
WS 2025/2026

Funktionale Programming
Woche 11 – Verzögerte Auswertung, Unendliche Listen

René Thiemann
Philipp Dablander Joshua Ocker Michael Schaper Lilly Schönherr Adam Pescoller

Institut für Informatik

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/


Letzte Vorlesung
• IO a ist Typ von I/O-Aktionen mit Resultat vom Typ a
• do-Blöcke führen Sequenzen von I/O-Aktionen aus
• klare Trennung zwischen rein funktionalem und I/O-Code:

• funktionaler Code kann in I/O eingebettet werden: return :: a -> IO a
• die andere Richtung ist nicht möglich: es gibt keine Funktion vom Typ IO a -> a

• ghc compiliert Programm, in dem eine main :: IO () Funktion in Modul Main
vorkommt

• Beispiel Anwendung: Vier Gewinnt
• Benutzeroberfläche: I/O-Code
• Logik von Vier Gewinnt: rein funktional

RT et al. (IFI @ UIBK) Woche 11 2/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Monaden
• Bind (>>=), return, und do-Notation sind nicht auf I/O eingeschränkt
• es gibt ein allgemeines Konzept von Monaden
• Beispiel: auch der Maybe-Typ ist eine Monade

data Expr = Const Double | Div Expr Expr
eval :: Expr -> Maybe Double
eval (Const c) = return c
eval (Div expr1 expr2) = do

x1 <- eval expr1
x2 <- eval expr2
if x2 == 0

then Nothing
else return (x1 / x2)

• Monaden werden in diesem Kurs nicht weiter behandelt, aber es ist der Grund für die
Verwendung des Begriffs I/O-Monade in der Haskell Literatur

RT et al. (IFI @ UIBK) Woche 11 3/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Auswertungs-Strategien

RT et al. (IFI @ UIBK) Woche 11 4/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Reine Funktionen
• eine Funktion ist rein (englisch: pure), wenn man bei gleicher Eingabe immer das gleiche

Resultat erhält, und die Ausführung keine Seiteneffekte hat
• Beispiele von reinen Funktionen

• Addition
• Sortierung einer Liste (Rückgabe einer neuen sortierten Liste)
• . . .

• nicht reine Funktionen
• Sortierung einer Liste (ohne dabei eine neue Liste zu erzeugen)
• Bestimmung der aktuellen Zeit
• Bestimmung eines Würfel-Wurfs
• . . .

• rein-funktionale Sprachen erlauben es, nur reine Funktionen zu definieren
• Haskell ist rein-funktional

RT et al. (IFI @ UIBK) Woche 11 5/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Reine Funktionen und I/O
• selbst I/O ist in Haskell rein
• betrachte main = getLine >>= putStrLn . ("Hello " ++)
• man könnte meinen, dass das Resultat von der Eingabe abhängt, also nicht rein ist
• aber main :: IO (), also ist der funktionale Wert von main eine (kombinierte) Aktion;

und diese Aktion ist in der Tat immer gleich:
lese erst eine Eingabe i und gebe dann den Text "Hello i" aus

• alternative Argumentation: interpretiere Typ IO a als ein Zustands-Transformer auf der
Welt, d.h. als eine Funktion RealWorld -> (RealWorld, a)

• Anmerkung: im Rest dieser Vorlesung betrachten wir nur reine Funktionen ohne I/O

RT et al. (IFI @ UIBK) Woche 11 6/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Auswertungs-Reihenfolge
• es gibt viele Möglichkeiten, einen Ausdruck auszuwerten; betrachte square x = x * x

square (5 + 3)

square 8

8 * 8

64

(5 + 3) * (5 + 3)

8 * (5 + 3) (5 + 3) * 8

• in rein funktionalen Sprache hat die Auswertungs-Reihenfolge keinen Einfluß auf die
berechneten Normalformen

• Normalform: ein Ausdruck, der nicht weiter ausgewertet werden kann; ein Resultat

Theorem
Wann immer man einen Haskell-Ausdruck auf zwei (unterschiedliche) Arten zu einer
Normalform auswerten kann, dann sind die erhaltenen Normalformen identisch.

RT et al. (IFI @ UIBK) Woche 11 7/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Auswertungs-Strategien
• Programmiersprachen fixieren Auswertungs-Reihenfolge durch Auswertungs-Strategie
• bekannte Strategien mit Ausdrücken als Bäumen oder als gerichtete Graphen (DAGs)

• innermost (strikt): werte zuerst die Argumente einer Funktion aus

square (5+3) =

square

+

5 3

=

square

8 =

*

8 8 = 64

• outermost (nicht strikt): wende Gleichung so früh wie möglich an

square (5+3) =

square

+

5 3

=

*

+

5 3

+

5 3

=

*

+

5 3

8 =

*

8 8 = 64

• lazy evaluation (nicht strikt): wie outermost + Verwendung von DAGs

square (5+3) =

square

+

5 3

=

*

+

5 3

=

*

8 = 64

RT et al. (IFI @ UIBK) Woche 11 8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Auswertungs-Strategie von Haskell
• Haskell verwendet Lazy Evaluation (verzögerte Auswertung) mit Argument-Reihenfolge

von links nach rechts
• Sharing im DAG wird verwendet, wann immer eine Variable mehrfach genutzt wird
• Beispiel Gleichung f x = g x + g (3 + 5) + x

• bei der Auswertung von f (1 + 2) = g (1 + 2) + g (3 + 5) + (1 + 2) werden die
beiden Vorkommen von 1 + 2 geshared: sie nutzen die gleiche Variable x

• bei der Auswertung von f (3 + 5) = g (3 + 5) + g (3 + 5) + (3 + 5) werden die
beiden Vorkommen von g (3 + 5) nicht geshared: es war ein Zufall, dass x mit 3 + 5
substituiert wurde und diese Gleichheit wird nicht zur Laufzeit entdeckt

• Compiler kann weiteres Sharing erzeugen; z.B. wird in Funktions-Definition
f x = g x + h (g x) das g x nur einmal erzeugt und berechnet

• Auswertung von Argumenten einer Ausdrucks f expr1 ... exprN wird durch Pattern
Matching angestoßen, um z.B. die nutzbaren Gleichungen der Form
f pat1 ... patN = expr zu bestimmen, siehe Folie 13 und 15 aus Woche 3

• viele eingebaute arithmetische Funktionen benötigen Auswertung aller Argumente, z.B.
liefert (0 :: Integer) * undefined einen Fehler und nicht etwa 0

RT et al. (IFI @ UIBK) Woche 11 9/25

http://cl-informatik.uibk.ac.at/teaching/ws25/fp//slides/03x1.pdf#page=13
http://cl-informatik.uibk.ac.at/teaching/ws25/fp//slides/03x1.pdf#page=15
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Auswertungs-Strategien und Terminierung
• betrachte folgendes Programm
three :: Integer -> Integer
three x = 3

inf :: Integer
inf = 1 + inf

• Innermost-Auswertung terminiert nicht, d.h., die Auswertung läuft unendlich
three inf = three (1 + inf) = three (1 + (1 + inf)) = ...

• Outermost- und Lazy-Strategie sind sofort fertig
three inf = 3

Theorem
• wenn die Auswertung eines Ausdruck für irgendeine Strategie terminiert,

dann terminiert auch die Auswertung mit Outermost- und Lazy-Strategie
• wenn die Auswertung eines Ausdrucks mit Innermost-Strategie terminiert,

dann terminiert die Auswertung für jede Strategie

RT et al. (IFI @ UIBK) Woche 11 10/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Vergleich der Auswertung-Strategien
• Innermost

• einfach zu verstehen
• einfach zu implementieren: Argumente einer Funktionen sind immer Werte
• teilweise wird zu viel berechnet, wenn Argumente für Resultat nicht benötigt werden
• wird in vielen funktionalen Sprachen verwendet

• Lazy Evaluation
• schwieriger zu verstehen
• Auswertung ist aufwändiger zu implementieren:

man muss Thunks übergeben, also Ausdrücke, die noch ausgewertet werden können
• Verwaltung von Thunks ist Mehraufwand bei der Berechnung
• ermöglicht es, einfach mit unendlichen Daten umzugehen
• wird in Haskell verwendet

RT et al. (IFI @ UIBK) Woche 11 11/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Endrekursion und Strikte Auswertung

RT et al. (IFI @ UIBK) Woche 11 12/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Rekursions-Arten
• Rekursion: eine Funktion, die sich selbst aufruft ist
• verschränkte Rekursion: Funktionen, die sich gegenseitig aufrufen

even n | n == 0 = True
| otherwise = odd (n - 1)

odd n | n == 0 = False
| otherwise = even (n - 1)

• geschachtelte Rekursion: rekursive Aufrufe finden innerhalb rekursiver Aufrufe statt

ack n m | n == 0 = m + 1
| m == 0 = ack (n - 1) 1
| otherwise = ack (n - 1) (ack n (m - 1))

• lineare Rekursion: maximal ein rekursiver Aufruf (pro if-then-else Fall)
• fib n | n >= 2 = fib (n - 1) + fib (n - 2) ✘
• length (x : xs) = 1 + length xs ✔
• f x = if even x then f (x `div` 2) else f (3 * x + 1) ✔

• Endkursion und guarded Recursion werden im Detail besprochen
RT et al. (IFI @ UIBK) Woche 11 13/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Endrekursion (Tail Recursion)
• Endrekursion ist eine besondere Form der linearen Rekursion
• zusätzliche Anforderung

• rekursive Aufrufe finden nur ganz außen statt,
bzw. ganz außen innerhalb eines then- oder else-Ausdrucks

• Beispiele
• length (x : xs) = 1 + length xs ✘
• f x = if even x then f (x `div` 2) else f (3 * x + 1) ✔

• Vorteil der Endrekursion
• man muss keine weiteren Funktionsaufrufe nach dem rekursiven Aufruf durchführen
• Konsequenz: Endrekursive Funktionen können einfach als Schleife implementiert werden
• Speicherplatz sparend

RT et al. (IFI @ UIBK) Woche 11 14/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Beispiel: Vorteil der Endrekursion
• linear, aber nicht endrekursiv
sumRec 0 = 0
sumRec n = n + sumRec (n - 1)

sumRec 5 = 5 + sumRec (5 - 1)
= 5 + sumRec 4 = 5 + (4 + sumRec (4 - 1))
= 5 + (4 + sumRec 3) = 5 + (4 + (3 + sumRec (3 - 1))) = ...
= 5 + (4 + (3 + (2 + (1 + 0)))) = ... = 15 -- linear Platzbedarf

• endrekursiv; nutzt Akkumulator um Zwischenergebnisse zu speichern
sumTr n = aux 0 n where

aux acc 0 = acc
aux acc n = aux (acc + n) (n - 1)

sumTr 5
= aux 0 5 = aux (0 + 5) (5 - 1)
= aux 5 4 = aux (5 + 4) (4 - 1)
= aux 9 3 = ... = 15
-- konstanter Platzbedarf, Implementierung durch Schleife mit 2 Variablen

RT et al. (IFI @ UIBK) Woche 11 15/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Problem bei Endrekursion durch Lazy Evaluation

sumTr n = aux 0 n where
aux acc 0 = acc
aux acc n = aux (acc + n) (n - 1)
• Auswertung von sumTr auf voriger Folie nutzt Innermost-Strategie
• bei Lazy Evaluation werden acc und n nur auf Bedarf ausgewertet
• führt zu linearem Speicherbedarf bei sumTr

sumTr 5 -- with lazy evaluation
= aux 0 5
= aux (0 + 5) (5 - 1)
= aux (0 + 5) 4
= aux ((0 + 5) + 4) (4 - 1)
= ...
= aux (((((0 + 5) + 4) + 3) + 2) + 1) 0
= ((((0 + 5) + 4) + 3) + 2) + 1 = ... = 15

RT et al. (IFI @ UIBK) Woche 11 16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Erzwingen der Auswertung
• Haskell Funktion, um eine Auswertung zu erzwingen: seq :: a -> b -> b
• Auswertung von seq x y wertet erst x zu WHNF aus und gibt dann y zurück
• WHNF: weak head normal form
• Ausdruck e ist in WHNF gdw. er eine der folgenden drei Formen hat

• e = C expr1 ... exprN für einen Konstruktor C (Konstruktor Anwendung)
• e = f expr1 ... exprN wenn die definierenden f-Gleichungen M > N Argumente haben,

d.h., sie sind von der Form f pat1 ... patM = expr (zu wenige Argumente)
• e = \ pat1 ... patN -> expr (λ-Abstraktion)

• Beispiel
• in WHNF: True, 7.1, (5+1) : [1] ++ [2], (:), undefined : undefined, (++),
(++ undefined), \ x -> undefined

• nicht in WHNF: [1] ++ [2], (\ x -> x + 1) (1 + 2), undefined ++ undefined
• Auswertung: let x = 1 + 2 in seq x (f x)
= seq (1 + 2) (f (1 + 2)) -- with 1 + 2 shared
= seq 3 (f 3) -- seq enforced evaluation of argument
= f 3 = ... -- evaluation of f 3 continues

RT et al. (IFI @ UIBK) Woche 11 17/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Beispiel Anwendung von seq
• löse das Platzproblem bei der Endrekursion, durch das Erzwingen der Auswertung des

Akkumulators
sumTrSeq n = aux 0 n where

aux acc 0 = acc
aux acc n = let accN = acc + n in seq accN (aux accN (n - 1))

sumTrSeq 5
= aux 0 5
= let accN = 0 + 5 in seq accN (aux accN (5 - 1))
= seq (0 + 5) (aux (0 + 5) (5 - 1)) -- 0 + 5 is shared
= seq 5 (aux 5 (5 - 1)) -- and evaluated
= aux 5 (5 - 1)
= aux 5 4 -- pattern matching triggers evaluation
= let accN = 5 + 4 in seq accN (aux accN (4 - 1))
= seq (5 + 4) (aux (5 + 4) (4 - 1)) -- 5 + 4 is shared
= seq 9 (aux 9 (4 - 1)) -- and evaluated
= aux 9 (4 - 1) -- same structure as above
= ... = 15 -- constant space

RT et al. (IFI @ UIBK) Woche 11 18/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Erzwingen der Auswertung . . . Fortgesetzt
• neben seq gibt es andere Möglichkeiten, die Auswertung zu erzwingen
• strikte Bibliotheksfunktionen wie z.B. eine strikte Variante von foldl:
foldl' :: (b -> a -> b) -> b -> [a] -> b

length = foldl' (\ x _ -> x + 1) 0
• Pattern Matching mit Bang Patterns, um die Auswertung zu erzwingen, z.B.
aux acc n = let !accN = acc + n in aux accN (n - 1)

• strikte Datentypen
• weitere Details: https://downloads.haskell.org/~ghc/latest/docs/html/users_
guide/exts/strict.html

RT et al. (IFI @ UIBK) Woche 11 19/25

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/exts/strict.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/exts/strict.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Lazy Evaluation und Unendliche Listen

RT et al. (IFI @ UIBK) Woche 11 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Guarded Recursion
• jeder rekursive Aufruf befindet sich innerhalb eines Konstruktor-Aufrufs
• alternative Bezeichung: Endrekursion modulo Cons
• in Haskell ist Guarded Recursion wichtiger als Endrekursion
• Guarded Recursion erlaubt es, das Resultat stückweise zu erzeugen und zu konsumieren;

im Gegensatz dazu wird bei der Endrekursion das Ergebnis erst zum Schluss offenbart
• Beispiele von Guarded Recursion

• map f [] = []
map f (x:xs) = f x : map f xs ✔

• reverse xs = revAux xs [] where
revAux [] ys = ys ✘
revAux (x : xs) ys = revAux xs (x : ys)

• enumFrom x = x : enumFrom (x + 1) ✔

• Anmerkungen zu enumFrom
• enumFrom wurde vereinfacht, die eingebaute enumFrom Funktion funktioniert für alle Typen

der Enum-Klasse, z.B., Int, Char, Integer, Double, . . . und verhindert Überläufe
• Syntaktischer Zucker: [x..] = enumFrom x

RT et al. (IFI @ UIBK) Woche 11 21/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Unendliche Listen
• unendliche Listen ∼ Folgen von Elementen (auch: Datenstrom)
• Programmierung mit unendlichen Listen: Produktion und Verbrauch von Elementen

stückweise zu Beginn der Liste (z.B. durch Guarded Recursion)
• Beispiel: [x..] = x : [x + 1 ..] generiert unendliche Liste
• in Kombination mit Lazy Evaluation führt dies nicht immer zur nicht-Terminierung
• Beispiele

take 2 [7..]
= take 2 (7 : [8..])
= 7 : take 1 [8..]
= 7 : 8 : take 0 [9..]
= [7, 8]

takeWhile (< 95) $ map (\ x -> x * x) [0..]
= ... = [0,1,4,9,16,25,36,49,64,81]

filter (< 100) $ map (\ x -> x * x) [0..]
= ... = [0,1,4,9,16,25,36,49,64,81 -- interrupted

RT et al. (IFI @ UIBK) Woche 11 22/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Lazy Evaluation und Unendliche Datenstrukturen fördern die Modularität
• schreibe kleine Funktionen für spezifische Aufgaben
• nutze dabei potentiell unendliche Datenstrukturen
• Beispiel für Lazy Evaluation: finde Index des ersten Listenelements, dass ein Prädikat

erfüllt
• Funktion firstIndex :: (a -> Bool) -> [a] -> Int

firstIndex p = fst . head . filter (p . snd) . zip [0..]

• (lazy) Auswertung (ohne hierbei explizit die Expansion von (.) und ($) zu zeigen)
firstIndex (== 1) [1..9]

= fst . head . filter ((== 1) . snd) $ zip [0..] [1..9]
= fst . head . filter ((== 1) . snd) $ (0,1) : zip [1..] [2..9]
= fst . head $ (0,1) : filter ((== 1) . snd) $ zip [1..] [2..9]
= fst (0,1)
= 0

• ohne Lazy Evaluation würde die vollständige Liste durchlaufen
(z.B., Berechnung der Länge und Hinzufügen der Indizes)

• Anmerkung: firstIndex funktioniert für beliebige Listen: endliche und unendliche

RT et al. (IFI @ UIBK) Woche 11 23/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Sieb des Eratosthenes
• Ziel: generiere Liste aller Primzahlen
• Algorithmus

1. beginne mit Liste aller natürlichen Zahlen beginnend mit 2
2. markiere erste Zahl x der Liste als Primzahl
3. entferne alle Vielfachen von x
4. gehe zurück zu Schritt 2

• in Haskell
primes :: [Integer]
primes = sieve [2..] where

sieve (x : xs) = x : sieve (filter (\ y -> y `mod` x /= 0) xs)

> take 1000 primes -- the first 1000 primes
> takeWhile (< 1000) primes -- all primes below 1000
> primes !! 1000 -- prime number #1001

RT et al. (IFI @ UIBK) Woche 11 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Zusammenfassung
• in rein funktionalen Sprachen wie Haskell hängt das Resultat nicht von der

Auswertungs-Strategie ab
• es gibt unterschiedliche Formen von Rekursion
• Endrekursion ist oft effizient, da es als Schleife implementiert werden kann
• seq kann eine strikte Auswertung erzwingen

(in Haskell bei Endrekursion oft für Akkumulatoren eingesetzt)
• Lazy Evaluation ermöglicht den Umgang mit unendlichen Listen
• Guarded Recursion ist wichtig für Algorithmen mit unendlichen Listen
• unendliche Listen erlauben eine natürliche Formulierung einiger Algorithmen

(ohne auf Randbedingungen achten zu müssen)

RT et al. (IFI @ UIBK) Woche 11 25/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Auswertungs-Strategien
	
	Endrekursion und Strikte Auswertung
	
	Lazy Evaluation und Unendliche Listen
	

