in
if null moves then putStrLn "Game ends in draw.

else do
putStr $ "Choose one of " ++ show moves ++ ": "
hFlush stdout -- flush output buffer
moveStr <- getLine
let move = (read moveStr :: Move)

fame (dropTile move state)
RT et al. (IFI @ K) Woche 10

compilation

21/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Spiellogik: Reprasentation eines Zustands; Startzustand

type Tile = Int -- 0, 1, or 2

type Player = Int -- 1 and 2

type Move = Int -- column number

data State = State Player [[Tile]l] -- list of rows
empty :: Tile

empty = 0

numRows, numCols :: Int

numRows = 6
numCols = 7

startPlayer :: Player
startPlayer = 1

initState :: State
initState = State startPlayer (replicate numRows (replicate numCols empty))

RT et al. (IFI @ UIBK) Woche 10 22/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Spiellogik: Giiltige Ziige und Darstellung eines Spielzustands

validMoves :: State -> [Move]
validMoves (State _ rows) =
map fst . filter ((== empty) . snd) . zip [0 .. numCols - 1] $ head rows

showPlayer :: Player -> String
showPlayer 1 = "X"
showPlayer 2 = "O"

showTile :: Tile -> Char
showTile t = if t == empty then '.' else head $ showPlayer t

showState :: State -> String
showState (State player rows) = unlines $
concatMap show [0 .. numCols - 1]
map (map showTile) rows
++ ["\nPlayer " ++ showPlayer player ++ " to go"]

RT et al. (IFI @ UIBK) Woche 10 23/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Spiellogik: Durchfiihrung eines Zugs

otherPlayer :: Player -> Player
otherPlayer = (3 -)

dropTile :: Move -> State -> State
dropTile col (State player rows) = State
(otherPlayer player)
(reverse $ dropAux $ reverse rows)
where
dropAux (row : rows) =
case splitAt col row of
(first, t : last) ->
if t == empty
then (first ++ player : last)
else row : dropAux rows

RT et al. (IFI @ UIBK) Woche 10

. IOws

24/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Spiellogik: Gewinn-Bedingung

winningRow :: Player -> [Tile] -> Bool

winningRow player [] = False

winningRow player row = take 4 row == replicate 4 player
|| winningRow player (tail row)

transpose ([] : _) =[]
transpose xs = map head xs : transpose (map tail xs)

winningPlayer :: State -> Maybe Player
winningPlayer (State player rows) =
let prevPlayer = otherPlayer player
longRows = rows ++ transpose rows -- ++ diags rows
in if any (winningRow prevPlayer) longRows
then Just prevPlayer
else Nothing

RT et al. (IFI @ UIBK) Woche 10 25/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Vier Gewinnt: AbschlieBende Bemerkungen

® |Implementierung ist rudimentar

® Diagonalen werden bei der Gewinn-Bedingung nicht beriicksichtigt
® Programm-Abbruch bei Eingabe ungiiltiger Ziige

e Ubung: Ausbau der Implementierung

RT et al. (IFI @ UIBK) Woche 10 26/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Zusammenfassung
® in Haskell ist Ein- und Ausgabe mdglich;
I0 a ist der Typ von |/O-Aktionen mit Resultat vom Typ a
® Typsystem bietet klare Trennung von rein-funktionalem und 1/0O-Code
® mehrere Aktionen kénnen mit (>>=) oder in do-Blocken kombiniert werden
® es gibt viele vordefinierte Funktionen fiir die Ein- und Ausgabe

* weitere Informationen bzgl. 1/0 in Haskell:
http://book.realworldhaskell.org/read/io.html

® Read Klasse bietet Funktion read :: String -> a, die duale Funktion zu
show :: a -> String

¢ Vier Gewinnt: getrennte Implementierung der Spiellogik (rein funktional) und
Benutzeroberflache (1/0)

RT et al. (IFI @ UIBK) Woche 10 27/27

http://book.realworldhaskell.org/read/io.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Eingabe und Ausgabe in Haskell
	
	Beispiel Anwendung: Vier Gewinnt

