M universitat WS 2025/2026

™ innsbruck

Funktionale Programming

Woche 11 — Verzégerte Auswertung, Unendliche Listen

René Thiemann
Philipp Dablander Joshua Ocker Michael Schaper Lilly Schonherr Adam Pescoller

Institut fiir Informatik

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Letzte Vorlesung

® I0 aist Typ von |/O-Aktionen mit Resultat vom Typ a
® do-Blocke fiihren Sequenzen von 1/O-Aktionen aus

e klare Trennung zwischen rein funktionalem und |/O-Code:
® funktionaler Code kann in 1/O eingebettet werden: return :: a -> I0 a
® die andere Richtung ist nicht mdglich: es gibt keine Funktion vom Typ I0 a -> a
e ghc compiliert Programm, in dem eine main :: I0 () Funktion in Modul Main
vorkommt
e Beispiel Anwendung: Vier Gewinnt

® Benutzeroberfliche: 1/0-Code
® |logik von Vier Gewinnt: rein funktional

RT et al. (IFI @ UIBK) Woche 11 2/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monaden
® Bind (>>=), return, und do-Notation sind nicht auf I/O eingeschrankt
® es gibt ein allgemeines Konzept von Monaden
e Beispiel: auch der Maybe-Typ ist eine Monade

data Expr = Const Double | Div Expr Expr
eval :: Expr -> Maybe Double
eval (Const c) = return c
eval (Div exprl expr2) = do
xl <- eval expril
x2 <- eval expr2
if x2 ==
then Nothing
else return (x1 / x2)
® Monaden werden in diesem Kurs nicht weiter behandelt, aber es ist der Grund fiir die
Verwendung des Begriffs |/O-Monade in der Haskell Literatur

RT et al. (IFI @ UIBK) Woche 11 3/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Auswertungs-Strategien

RT et al. (IFI @ UIBK) Woche 11 4/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Reine Funktionen

® eine Funktion ist rein (englisch: pure), wenn man bei gleicher Eingabe immer das gleiche
Resultat erhalt, und die Ausfiihrung keine Seiteneffekte hat
® Beispiele von reinen Funktionen
® Addition

® Sortierung einer Liste (Riickgabe einer neuen sortierten Liste)
[

® nicht reine Funktionen

® Sortierung einer Liste (ohne dabei eine neue Liste zu erzeugen)
® Bestimmung der aktuellen Zeit

® Bestimmung eines Wiirfel-Wurfs
[

e rein-funktionale Sprachen erlauben es, nur reine Funktionen zu definieren

® Haskell ist rein-funktional

RT et al. (IFI @ UIBK) Woche 11 5/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Reine Funktionen und 1/0
e selbst |/O ist in Haskell rein
® betrachte main = getLine >>= putStrLn . ("Hello " ++)
® man kdnnte meinen, dass das Resultat von der Eingabe abhangt, also nicht rein ist

® abermain :: I0 (), also ist der funktionale Wert von main eine (kombinierte) Aktion;
und diese Aktion ist in der Tat immer gleich:

lese erst eine Eingabe i und gebe dann den Text "Hello ¢" aus

e alternative Argumentation: interpretiere Typ I0 a als ein Zustands-Transformer auf der
Welt, d.h. als eine Funktion RealWorld -> (RealWorld, a)

® Anmerkung: im Rest dieser Vorlesung betrachten wir nur reine Funktionen ohne /0O

RT et al. (IFI @ UIBK) Woche 11 6/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Auswertungs-Reihenfolge
e es gibt viele Moglichkeiten, einen Ausdruck auszuwerten; betrachte square x = x

square (5 + 3)

D

(5 +3) * (5+ 3) square 8

N

8 * (5 + 3) (5+3) 8

i

* 8
!
64
® in rein funktionalen Sprache hat die Auswertungs-Reihenfolge keinen EinfluR auf die
berechneten Normalformen

e Normalform: ein Ausdruck, der nicht weiter ausgewertet werden kann; ein Resultat

Theorem

Wann immer man einen Haskell-Ausdruck auf zwei (unterschiedliche) Arten zu einer
Normalform auswerten kann, dann sind die erhaltenen Normalformen identisch.

RT et al. (IFI @ UIBK) Woche 11

*

X

7/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Auswertungs-Strategien
® Programmiersprachen fixieren Auswertungs-Reihenfolge durch Auswertungs-Strategie

¢ bekannte Strategien mit Ausdriicken als Bdumen oder als gerichtete Graphen (DAGs)
® innermost (strikt): werte zuerst die Argumente einer Funktion aus

square square *
[[/ N\
square (5+3) = + = 8 = 8 8 = 64
/ N\
5 3
® outermost (nicht strikt): wende Gleichung so friih wie méglich an
square * * *
[/ N\ / N\ I\
square (5+3) = + =+ + = + 8 =88 =64

/ N\ /AT I\
5 3 5353 53

® lazy evaluation (nicht strikt): wie outermost + Verwendung von DAGs
square * *

square (5+3) = + =+ = 8 = 64

RT et al. (IFI @ UIBK) Woche 11 8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Auswertungs-Strategie von Haskell

e Haskell verwendet Lazy Evaluation (verzogerte Auswertung) mit Argument-Reihenfolge
von links nach rechts

e Sharing im DAG wird verwendet, wann immer eine Variable mehrfach genutzt wird
¢ Beispiel Gleichung f x = g x + g (3 + 5) + x
® bei der Auswertungvon £ (1 + 2) = g (1 + 2) + g (3 + 5) + (1 + 2) werden die
beiden Vorkommen von 1 + 2 geshared: sie nutzen die gleiche Variable x
® bei der Auswertung von f (3 + 5) = g (3 + 5) + g (3 + 5) + (3 + 5) werden die
beiden Vorkommen von g (3 + 5) nicht geshared: es war ein Zufall, dass x mit 3 + 5
substituiert wurde und diese Gleichheit wird nicht zur Laufzeit entdeckt
e Compiler kann weiteres Sharing erzeugen; z.B. wird in Funktions-Definition
f x =g x+ h (g x)das g x nur einmal erzeugt und berechnet

e Auswertung von Argumenten einer Ausdrucks £ exprl ... exprN wird durch Pattern
Matching angestoRen, um z.B. die nutzbaren Gleichungen der Form
f patl ... patll = expr zu bestimmen, siehe Folie 13 und 15 aus Woche 3

® viele eingebaute arithmetische Funktionen bendtigen Auswertung aller Argumente, z.B.

liefert (O :: Integer) * undefined einen Fehler und nicht etwa 0
RT et al. (IFI @ UIBK) Woche 11 9/25

http://cl-informatik.uibk.ac.at/teaching/ws25/fp//slides/03x1.pdf#page=13
http://cl-informatik.uibk.ac.at/teaching/ws25/fp//slides/03x1.pdf#page=15
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Auswertungs-Strategien und Terminierung

e betrachte folgendes Programm
three :: Integer -> Integer
three x = 3

inf :: Integer
inf = 1 + inf

® |nnermost-Auswertung terminiert nicht, d.h., die Auswertung lauft unendlich

three inf = three (1 + inf) = three (1 + (1 + inf)) = ...

e Qutermost- und Lazy-Strategie sind sofort fertig
three inf = 3

Theorem

e wenn die Auswertung eines Ausdruck fiir irgendeine Strategie terminiert,
dann terminiert auch die Auswertung mit Outermost- und Lazy-Strategie

e wenn die Auswertung eines Ausdrucks mit Innermost-Strategie terminiert,
dann terminiert die Auswertung fiir jede Strategie

RT et al. (IFI @ UIBK) Woche 11

10/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Vergleich der Auswertung-Strategien

® Innermost
® einfach zu verstehen
® cinfach zu implementieren: Argumente einer Funktionen sind immer Werte
® teilweise wird zu viel berechnet, wenn Argumente fiir Resultat nicht bendtigt werden
® wird in vielen funktionalen Sprachen verwendet
e [azy Evaluation
® schwieriger zu verstehen
® Auswertung ist aufwandiger zu implementieren:
man muss Thunks libergeben, also Ausdriicke, die noch ausgewertet werden kénnen
® Verwaltung von Thunks ist Mehraufwand bei der Berechnung
® ermdglicht es, einfach mit unendlichen Daten umzugehen
® wird in Haskell verwendet

RT et al. (IFI @ UIBK) Woche 11 11/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Endrekursion und Strikte Auswertung

RT et al. (IFI @ UIBK) Woche 11 12/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Rekursions-Arten
® Rekursion: eine Funktion, die sich selbst aufruft ist

e verschrankte Rekursion: Funktionen, die sich gegenseitig aufrufen

even n | n == = True

| otherwise = odd (n - 1)
odd n | n == = False

| otherwise = even (n - 1)

e geschachtelte Rekursion: rekursive Aufrufe finden innerhalb rekursiver Aufrufe statt

acknm | n==0=m+1
| m==0=ack (n - 1) 1
| otherwise = ack (n - 1) (ack n (m - 1))
® lineare Rekursion: maximal ein rekursiver Aufruf (pro if-then-else Fall)
® fibn | n > 2 = fib (n - 1) + £fib (0 - 2)
® length (x : xs) = 1 + length xs
® f x = if even x then f (x “div™ 2) else f (3 * x + 1)

N x

e Endkursion und guarded Recursion werden im Detail besprochen

RT et al. (IFI @ UIBK) Woche 11 13/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Endrekursion (Tail Recursion)

e Endrekursion ist eine besondere Form der linearen Rekursion
e zusatzliche Anforderung

® rekursive Aufrufe finden nur ganz auBen statt,
bzw. ganz aulen innerhalb eines then- oder else-Ausdrucks

e Beispiele
® Jength (x : xs) = 1 + length xs
® f x = if even x then f (x “div™ 2) else f (3 * x + 1)

N %

e \orteil der Endrekursion

® man muss keine weiteren Funktionsaufrufe nach dem rekursiven Aufruf durchfiihren
® Konsequenz: Endrekursive Funktionen kdnnen einfach als Schleife implementiert werden
® Speicherplatz sparend

RT et al. (IFI @ UIBK) Woche 11 14/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel: Vorteil der Endrekursion

RT et al.

linear, aber nicht endrekursiv
sumRec 0 = 0O
sumRec n = n + sumRec (n - 1)

sumRec 5 = 5 + sumRec (5 - 1)

5 + sumRec 4 = 5 + (4 + sumRec (4 - 1))

5+ (4 + sumRec 3) =5+ (4 + (3 + sumRec (3 - 1))) = ...

5+ @A+ @3+ @+ @1+0))))=...=15 -- linear Platzbedarf
endrekursiv; nutzt Akkumulator um Zwischenergebnisse zu speichern

sumTr n = aux O n where

aux acc 0 = acc
aux (acc +n) (n - 1)

aux acc n

sumTr 5
= aux 0 56 = aux (0 + 5) (56 - 1)
aux (5 + 4) (4 - 1)
= aux 9 3 . =15

-- konstanter Platzbedarf, Implementierung durch Schleife mit 2 Variablen
(IFI @ UIBK) Woche 11 15/25

= aux 5 4

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Problem bei Endrekursion durch Lazy Evaluation

sumTr n = aux O n where

aux acc 0 = acc

aux acc n

RT et al.

aux (acc + n) (n - 1)
Auswertung von sumTr auf voriger Folie nutzt Innermost-Strategie
bei Lazy Evaluation werden acc und n nur auf Bedarf ausgewertet
fiihrt zu linearem Speicherbedarf bei sumTr
sumTr 5 -- with lazy evaluation
= aux 0 5
=aux (0 + 5) (5 - 1)
= aux (0 + 5) 4
= aux ((0 +5) +4) (4 - 1)

= aux ((((0O +5) +4) +3)+2)+1)0
= ((((0O+5) +4) +3)+2)+1= ...

15

(IF1 @ UIBK) Woche 11 16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Erzwingen der Auswertung
e Haskell Funktion, um eine Auswertung zu erzwingen: seq :: a -> b -> b
® Auswertung von seq x y wertet erst x zu WHNF aus und gibt dann y zuriick

e WHNF: weak head normal form
e Ausdruck e ist in WHNF gdw. er eine der folgenden drei Formen hat

® ¢ =Cexprl ... exprN fiir einen Konstruktor C (Konstruktor Anwendung)
® ¢ = f exprl ... exprN wenn die definierenden £-Gleichungen M > N Argumente haben,
d.h., sie sind von der Form f patl ... patM = expr (zu wenige Argumente)
® ¢ =\ patl ... patN -> expr (A-Abstraktion)
e Beispiel

® in WHNF: True, 7.1, (5+1) : [1] ++ [2], (:), undefined : undefined, (++),

(++ undefined), \ x -> undefined
® nicht in WHNF: [1] ++ [2], (\ x -> x + 1) (1 + 2), undefined ++ undefined

® Auswertung: let x = 1 + 2 in seq x (f x)

=seq (1 +2) (f (1 + 2)) -- with 1 + 2 shared
= seq 3 (f 3) -- seq enforced evaluation of argument
=f3=... -- evaluation of f 3 continues

RT et al. (IFI @ UIBK) Woche 11 17/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beispiel Anwendung von seq

¢ |3se das Platzproblem bei der Endrekursion, durch das Erzwingen der Auswertung des

Akkumulators
sumTrSeq n = aux O n where

aux acc 0 = acc
aux acc n = let accN = acc + n in seq accN (aux accN (n - 1))
sumTrSeq 5
= aux 0 5
= let acclN = 0 + 5 in seq accN (aux accN (5 - 1))
= seq (0 + 5) (aux (0 + 5) (5 - 1)) -- 0 + 5 is shared
= seq 5 (aux 5 (5 - 1)) -- and evaluated
= aux 5 (6 - 1)
= aux 5 4 -- pattern matching triggers evaluation
= let accN = 5 + 4 in seq accN (aux accN (4 - 1))
= seq (6 +4) (aux (5 + 4) (4 - 1)) -- 5 + 4 is shared
= seq 9 (aux 9 (4 - 1)) -- and evaluated
=aux 9 (4 - 1) -- same structure as above
= = 15 -- constant space

RT et al. (IFI @ UIBK) Woche 11 18/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Erzwingen der Auswertung ... Fortgesetzt

RT et al.

neben seq gibt es andere Mdglichkeiten, die Auswertung zu erzwingen

strikte Bibliotheksfunktionen wie z.B. eine strikte Variante von foldl:
foldl' :: (b -> a ->Db) ->Db -> [a] -> b

length = foldl' (\ x _ -> x + 1) 0

Pattern Matching mit Bang Patterns, um die Auswertung zu erzwingen, z.B.
aux acc n = let !accN = acc + n in aux accN (n - 1)

strikte Datentypen

weitere Details: https://downloads.haskell.org/“ghc/latest/docs/html/users_
guide/exts/strict.html

(IF1 @ UIBK) Woche 11 19/25

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/exts/strict.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/exts/strict.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lazy Evaluation und Unendliche Listen

RT et al. (IFI @ UIBK) Woche 11 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Guarded Recursion

e jeder rekursive Aufruf befindet sich innerhalb eines Konstruktor-Aufrufs

alternative Bezeichung: Endrekursion modulo Cons

in Haskell ist Guarded Recursion wichtiger als Endrekursion

Guarded Recursion erlaubt es, das Resultat stiickweise zu erzeugen und zu konsumieren;
im Gegensatz dazu wird bei der Endrekursion das Ergebnis erst zum Schluss offenbart
Beispiele von Guarded Recursion

® map £ [] = []

map f (x:xs) = f x : map f xs 4
® reverse xs = revAux xs [] where
revAux [] ys = ys b 4
revAux (x : xs) ys = revAux xs (x : ys)
® enumFrom x = x : enumFrom (x + 1) 4

Anmerkungen zu enumFrom

® enumFrom wurde vereinfacht, die eingebaute enumFrom Funktion funktioniert fiir alle Typen
der Enum-Klasse, z.B., Int, Char, Integer, Double, ...und verhindert Uberldufe
® Syntaktischer Zucker: [x..] = enumFrom x

RT et al. (IFI @ UIBK) Woche 11 21/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Unendliche Listen
e unendliche Listen ~ Folgen von Elementen (auch: Datenstrom)
® Programmierung mit unendlichen Listen: Produktion und Verbrauch von Elementen
stiickweise zu Beginn der Liste (z.B. durch Guarded Recursion)
e Beispiel: [x..] = x : [x + 1 ..] generiert unendliche Liste
¢ in Kombination mit Lazy Evaluation fiihrt dies nicht immer zur nicht-Terminierung
® Beispiele
take 2 [7..]
take 2 (7 : [8..1)
7 : take 1 [8..]
7 : 8 : take 0 [9..]
7, 8l

takeWhile (< 95) $ map (\ x -> x * x) [0..]
... = [0,1,4,9,16,25,36,49,64,81]

filter (< 100) $ map (\ x -> x * x) [0..]
= ... =1[0,1,4,9,16,25,36,49,64,81 -- interrupted

RT et al. (IFI @ UIBK) Woche 11 22/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lazy Evaluation und Unendliche Datenstrukturen férdern die Modularitat

® schreibe kleine Funktionen fiir spezifische Aufgaben

® nutze dabei potentiell unendliche Datenstrukturen

® Beispiel fiir Lazy Evaluation: finde Index des ersten Listenelements, dass ein Pradikat
erflillt

® Funktion firstIndex :: (a -> Bool) -> [a] -> Int
firstIndex p = fst . head . filter (p . snd) . zip [0..]

® (lazy) Auswertung (ohne hierbei explizit die Expansion von (.) und ($) zu zeigen)
firstIndex (== 1) [1..9]
fst . head . filter ((== 1) . snd) $ zip [0..] [1..9]
fst . head . filter ((== 1) . snd) $ (0,1) : zip [1..] [2..9]
fst . head $ (0,1) : filter ((== 1) . snd) $ zip [1..] [2..9]
fst (0,1)

=0
® ohne Lazy Evaluation wiirde die vollstandige Liste durchlaufen

(z.B., Berechnung der Lange und Hinzufiigen der Indizes)
® Anmerkung: firstIndex funktioniert fiir beliebige Listen: endliche und unendliche

RT et al. (IFI @ UIBK) Woche 11 23/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Sieb des Eratosthenes

e Ziel: generiere Liste aller Primzahlen
e Algorithmus
1. beginne mit Liste aller natiirlichen Zahlen beginnend mit 2

2. markiere erste Zahl x der Liste als Primzahl
3. entferne alle Vielfachen von z
4. gehe zuriick zu Schritt 2

® in Haskell
primes :: [Integer]
primes = sieve [2..] where
sieve (x : xs) = x : sieve (filter (\ y -> y "mod™ x /= 0) xs)

> take 1000 primes -- the first 1000 primes
> takeWhile (< 1000) primes -- all primes below 1000
> primes !! 1000 -- prime number #1001

RT et al. (IFI @ UIBK) Woche 11 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Zusammenfassung
® in rein funktionalen Sprachen wie Haskell hingt das Resultat nicht von der
Auswertungs-Strategie ab
® es gibt unterschiedliche Formen von Rekursion
e Endrekursion ist oft effizient, da es als Schleife implementiert werden kann

® seq kann eine strikte Auswertung erzwingen
(in Haskell bei Endrekursion oft fiir Akkumulatoren eingesetzt)

® Lazy Evaluation ermdglicht den Umgang mit unendlichen Listen
® Guarded Recursion ist wichtig fiir Algorithmen mit unendlichen Listen

e unendliche Listen erlauben eine natiirliche Formulierung einiger Algorithmen
(ohne auf Randbedingungen achten zu miissen)

RT et al. (IFI @ UIBK) Woche 11 25/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Auswertungs-Strategien
	
	Endrekursion und Strikte Auswertung
	
	Lazy Evaluation und Unendliche Listen
	

