
WS 2025/2026

Funktionale Programming
Woche 10 – Eingabe und Ausgabe, Vier Gewinnt

René Thiemann
Philipp Dablander Joshua Ocker Michael Schaper Lilly Schönherr Adam Pescoller

Institut für Informatik

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Letzte Vorlesung
• Sichtbarkeitsregeln für Funktions- und Variablennamen
• größere Programme sollten in Modulen strukturiert werden

• explizite Export-Listen differenzieren zwischen internen und externen Teilen eines Moduls
• Module werden durch Importe verfügbar, nicht durch Kopieren des Codes
• qualifizierte Importe und Qualifier vermeiden Namenskonflikte oder lösen diese auf
• Standard-Module und -Importe

• wenn Programm keine Modul-Deklaration enthält, wird module Main where hinzugefügt
• wenn Programm Prelude nicht selber importiert, wird import Prelude hinzugefügt

• Beispiel
module Rat(Rat,createRat) where ...

module Application where
import Prelude hiding (pi) -- hide import of pi
import Rat
pi :: Rat -- so that here there won't be a conflict
pi = createRat -- pi with precision of 70 digits

31415926535897932384626433832795028841971693993751058209749445923078164
100

RT et al. (IFI @ UIBK) Woche 10 2/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Eingabe und Ausgabe in Haskell

RT et al. (IFI @ UIBK) Woche 10 3/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

I/O: Eingabe und Ausgabe (Input und Output)
• Ziel: Kommunikation mit der Welt (AnwenderIn, Dateisystem, Netzwerk, . . .)

• lese Eingaben von AnwenderIn
• gebe Antworten aus
• außerhalb des read-eval-print-loops von ghci
• erstelle Programme, deren Ausführung weder ghc-Installation noch Haskell-Kenntnis

erfordern
• I/O kann vielseitig verstanden werden

• Dateizugriff
(z.B. transformieren Compiler .hs zu .exe, oder .tex zu .pdf)

• Speicherzugriff
(veränderbare Variablen, Arrays)

• Netzwerkzugriff
(z.B. um einen Web-Server oder Internet-Browser zu entwickeln)

• starte externe Programme und kommuniziere mit diesen
• Audioaufnahme und -wiedergabe
• Kommunikation mit GUI
• . . .

RT et al. (IFI @ UIBK) Woche 10 4/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Ein erstes I/O-Beispiel
• main = do -- file: WelcomeIO.hs

putStrLn "Greetings! Please tell me your name."
name <- getLine
putStrLn $ "Welcome to Haskell's IO, " ++ name ++ "!"

• Compilierung mit GHC (nicht mit GHCI) mittels:
$ ghc --make WelcomeIO.hs

• Ausführung
$./WelcomeIO # WelcomeIO.exe on Windows
Greetings! Please tell me your name.
Homer # this was typed in
Welcome to Haskell's IO, Homer!

• Anmerkungen
• putStrLn – gibt einen String aus und springt in nächste Zeile
• getLine – liest eine Zeile ein
• neue Syntax: do und <-

RT et al. (IFI @ UIBK) Woche 10 5/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

I/O und das Typsystem
• ghci> :l WelcomeIO.hs
ghci> :t putStrLn
putStrLn :: String -> IO ()
ghci> :t getLine
getLine :: IO String
ghci> :t main
main :: IO ()

• IO a ist der Typ von I/O-Aktionen, die ein Resultat vom Typ a liefern
(und zusätzlich I/O-Operationen durchführen können)

• Beispiele
• String -> IO () – berechne eine Aktion basierend auf einem String

(im Fall von putStrLn ist die Aktion, den String auszugeben)
• IO () – führe nur eine Aktion durch (das Ergebnis () hat keine Bedeutung)

(im Fall von main, führe das Programm aus)
• IO String – führe eine Aktion aus, die einen String liefert

(im Fall von getLine, lese eine Zeile ein)

RT et al. (IFI @ UIBK) Woche 10 6/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Kombination von I/O-Aktionen
• I/O-Aktionen können sequentiell kombiniert werden
• Sequenz-Operator: Bind (Syntax >>=)

(>>=) :: IO a -> (a -> IO b) -> IO b
• betrachte act1 >>= \ x -> act2

• bei der Auswertung des Ausdrucks wird zuerst Aktion act1 durchgeführt
• das Resultat von Aktion act1 wird in x gespeichert
• anschließend wird act2 ausgeführt (und act2 darf von x abhängen)
• insgesamt werden beide Aktionen ausgeführt, und das finale Resultat ist das von act2

• schwaches Bind: (>>) :: IO a -> IO b -> IO b, a1 >> a2 = a1 >>= _ -> a2
• Beispiel
putStrLn "Hi. What's your name?" >> -- ignore result, which is ()
getLine >>= \ name -> -- store result in variable name
let answer = "Hello " ++ name in -- no I/O in this line
putStrLn answer -- final result from putStrLn: ()

• Typ des Ausdrucks ist IO (), also genau der Typ der letzten I/O-Aktion putStrLn answer
• die Ausführung von mehreren Aktionen ist sequentiell, wie in der imperativen Programming

RT et al. (IFI @ UIBK) Woche 10 7/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Do-Notation
• es gibt eine Spezial-Syntax für Kombinationen von Bind, λ-Abstraktionen und let
do x <- act = act >>= \ x -> do block

block

do act = act >> do block
block

do let x = e = let x = e in do block
block

• putStrLn "Hi. What's your name?" >>
getLine >>= \ name ->
let answer = "Hello " ++ name in
putStrLn answer
kann mittels do-Notation wie folgt geschrieben werden
do putStrLn "Hi. What's your name?"

name <- getLine
let answer = "Hello " ++ name -- no "in"!
putStrLn answer

• wie bei let können do-Blöcke auch geklammert werden: do {..; ..; ..}
RT et al. (IFI @ UIBK) Woche 10 8/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Weitere Anmerkungen
• innerhalb eines do-Blocks ist die Reihenfolge wichtig; I/O-Aktionen werden sequentiell

ausgeführt; Resultat eines Blocks ist das der letzten Aktion
• Auslesen des Results einer Aktion mittels x <- a ist nur innerhalb I/O-Aktionen möglich;

es gibt keine Funktion vom Typ IO a -> a, die das Ergebnis einer I/O-Aktion extrahiert,
ohne dabei selber eine I/O-Aktion zu sein

• sobald wir innerhalb einer I/O-Aktion sind, können wir I/O nicht verlassen
• strikte Trennung zwischen rein-funktionalem Code und I/O
• wenn IO a nicht im Typ vorkommt, können wir sicher sein,

dass keine I/O-Aktionen (also auch keine Seiteneffekte) durchgeführt werden

• main :: IO () ist die I/O-Aktion, die ausgeführt wird, wenn man eine Datei mittels
ghc --make Prog.hs compiliert und anschließend mittels ./Prog startet
(Prog.hs muss Modul Main beinhalten und main exportieren)

• gibt man in ghci einen Ausdruck act :: IO a ein,
dann wird erst act ausgeführt,
und danach der Wert des Resultats ausgegeben, falls a nicht () ist

RT et al. (IFI @ UIBK) Woche 10 9/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Nutzung von Rein-Funktionalem Code innerhalb von I/O-Aktionen

-- reply is purely functional: no IO in type
reply :: String -> String
reply name =

"Pleased to meet you, " ++ name ++ ".\n" ++
"Your name contains " ++ n ++ " characters."
where n = show $ length name

-- pure code can be invoked from I/O-part
main :: IO ()
main = do

putStrLn "Greetings again. What's your name?"
name <- getLine
let niceReply = reply name
putStrLn niceReply
• der Aufruf von rein funktionalem Code von I/O ist einfach
• die andere Richtung ist nicht möglich!

RT et al. (IFI @ UIBK) Woche 10 10/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Vordefinierte Funktionen mit I/O-Aktionen
• return :: a -> IO a – verwandle Wert in I/O-Aktion, die den Wert als Resultat liefert
• System.Environment.getArgs :: IO [String] – liefert Kommandozeilen Argumente
• putChar :: Char -> IO () – gebe einzelnes Zeichen aus
• putStr :: String -> IO () – gebe String aus
• putStrLn :: String -> IO () – gebe String aus mit Zeilenumbruch
• getChar :: IO Char – lese einzelnes Zeichen von stdin
• getLine :: IO String – lese Zeile (Zeilenumbruch ist nicht im Resultat)
• interact :: (String -> String) -> IO () – verwandle gesamte Eingabe in

Ausgabe mittels einer Funktion
• type FilePath = String
• readFile :: FilePath -> IO String – lese gesamte Datei
• writeFile :: FilePath -> String -> IO ()
• appendFile :: FilePath -> String -> IO ()

RT et al. (IFI @ UIBK) Woche 10 11/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Rekursive I/O-Aktionen
• Verzweigung und Rekursion sind auch mit I/O-Aktionen möglich
• Beispiel: implementiere getLine mittels getChar

import Prelude hiding (getLine)

getLine = do
c <- getChar
if c == '\n' -- branching

then return ""
else do

l <- getLine -- recursion
return $ c : l

RT et al. (IFI @ UIBK) Woche 10 12/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiele – Imitation einiger GNU Programme
• cat.hs – gebe Dateiinhalt aus
import System.Environment (getArgs)
main = do

[file] <- getArgs -- assume there is exactly one file
s <- readFile file
putStr s

• wc.hs – zähle Anzahl von Zeilen/Wörtern/Zeichen in Eingabe
count s = nl ++ " " ++ nw ++ " " ++ nc ++ "\n"

where nl = show $ length $ lines s
nw = show $ length $ words s
nc = show $ length s

main = interact count
• sort.hs – sortiere Eingabe zeilenweise
import Data.List (sort)
main = interact (unlines . sort . lines)

RT et al. (IFI @ UIBK) Woche 10 13/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lazy-Evaluation und I/O-Aktionen
• betrachten Sie ein einfaches Programm, um Dateien zu kopieren
main = do -- imports omitted

[src, dest] <- getArgs
s <- readFile src
writeFile dest s
• readFile und writeFile haben eine verzögerte Auswertung (lazy-Evaluation), d.h.,
readFile liest Zeichen nur bei Bedarf

• positiver Effekt: kopiere große Dateien, ohne diese vollständig in den Speicher zu laden
• Lazy-Evaluation kann auch Probleme verursachen
main = do -- imports omitted

[file] <- getArgs
s <- readFile file
writeFile file (map toUpper s)
• weil readFile lazy ist, wird bei s <- readFile file nichts direkt gelesen
• danach wird versucht, dieselbe Datei schreibend zu öffnen; führt zu Programm-Abbruch
• Lösung: feinere Kontrolle, in der Dateien explizit geöffnet und geschlossen werden können;

siehe Vorlesungen Betriebssysteme und Fortgeschrittene Funktionale Programming
RT et al. (IFI @ UIBK) Woche 10 14/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Higher-Order und I/O-Aktionen
• foreach :: [a] -> (a -> IO b) -> IO ()
foreach [] io = return ()
foreach (a:as) io = do { io a; foreach as io }

• bessere Variante von cat.hs
main = do

files <- getArgs
if null files then interact id else do

foreach files readAndPrint
where readAndPrint f = readFile f >>= putStr

RT et al. (IFI @ UIBK) Woche 10 15/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel Anwendung: Vier Gewinnt

RT et al. (IFI @ UIBK) Woche 10 16/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Vier Gewinnt
• Ziel: Implementierung von Vier Gewinnt, MB Spiele

• mit einer textuellen Benutzeroberfläche
0123456
.......
.XO.X..
.XOOOXO
XOXOXOX
OXXOXOO
XXOXOOX

Player X to go
Choose one of [0,1,2,3,4,5,6]

RT et al. (IFI @ UIBK) Woche 10 17/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Vier Gewinnt: Implementierung
• klare Trennung von zwei Teilen

• Benutzeroberfläche (I/O)
• Einlesen eines Zuges
• Ausgabe des aktuellen Spielstands
• . . .

• Spiellogik (rein funktionaler Code)
• Typ, um Spielstand zu repräsentieren (Brett + nächster Spieler)
• Durchführung eines Zugs
• Prüfung, ob jemand gewonnen hat
• Darstellung eines Spielstands als String
• . . .

• jeder Teil ist in eigenem Modul implementiert
• Logic beinhaltet die Spiellogik
• Main beinhaltet Benutzeroberfläche und die main Funktion

RT et al. (IFI @ UIBK) Woche 10 18/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Spiellogik: Bereitgestellte Funktionalität
• Typen: State, Move und Player
• Konstante initState :: State
• Funktion showPlayer :: Player -> String
• Funktion showState :: State -> String
• Funktion winningPlayer :: State -> Maybe Player
• Funktion validMoves :: State -> [Move]
• Funktion dropTile :: Move -> State -> State
• in Summe
module Logic(State, Move, Player,

initState, showPlayer, showState,
winningPlayer, validMoves, dropTile) where
... -- details, which the user interface doesn't have to know

RT et al. (IFI @ UIBK) Woche 10 19/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Die Read-Klasse
• Klasse Read bietet Methoden an, um Strings in andere Typen zu verwandeln

• read :: Read a => String -> a
• readMaybe :: Read a => String -> Maybe a

Import von Modul Text.Read wird benötigt
• bei Benutzung von read wird oft der Typ a explizit angegeben
• Beispiele

• (read "(41, True)" :: (Integer,Bool)) = (41, True)
• (read "(41, True)" :: (Integer,Integer)) = error ...
• (readMaybe "1" :: Maybe Integer) = Just 1
• (readMaybe "one" :: Maybe Integer) = Nothing

• für das Logic Modul nehmen wir an, dass Typ Move eine Instanz von Show und Read ist

RT et al. (IFI @ UIBK) Woche 10 20/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Benutzeroberfläche
module Main(main) where -- module name must be "Main" for compilation
import Logic
main = do

putStrLn "Welcome to Connect Four"
game initState

game state = do
putStrLn $ showState state
case winningPlayer state of

Just player -> putStrLn $ showPlayer player ++ " wins!"
Nothing -> let moves = validMoves state in

if null moves then putStrLn "Game ends in draw."
else do

putStr $ "Choose one of " ++ show moves ++ ": "
hFlush stdout -- flush output buffer
moveStr <- getLine
let move = (read moveStr :: Move)
game (dropTile move state)

RT et al. (IFI @ UIBK) Woche 10 21/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Spiellogik: Repräsentation eines Zustands; Startzustand

type Tile = Int -- 0, 1, or 2
type Player = Int -- 1 and 2
type Move = Int -- column number
data State = State Player [[Tile]] -- list of rows

empty :: Tile
empty = 0

numRows, numCols :: Int
numRows = 6
numCols = 7

startPlayer :: Player
startPlayer = 1

initState :: State
initState = State startPlayer (replicate numRows (replicate numCols empty))

RT et al. (IFI @ UIBK) Woche 10 22/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Spiellogik: Gültige Züge und Darstellung eines Spielzustands
validMoves :: State -> [Move]
validMoves (State _ rows) =

map fst . filter ((== empty) . snd) . zip [0 .. numCols - 1] $ head rows

showPlayer :: Player -> String
showPlayer 1 = "X"
showPlayer 2 = "O"

showTile :: Tile -> Char
showTile t = if t == empty then '.' else head $ showPlayer t

showState :: State -> String
showState (State player rows) = unlines $

concatMap show [0 .. numCols - 1] :
map (map showTile) rows
++ ["\nPlayer " ++ showPlayer player ++ " to go"]

RT et al. (IFI @ UIBK) Woche 10 23/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Spiellogik: Durchführung eines Zugs

otherPlayer :: Player -> Player
otherPlayer = (3 -)

dropTile :: Move -> State -> State
dropTile col (State player rows) = State

(otherPlayer player)
(reverse $ dropAux $ reverse rows)

where
dropAux (row : rows) =

case splitAt col row of
(first, t : last) ->

if t == empty
then (first ++ player : last) : rows
else row : dropAux rows

RT et al. (IFI @ UIBK) Woche 10 24/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Spiellogik: Gewinn-Bedingung

winningRow :: Player -> [Tile] -> Bool
winningRow player [] = False
winningRow player row = take 4 row == replicate 4 player

|| winningRow player (tail row)

transpose ([] : _) = []
transpose xs = map head xs : transpose (map tail xs)

winningPlayer :: State -> Maybe Player
winningPlayer (State player rows) =

let prevPlayer = otherPlayer player
longRows = rows ++ transpose rows -- ++ diags rows

in if any (winningRow prevPlayer) longRows
then Just prevPlayer
else Nothing

RT et al. (IFI @ UIBK) Woche 10 25/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Vier Gewinnt: Abschließende Bemerkungen
• Implementierung ist rudimentär

• Diagonalen werden bei der Gewinn-Bedingung nicht berücksichtigt
• Programm-Abbruch bei Eingabe ungültiger Züge
• . . .

• Übung: Ausbau der Implementierung

RT et al. (IFI @ UIBK) Woche 10 26/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Zusammenfassung
• in Haskell ist Ein- und Ausgabe möglich;
IO a ist der Typ von I/O-Aktionen mit Resultat vom Typ a

• Typsystem bietet klare Trennung von rein-funktionalem und I/O-Code
• mehrere Aktionen können mit (>>=) oder in do-Blöcken kombiniert werden
• es gibt viele vordefinierte Funktionen für die Ein- und Ausgabe
• weitere Informationen bzgl. I/O in Haskell:
http://book.realworldhaskell.org/read/io.html

• Read Klasse bietet Funktion read :: String -> a, die duale Funktion zu
show :: a -> String

• Vier Gewinnt: getrennte Implementierung der Spiellogik (rein funktional) und
Benutzeroberfläche (I/O)

RT et al. (IFI @ UIBK) Woche 10 27/27

http://book.realworldhaskell.org/read/io.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Eingabe und Ausgabe in Haskell
	
	Beispiel Anwendung: Vier Gewinnt

