M universitat
™ innsbruck

Funktionale Programming
Woche 10 — Eingabe und Ausgabe, Vier Gewinnt

René Thiemann

Philipp Dablander Joshua Ocker Michael Schaper Lilly Schonherr Adam Pescoller

Institut fiir Informatik

Eingabe und Ausgabe in Haskell

RT et al. (IFlI @ UIBK) Woche 10

WS 2025/2026

3/27

Letzte Vorlesung
e Sichtbarkeitsregeln fiir Funktions- und Variablennamen
e grolere Programme sollten in Modulen strukturiert werden
® explizite Export-Listen differenzieren zwischen internen und externen Teilen eines Moduls
Module werden durch Importe verfiigbar, nicht durch Kopieren des Codes
qualifizierte Importe und Qualifier vermeiden Namenskonflikte oder I6sen diese auf
Standard-Module und -Importe

® wenn Programm keine Modul-Deklaration enthilt, wird module Main where hinzugefiigt
® wenn Programm Prelude nicht selber importiert, wird import Prelude hinzugefiigt

® Beispiel

module Rat(Rat,createRat) where ...

module Application where

import Prelude hiding (pi)

import Rat

pi :: Rat -- so that here there won't be a conflict

pi = createRat -- pi with precision of 70 digits
31415926535897932384626433832795028841971693993751058209749445923078164
100

RT et al. (IFlI @ UIBK) Woche 10 2/27

-- hide import of pi

1/0: Eingabe und Ausgabe (Input und Output)

e Ziel: Kommunikation mit der Welt (Anwenderln, Dateisystem, Netzwerk, ...)
® |ese Eingaben von Anwenderln
® gebe Antworten aus
® auBerhalb des read-eval-print-loops von ghci
® erstelle Programme, deren Ausfiihrung weder ghc-Installation noch Haskell-Kenntnis
erfordern
® |/O kann vielseitig verstanden werden
® Dateizugriff
(z.B. transformieren Compiler .hs zu .exe, oder .tex zu .pdf)
® Speicherzugriff
(verdnderbare Variablen, Arrays)
® Netzwerkzugriff
(z.B. um einen Web-Server oder Internet-Browser zu entwickeln)
starte externe Programme und kommuniziere mit diesen
Audioaufnahme und -wiedergabe
Kommunikation mit GUI

RT et al. (IFlI @ UIBK) Woche 10 4/27

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Ein erstes |/O-Beispiel
® main = do -- file: WelcomeIO.hs
putStrLn "Greetings! Please tell me your name."
name <- getLine
putStrLln $ "Welcome to Haskell's I0, " ++ name ++ "!"
e Compilierung mit GHC (nicht mit GHCI) mittels:
$ ghc --make WelcomeIO.hs
e Ausfiihrung
$./WelcomeID
Greetings! Please tell me your name.
Homer # this was typed in
Welcome to Haskell's IO, Homer!

WelcomelIO.exe on Windows

® Anmerkungen

® putStrLn — gibt einen String aus und springt in nichste Zeile
® getLine - liest eine Zeile ein
® neue Syntax: do und <-

RT et al. (IFI @ UIBK) Woche 10 5/27

Kombination von 1/0O-Aktionen
e |/O-Aktionen kdnnen sequentiell kombiniert werden
e Sequenz-Operator: Bind (Syntax >>=)
(>>=) :: I0a ->(a->I0b) ->1I00D
® betrachte act1 >>= \ x -> act?2

® bei der Auswertung des Ausdrucks wird zuerst Aktion act1 durchgefiihrt

® das Resultat von Aktion acti wird in x gespeichert

® anschlieBend wird act2 ausgefiihrt (und act2 darf von x abhingen)

® insgesamt werden beide Aktionen ausgefiihrt, und das finale Resultat ist das von act2

® schwaches Bind: (>>) I0 a -> I0 b -> I0 b, al > a2 = al >>= _ -> a2

® Beispiel
putStrLn "Hi. What's your name?" >> -- ignore result, which is ()
getLine >>= \ name -> -- store result in variable name
let answer = "Hello " ++ name in -- no I/0 in this line
putStrLn answer -- final result from putStrLn: ()

® Typ des Ausdrucks ist I0 (), also genau der Typ der letzten |/O-Aktion putStrLn answer
® die Ausfithrung von mehreren Aktionen ist sequentiell, wie in der imperativen Programming

RT et al. (IFI @ UIBK) Woche 10 7/27

1/0 und das Typsystem

e ghci> :1 WelcomeIO.hs
ghci> :t putStrLn

putStrLn :: String -> I0 ()
ghci> :t getLine
getLine I0 String

ghci> :t main
main :: I0 O

® I0 a ist der Typ von |/O-Aktionen, die ein Resultat vom Typ a liefern
(und zusatzlich |/O-Operationen durchfiihren kdnnen)
® Beispiele
® String -> I0 () — berechne eine Aktion basierend auf einem String
(im Fall von putStrLn ist die Aktion, den String auszugeben)
® 10 () — fiihre nur eine Aktion durch (das Ergebnis () hat keine Bedeutung)
(im Fall von main, fiihre das Programm aus)
® I0 String — fiihre eine Aktion aus, die einen String liefert
(im Fall von getLine, lese eine Zeile ein)
RT et al. (IFI @ UIBK) Woche 10 6/27
Do-Notation

® es gibt eine Spezial-Syntax fiir Kombinationen von Bind, \-Abstraktionen und let
do x <- act = act >>= \ x -> do block

block

do act = act >> do block
block

do let x = e = let x = e in do block
block

® putStrLn "Hi. What's your name?" >>
getLine >>= \ name ->
let answer = "Hello " ++ name in
putStrLn answer
kann mittels do-Notation wie folgt geschrieben werden

do putStrLn "Hi. What's your name?"
name <- getLine
let answer = "Hello " ++ name -- no "in"!
putStrLn answer

® wie bei let kdnnen do-Blocke auch geklammert werden: do {..; ..; ..}
RT et al. (IFI @ UIBK) Woche 10 8/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Weitere Anmerkungen

® innerhalb eines do-Blocks ist die Reihenfolge wichtig; |/O-Aktionen werden sequentiell
ausgefiihrt; Resultat eines Blocks ist das der letzten Aktion
e Auslesen des Results einer Aktion mittels x <- a ist nur innerhalb 1/O-Aktionen mdglich;
es gibt keine Funktion vom Typ I0 a -> a, die das Ergebnis einer |/O-Aktion extrahiert,
ohne dabei selber eine 1/0-Aktion zu sein
® sobald wir innerhalb einer |/O-Aktion sind, kénnen wir 1/O nicht verlassen
e strikte Trennung zwischen rein-funktionalem Code und 1/O
® wenn I0 a nicht im Typ vorkommt, kdnnen wir sicher sein,
dass keine |/O-Aktionen (also auch keine Seiteneffekte) durchgefiihrt werden
® main :: IO () ist die I/O-Aktion, die ausgefiihrt wird, wenn man eine Datei mittels
ghc --make Prog.hs compiliert und anschlieBend mittels . /Prog startet
(Prog.hs muss Modul Main beinhalten und main exportieren)

® gibt man in ghci einen Ausdruck act :: I0 a ein,
dann wird erst act ausgefiihrt,
und danach der Wert des Resultats ausgegeben, falls a nicht () ist

RT et al. (IFI @ UIBK) Woche 10 9/27

Vordefinierte Funktionen mit 1/O-Aktionen

® return :: a -> I0 a— verwandle Wert in 1/O-Aktion, die den Wert als Resultat liefert
® System.Environment.getArgs :: I0 [String] — liefert Kommandozeilen Argumente
® putChar :: Char -> I0 () — gebe einzelnes Zeichen aus

® putStr :: String -> I0 () — gebe String aus
® putStrLn :: String -> I0 () — gebe String aus mit Zeilenumbruch

® getChar :: IO Char — lese einzelnes Zeichen von stdin
® getlLine :: IO String — lese Zeile (Zeilenumbruch ist nicht im Resultat)
® interact :: (String -> String) -> I0 () — verwandle gesamte Eingabe in

Ausgabe mittels einer Funktion
® type FilePath = String
® readFile :: FilePath -> I0 String — lese gesamte Datei
® yriteFile :: FilePath -> String -> I0 ()
® appendFile :: FilePath -> String -> I0 ()

RT et al. (IFI @ UIBK) Woche 10 11/27

Nutzung von Rein-Funktionalem Code innerhalb von I/O-Aktionen

-- reply is purely functional: no IO in type
reply :: String -> String
reply name =
"Pleased to meet you, " ++ name ++ ".\n" ++
"Your name contains " ++ n ++ " characters."
where n = show $ length name
-- pure code can be invoked from I/0-part
main :: I0 ()
main = do
putStrLln "Greetings again. What's your name?"
name <- getLine
let niceReply = reply name
putStrLn niceReply
® der Aufruf von rein funktionalem Code von 1/0 ist einfach

® die andere Richtung ist nicht moglich!

RT et al. (IFl @ UIBK) Woche 10

Rekursive 1/O-Aktionen

® Verzweigung und Rekursion sind auch mit |/O-Aktionen mdglich

® Beispiel: implementiere getLine mittels getChar

import Prelude hiding (getLine)

getline = do
c <- getChar

if ¢ == '\n' -- branching
then return ""
else do
1 <- getLine -- recursion

return $ ¢ : 1

RT et al. (IFl @ UIBK) Woche 10

10/27

12/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiele — Imitation einiger GNU Programme

® cat.hs — gebe Dateiinhalt aus
import System.Environment (getArgs)
main = do
[file] <- getArgs
s <- readFile file
putStr s
® wc.hs — zdhle Anzahl von Zeilen/W&drtern/Zeichen in Eingabe
count s = nl ++ " " 4+ nw ++ " " ++ nc ++ "\n"
where nl = show $ length $ lines s
nw = show $ length $ words s
nc = show $ length s
main = interact count

-- assume there is exactly one file

® sort.hs — sortiere Eingabe zeilenweise
import Data.List (sort)
main = interact (unlines

sort lines)

RT et al. (IFI @ UIBK) Woche 10 13/27

Higher-Order und 1/O-Aktionen

® foreach :: [a] -> (a -> I0 b) -> I0 Q)
foreach [] io = return ()
do { io a; foreach as io }

foreach (a:as) io
® bessere Variante von cat.hs
main = do
files <- gethArgs
if null files then interact id else do
foreach files readAndPrint
where readAndPrint f = readFile f >>= putStr

RT et al. (IFI @ UIBK) Woche 10 15/27

Lazy-Evaluation und 1/0-Aktionen

® betrachten Sie ein einfaches Programm, um Dateien zu kopieren
main = do -- imports omitted

[src, dest] <- getArgs

s <- readFile src

writeFile dest s

® readFile und writeFile haben eine verzogerte Auswertung (lazy-Evaluation), d.h.,
readFile liest Zeichen nur bei Bedarf

® positiver Effekt: kopiere groe Dateien, ohne diese vollstindig in den Speicher zu laden

® Lazy-Evaluation kann auch Probleme verursachen
main = do -- imports omitted

[file] <- getArgs

s <- readFile file

writeFile file (map toUpper s)

® weil readFile lazy ist, wird bei s <- readFile file nichts direkt gelesen

® danach wird versucht, dieselbe Datei schreibend zu &ffnen; fithrt zu Programm-Abbruch

® | osung: feinere Kontrolle, in der Dateien explizit gedffnet und geschlossen werden kénnen;

sieche Vorlesungen Betriebssysteme und Fortgeschrittene Funktionale Programming

RT et al. (IFl @ UIBK) Woche 10

Beispiel Anwendung: Vier Gewinnt

RT et al. (IFl @ UIBK) Woche 10

14/27

16/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Vier Gewinnt

e Ziel: Implementierung von Vier Gewinnt, MB Spiele Vier Gewinnt: Implementierung

® klare Trennung von zwei Teilen
® Benutzeroberflache (1/0)

® Einlesen eines Zuges

® Ausgabe des aktuellen Spielstands

® Spiellogik (rein funktionaler Code)

® mit einer textuellen Benutzeroberflache ® Typ, um Spielstand zu reprisentieren (Brett + nichster Spieler)

0123456 ® Durchfiihrung eines Zugs

....... ® Priifung, ob jemand gewonnen hat
.X0.X.. ® Darstellung eines Spielstands als String
.X000X0 e ..

X0X0x0X ® jeder Teil ist in eigenem Modul implementiert
0XX0X00 ® Logic beinhaltet die Spiellogik

XX0X00X

® Main beinhaltet Benutzeroberfliche und die main Funktion

Player X to go
Choose one of [0,1,2,3,4,5,6]

RT et al. (IFI @ UIBK) Woche 10 17/27 RT et al. (IFI @ UIBK) Woche 10 18/27

Spiellogik: Bereitgestellte Funktionalitit

e Typen: State, Move und Player Die Read-Klasse

® Konstante initState :: State o Klasse Read bietet Methoden an, um Strings in andere Typen zu verwandeln
® Funktion showPlayer :: Player -> String ® read :: Read a => String -> a

® Funktion showState :: State -> String ¢ readMaybe :: Read a => String -> Maybe a

Import von Modul Text.Read wird bendtigt

® Funktion winningPlayer :: State -> Maybe Player ® bei Benutzung von read wird oft der Typ a explizit angegeben

® Funktion validMoves :: State -> [Move] ® Beispiele
. . ® (read "(41, True)" :: (Integer,Bool)) = (41, True)
° H -> ->
Funktion dropTile Move State State ® (read "(41, True)" :: (Integer,Integer)) = error ...
® in Summe ® (readMaybe "1" :: Maybe Integer) = Just 1
module Logic(State Move, Player ® (readMaybe "one" :: Maybe Integer) = Nothing
initState, showPlayer, showState, e fiir das Logic Modul nehmen wir an, dass Typ Move eine Instanz von Show und Read ist

winningPlayer, validMoves, dropTile) where
-- details, which the user interface doesn't have to know

RT et al. (IFI @ UIBK) Woche 10 19/27 RT et al. (IFI @ UIBK) Woche 10 20/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Benutzeroberflache

module Main(main) where -- module name must be "Main" for compilation
import Logic
main = do
putStrLn "Welcome to Connect Four"
game initState
game state = do
putStrLn $ showState state
case winningPlayer state of
Just player -> putStrLn $ showPlayer player ++ " wins!"
Nothing -> let moves = validMoves state in
if null moves then putStrLn "Game ends in draw.
else do
putStr $ "Choose one of " ++ show moves ++ ": "
hFlush stdout -- flush output buffer
moveStr <- getLine
let move = (read moveStr :: Move)
fame (dropTile move state)

RT et al. (IFI @ Woche 10

Spiellogik: Giiltige Ziige und Darstellung eines Spielzustands

validMoves :: State -> [Movel
validMoves (State _ rows) =
map fst . filter ((== empty) . snd) . zip [0 .. numCols - 1] $ head rows

showPlayer :: Player -> String
showPlayer 1 = "X"
showPlayer 2 = "0O"

showTile :: Tile -> Char
showTile t = if t == empty then '.' else head $ showPlayer t

showState :: State -> String
showState (State player rows) = unlines $
concatMap show [0 .. numCols - 1]
map (map showTile) rows
++ ["\nPlayer " ++ showPlayer player ++ " to go"]

RT et al. (IFlI @ UIBK) Woche 10

21/27

23/27

Spiellogik: Reprasentation eines Zustands; Startzustand

type Tile = Int -- 0, 1, or 2

type Player = Int -- 1 and 2

type Move = Int -- column number

data State = State Player [[Tile]] -- list of rows
empty :: Tile

empty = 0

numRows, numCols :: Int

numRows = 6
numCols = 7

startPlayer :: Player
startPlayer = 1

initState :: State

initState = State startPlayer (replicate numRows (replicate numCols empty))

RT et al. (IFl @ UIBK) Woche 10

Spiellogik: Durchfiihrung eines Zugs

otherPlayer :: Player -> Player
otherPlayer = (3 -)

dropTile :: Move -> State -> State
dropTile col (State player rows) = State
(otherPlayer player)
(reverse $ dropAux $ reverse rows)
where
dropAux (row : rows) =
case splitAt col row of
(first, t : last) ->
if t == empty
then (first ++ player : last) : rows
else row : dropAux rows

RT et al. (IFlI @ UIBK) Woche 10

22/27

24/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Spiellogik: Gewinn-Bedingung

winningRow :: Player -> [Tile] -> Bool

winningRow player [] = False

winningRow player row = take 4 row == replicate 4 player
|| winningRow player (tail row)

transpose ([] : _) =[]
transpose xs = map head xs : transpose (map tail xs)

winningPlayer :: State -> Maybe Player
winningPlayer (State player rows) =
let prevPlayer = otherPlayer player

longRows = rows ++ transpose rows -- ++ diags rows

in if any (winningRow prevPlayer) longRows
then Just prevPlayer
else Nothing

RT et al. (IFI @ UIBK) Woche 10 25/27

Zusammenfassung
® in Haskell ist Ein- und Ausgabe méglich;
I0 a ist der Typ von |/O-Aktionen mit Resultat vom Typ a
® Typsystem bietet klare Trennung von rein-funktionalem und I/O-Code
® mehrere Aktionen kdnnen mit (>>=) oder in do-Blécken kombiniert werden
® es gibt viele vordefinierte Funktionen fiir die Ein- und Ausgabe

® weitere Informationen bzgl. 1/O in Haskell:
http://book.realworldhaskell.org/read/io.html

® Read Klasse bietet Funktion read :: String -> a, die duale Funktion zu
show :: a -> String

® Vier Gewinnt: getrennte Implementierung der Spiellogik (rein funktional) und
Benutzeroberfliche (1/0)

RT et al. (IFI @ UIBK) Woche 10 27/27

Vier Gewinnt: AbschlieBRende Bemerkungen

® Implementierung ist rudimentar

® Diagonalen werden bei der Gewinn-Bedingung nicht beriicksichtigt
® Programm-Abbruch bei Eingabe ungiiltiger Ziige

e Ubung: Ausbau der Implementierung

RT et al. (IFl @ UIBK) Woche 10

26/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://book.realworldhaskell.org/read/io.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Eingabe und Ausgabe in Haskell
	
	Beispiel Anwendung: Vier Gewinnt

