M universitat WS 2025/2026

™ innsbruck

.

[T p—
" mm
e -]

Funktionale Programming

Woche 11 — Verzogerte Auswertung, Unendliche Listen

René Thiemann
Philipp Dablander Joshua Ocker Michael Schaper Lilly Schonherr Adam Pescoller

Institut fiir Informatik

Monaden
e Bind (>>=), return, und do-Notation sind nicht auf 1/O eingeschrankt
® es gibt ein allgemeines Konzept von Monaden
® Beispiel: auch der Maybe-Typ ist eine Monade

data Expr = Const Double | Div Expr Expr
eval :: Expr -> Maybe Double
eval (Const c) = return c
eval (Div exprl expr2) = do
x1 <- eval expri
x2 <- eval expr2
if x2 ==
then Nothing
else return (x1 / x2)
e Monaden werden in diesem Kurs nicht weiter behandelt, aber es ist der Grund fiir die
Verwendung des Begriffs 1/O-Monade in der Haskell Literatur

RT et al. (IFlI @ UIBK) Woche 11

3/25

Letzte Vorlesung
e 10 aist Typ von I/O-Aktionen mit Resultat vom Typ a

do-Blécke fiihren Sequenzen von 1/O-Aktionen aus

klare Trennung zwischen rein funktionalem und 1/O-Code:
® funktionaler Code kann in I/O eingebettet werden: return :: a -> I0 a
® die andere Richtung ist nicht mdglich: es gibt keine Funktion vom Typ I0 a -> a
® ghc compiliert Programm, in dem eine main :: I0 () Funktion in Modul Main
vorkommt
® Beispiel Anwendung: Vier Gewinnt

® Benutzeroberfliche: 1/0-Code
® Logik von Vier Gewinnt: rein funktional

RT et al. (IFl @ UIBK) Woche 11

Auswertungs-Strategien

RT et al. (IFlI @ UIBK) Woche 11

2/25

4/25

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Reine Funktionen

® eine Funktion ist rein (englisch: pure), wenn man bei gleicher Eingabe immer das gleiche

Resultat erhalt, und die Ausfiihrung keine Seiteneffekte hat
® Beispiele von reinen Funktionen
® Addition

® Sortierung einer Liste (Riickgabe einer neuen sortierten Liste)
°

® nicht reine Funktionen

® Sortierung einer Liste (ohne dabei eine neue Liste zu erzeugen)
® Bestimmung der aktuellen Zeit

® Bestimmung eines Wiirfel-Wurfs
[]

e rein-funktionale Sprachen erlauben es, nur reine Funktionen zu definieren

® Haskell ist rein-funktional

RT et al. (IFI @ UIBK) Woche 11

Auswertungs-Reihenfolge
® es gibt viele Moglichkeiten, einen Ausdruck auszuwerten; betrachte square x = x

square (5 + 3)

(5 +3) % (5+3)

N

8 x (5 + 3) (5 +3) 8

\\

8 x 8

!

64

square 8

® in rein funktionalen Sprache hat die Auswertungs-Reihenfolge keinen EinfluR auf die
berechneten Normalformen

e Normalform: ein Ausdruck, der nicht weiter ausgewertet werden kann; ein Resultat

Theorem

Wann immer man einen Haskell-Ausdruck auf zwei (unterschiedliche) Arten zu einer
Normalform auswerten kann, dann sind die erhaltenen Normalformen identisch.

RT et al. (IFl @ UIBK) Woche 11

5/25

7/25

RT et al. (IFI @ UIBK)

RT et al. (IFI @ UIBK)

Reine Funktionen und 1/0

e selbst |/O ist in Haskell rein
® betrachte main = getLine >>= putStrLn . ("Hello " ++)
® man kénnte meinen, dass das Resultat von der Eingabe abhingt, also nicht rein ist

® abermain :: I0 (), also ist der funktionale Wert von main eine (kombinierte) Aktion;
und diese Aktion ist in der Tat immer gleich:

lese erst eine Eingabe 7 und gebe dann den Text "Hello ¢" aus

® alternative Argumentation: interpretiere Typ I0 a als ein Zustands-Transformer auf der
Welt, d.h. als eine Funktion RealWorld -> (RealWorld, a)

e Anmerkung: im Rest dieser Vorlesung betrachten wir nur reine Funktionen ohne 1/0

Woche 11

Auswertungs-Strategien

® Programmiersprachen fixieren Auswertungs-Reihenfolge durch Auswertungs-Strategie
® bekannte Strategien mit Ausdriicken als Bdumen oder als gerichtete Graphen (DAGs)
® innermost (strikt): werte zuerst die Argumente einer Funktion aus

square square *
I I / N\
square (5+3) = + = 8 = 8 8 = 64
/ \
5 3
® outermost (nicht strikt): wende Gleichung so friih wie mdglich an
square * * *
[/ N\ / N\ /\
square (5+3) = + =+ + = + 8 = 88 = 64
/ \ /AN /\

5 3 5353 5 3

® lazy evaluation (nicht strikt): wie outermost + Verwendung von DAGs
square * *

I
square (5+3) = + =+ = 8 = 64

Woche 11

6/25

8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Auswertungs-Strategie von Haskell Auswertungs-Strategien und Terminierung

® Haskell verwendet Lazy Evaluation (verzdgerte Auswertung) mit Argument-Reihenfolge ® betrachte folgendes Programm
von links nach rechts three :: Integer -> Integer
® Sharing im DAG wird verwendet, wann immer eine Variable mehrfach genutzt wird three x = 3

e Beispiel Gleichung f x = g x + g (3 + 5) + x
® bei der Auswertungvon £ (1 +2) = g (1 +2) + g (3 +5) + (1 + 2) werden die
beiden Vorkommen von 1 + 2 geshared: sie nutzen die gleiche Variable x

inf :: Integer
inf = 1 + inf

® bei der Auswertungvon £ (3 + 5) = g (3 + 5) + g (3 + 5) + (3 + 5) werden die ® Innermost-Auswertung terminiert nicht, d.h., die Auswertung lduft unendlich
beiden Vorkommen von g (3 + 5) nicht geshared: es war ein Zufall, dass x mit 3 + 5 three inf = three (1 + inf) = three (1 + (1 + inf)) = ...
substituiert wurde und diese Gleichheit wird nicht zur Laufzeit entdeckt e Qutermost- und Lazy-Strategie sind sofort fertig
e Compiler kann weiteres Sharing erzeugen; z.B. wird in Funktions-Definition three inf = 3
f x =g x+h (g x)dasg x nur einmal erzeugt und berechnet Theorem
® Auswertung von Argumenten einer Ausdrucks f exprl ... exprN wird durch Pattern « wenn die Auswertung eines Ausdruck fiir irgendeine Strategie terminiert
Matching angestoRen, um z.B. die nutzbaren Gleichungen der Form o .) !
£ pati ... pathl = expr zu bestimmen, siche Folie 13 und 15 aus Woche 3 dann terminiert auch die Auswertung mit Outermost- und Lazy-Strategie

® wenn die Auswertung eines Ausdrucks mit Innermost-Strategie terminiert,

® viele eingebaute arithmetische Funktionen bendtigen Auswertung aller Argumente, z.B.) . o)
dann terminiert die Auswertung fiir jede Strategie

liefert (0 :: Integer) * undefined einen Fehler und nicht etwa 0
RT et al. (IFl @ UIBK) Woche 11 9/25 RT et al. (IFl @ UIBK) Woche 11 10/25

Vergleich der Auswertung-Strategien

® |nnermost
® einfach zu verstehen
® einfach zu implementieren: Argumente einer Funktionen sind immer Werte
® teilweise wird zu viel berechnet, wenn Argumente fiir Resultat nicht bendtigt werden
® wird in vielen funktionalen Sprachen verwendet Endrekursion und Strikte Auswertu ng

e Lazy Evaluation
® schwieriger zu verstehen
® Auswertung ist aufwandiger zu implementieren:
man muss Thunks libergeben, also Ausdriicke, die noch ausgewertet werden kénnen
® Verwaltung von Thunks ist Mehraufwand bei der Berechnung
® ermdglicht es, einfach mit unendlichen Daten umzugehen
® wird in Haskell verwendet

RT et al. (IFI @ UIBK) Woche 11 11/25 RT et al. (IFI @ UIBK) Woche 11 12/25

http://cl-informatik.uibk.ac.at/teaching/ws25/fp//slides/03x1.pdf#page=13
http://cl-informatik.uibk.ac.at/teaching/ws25/fp//slides/03x1.pdf#page=15
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Rekursions-Arten

RT et al.

Rekursion: eine Funktion, die sich selbst aufruft ist

verschrankte Rekursion: Funktionen, die sich gegenseitig aufrufen
even n | n == = True

| otherwise = odd (n - 1)
odd n | n == = False

| otherwise = even (n - 1)
geschachtelte Rekursion: rekursive Aufrufe finden innerhalb rekursiver Aufrufe statt
ack nm | n==0=m+1
| m==0=ack (n - 1) 1
| otherwise = ack (n - 1) (ack n (m - 1))

lineare Rekursion: maximal ein rekursiver Aufruf (pro if-then-else Fall)
® fibn | n > 2 =fib (n - 1) + fib (n - 2)
® length (x : xs) = 1 + length xs
® f x = if even x then f (x “div™ 2) else f (3 * x + 1)
Endkursion und guarded Recursion werden im Detail besprochen

(IFI @ UIBK) Woche 11

Beispiel: Vorteil der Endrekursion

RT et al.

linear, aber nicht endrekursiv
sumRec 0 = 0
sumRec n = n + sumRec (n - 1)

sumRec 5 = 5 + sumRec (5 - 1)

5 + sumRec 4 = 5 + (4 + sumRec (4 - 1))

5+ (4 + sumRec 3) =5+ (4 + (3 + sumRec (3 - 1))) = ...

5+ A+ @3+ @+ (1+0)))=...=15 -- linear Platzbedarf
endrekursiv; nutzt Akkumulator um Zwischenergebnisse zu speichern

sumTr n = aux O n where

aux acc 0 = acc
aux acc n = aux (acc + n) (n - 1)

sumTr 5
=aux 0 5 = aux (0 + 5) (6 - 1)
=aux 54 =aux (6 +4) (4 - 1)
. =15

= aux 9 3

Endrekursion (Tail Recursion)

e Endrekursion ist eine besondere Form der linearen Rekursion
e zusatzliche Anforderung

® rekursive Aufrufe finden nur ganz auRen statt,
bzw. ganz auBen innerhalb eines then- oder else-Ausdrucks

® Beispiele
® length (x : xs) = 1 + length xs X
® f x = if even x then f (x “div™ 2) else f (3 * x + 1) v
® Vorteil der Endrekursion
® man muss keine weiteren Funktionsaufrufe nach dem rekursiven Aufruf durchfiihren
® Konsequenz: Endrekursive Funktionen kénnen einfach als Schleife implementiert werden
X ® Speicherplatz sparend
4
v
13/25 RT et al. (IFl @ UIBK) Woche 11 14/25

Problem bei Endrekursion durch Lazy Evaluation

sumTr n = aux O n where
aux acc 0 = acc
aux acc n = aux (acc + n) (n - 1)
® Auswertung von sumTr auf voriger Folie nutzt Innermost-Strategie
® bei Lazy Evaluation werden acc und n nur auf Bedarf ausgewertet
e fiihrt zu linearem Speicherbedarf bei sumTr
sumTr 5 -- with lazy evaluation

= aux 0 5

=aux (0 +5) (6 - 1)

= aux (0 + 5) 4

= aux ((0 +5) +4) (4 - 1)

= aux ((((O +5) +4) +3) +2) +1)0
= ((((0O+5) +4) +3)+2) +1= ...

15

-- konstanter Platzbedarf, Implementierung durch Schleife mit 2 Variablen

(IFI @ UIBK) Woche 11

15/25 RT et al. (IFI @ UIBK) Woche 11 16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Erzwingen der Auswertung

RT et al.

Haskell Funktion, um eine Auswertung zu erzwingen: seq :: a -> b -> b

Auswertung von seq x y wertet erst x zu WHNF aus und gibt dann y zuriick

WHNF: weak head normal form
Ausdruck e ist in WHNF gdw. er eine der folgenden drei Formen hat
® ¢ =Cexprl ... exprN fir einen Konstruktor C (Konstruktor Anwendung)
® ¢ = f exprl ... exprN wenn die definierenden £-Gleichungen M > N Argumente haben,
d.h., sie sind von der Form £ patl ... patM = expr (zu wenige Argumente)
® e =\ patl ... patN -> expr (A-Abstraktion)
Beispiel

® in WHNF: True, 7.1, (5+1) : [1] ++ [2], (:), undefined : undefined, (++),
(++ undefined), \ x -> undefined

® nicht in WHNF: [1] ++ [2], (\ x => x + 1) (1 + 2), undefined ++ undefined

® Auswertung: let x = 1 + 2 in seq x (f x)

=seq (1 +2) (f (1 +2)) -- with 1 + 2 shared

= seq 3 (f 3) -- seq enforced evaluation of argument

=f3=... -- evaluation of f 3 continues
(IF1 @ UIBK) Woche 11 17/25

Erzwingen der Auswertung ... Fortgesetzt

RT et al.

neben seq gibt es andere Moglichkeiten, die Auswertung zu erzwingen

strikte Bibliotheksfunktionen wie z.B. eine strikte Variante von foldl:
foldl' :: (b -> a ->b) ->b -> [a] -> b

length = foldl' (\ x _ -> x + 1) 0

Pattern Matching mit Bang Patterns, um die Auswertung zu erzwingen, z.B.
aux acc n = let laccN = acc + n in aux accN (n - 1)

strikte Datentypen

weitere Details: https://downloads.haskell.org/“ghc/latest/docs/html/users_
guide/exts/strict.html

(IFI @ UIBK) Woche 11 19/25

Beispiel Anwendung von seq

RT et al.

RT et al.

|6se das Platzproblem bei der Endrekursion, durch das Erzwingen der Auswertung des

Akkumulators

sumTrSeq n = aux O n where

aux acc 0 =
aux acc n =

sumTrSeq 5
=aux 0 5

acc

let accN = acc + n in seq accN (aux accN (n - 1))

= let accN = 0 + 5 in seq accN (aux accN (5 - 1))
= seq (0 + 5) (aux (0 + 5) (5 - 1))

= seq 5 (aux 5
= aux 5 (6 - 1)
= aux 5 4

= seq 9 (aux 9
=aux 9 (4 - 1)
= ... =15
(IF1 @ UIBK)
(IF1 @ UIBK)

(5 - 1)

-- 0 + 5 is shared
-- and evaluated

-- pattern matching triggers evaluation
= let accN = 5 + 4 in seq accN (aux accN (4 - 1))
= seq (6 + 4) (aux (6 + 4) (4 - 1))

4 - 1)

-- Same

Woche 11

Lazy Evaluation und Unendliche Listen

Woche 11

-- 5 + 4 is shared
-- and evaluated
structure as above
-- constant space

18/25

20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/exts/strict.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/exts/strict.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Guarded Recursion

RT et al.

jeder rekursive Aufruf befindet sich innerhalb eines Konstruktor-Aufrufs
alternative Bezeichung: Endrekursion modulo Cons
in Haskell ist Guarded Recursion wichtiger als Endrekursion

Guarded Recursion erlaubt es, das Resultat stiickweise zu erzeugen und zu konsumieren;
im Gegensatz dazu wird bei der Endrekursion das Ergebnis erst zum Schluss offenbart
Beispiele von Guarded Recursion
® map £ [1 = []
map f (x:xs) = f x : map f xs v
® reverse xs = revAux xs [] where
revAux [1 ys = ys X
revAux (x : xs) ys = revAux xs (x : ys)
® cnumFrom x = x : enumFrom (x + 1) "4
Anmerkungen zu enumFrom
® enumFrom wurde vereinfacht, die eingebaute enumFrom Funktion funktioniert fiir alle Typen
der Enum-Klasse, z.B., Int, Char, Integer, Double, ...und verhindert Uberlaufe
® Syntaktischer Zucker: [x..] = enumFrom x

(IFI @ UIBK) Woche 11 21/25

Lazy Evaluation und Unendliche Datenstrukturen férdern die Modularitat

RT et al.

schreibe kleine Funktionen fiir spezifische Aufgaben

nutze dabei potentiell unendliche Datenstrukturen

Beispiel fiir Lazy Evaluation: finde Index des ersten Listenelements, dass ein Pradikat

erfullt
® Funktion firstIndex :: (a -> Bool) -> [a] -> Int
. zip [0..]

® (lazy) Auswertung (ohne hierbei explizit die Expansion von (.) und ($) zu zeigen)
firstIndex (== 1) [1..9]

firstIndex p = fst . head . filter (p . snd)

= fst . head . filter ((== 1) . snd) $ zip [0..] [1..9]

= fst . head . filter ((== 1) . snd) $ (0,1) : zip [1..] [2..9]
= fst . head $ (0,1) : filter ((== 1) . snd) $ zip [1..] [2..9]
= fst (0,1)

=0

® ohne Lazy Evaluation wiirde die vollstandige Liste durchlaufen
(z.B., Berechnung der Lange und Hinzufiigen der Indizes)
® Anmerkung: firstIndex funktioniert fiir beliebige Listen: endliche und unendliche

(IFI @ UIBK) Woche 11 23/25

RT et al.

RT et al. (IFI @ UIBK)

Unendliche Listen

unendliche Listen ~ Folgen von Elementen (auch: Datenstrom)

Programmierung mit unendlichen Listen: Produktion und Verbrauch von Elementen
stiickweise zu Beginn der Liste (z.B. durch Guarded Recursion)

[x + 1

in Kombination mit Lazy Evaluation fiihrt dies nicht immer zur nicht-Terminierung

Beispiel: [x..] = x : . .1 generiert unendliche Liste

Beispiele

take 2 [7..]
= take 2 (7 : [8..]1)
=7 : take 1 [8..]
=7 :8 : take 0 [9..]
= [7, 8]

takeWhile (< 95) $ map (\ x -> x * x) [0..]
... =1[0,1,4,9,16,25,36,49,64,81]

filter (< 100) $ map (\ x -> x * x) [0..]
= ... =1[0,1,4,9,16,25,36,49,64,81 -- interrupted

(IFI @ UIBK) Woche 11 22/25

Sieb des Eratosthenes

Ziel: generiere Liste aller Primzahlen
Algorithmus
1. beginne mit Liste aller natiirlichen Zahlen beginnend mit 2

2. markiere erste Zahl = der Liste als Primzahl
3. entferne alle Vielfachen von =
4. gehe zuriick zu Schritt 2
in Haskell
primes :: [Integer]
primes = sieve [2..] where
sieve (x : xs) = x : sieve (filter (\ y -> y "mod™ x /= 0) xs)
> take 1000 primes -- the first 1000 primes
> takeWhile (< 1000) primes -- all primes below 1000

> primes !! 1000 -- prime number #1001

Woche 11 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Zusammenfassung

RT et al.

in rein funktionalen Sprachen wie Haskell hangt das Resultat nicht von der
Auswertungs-Strategie ab

es gibt unterschiedliche Formen von Rekursion
Endrekursion ist oft effizient, da es als Schleife implementiert werden kann

seq kann eine strikte Auswertung erzwingen
(in Haskell bei Endrekursion oft fiir Akkumulatoren eingesetzt)

Lazy Evaluation ermdglicht den Umgang mit unendlichen Listen
Guarded Recursion ist wichtig fiir Algorithmen mit unendlichen Listen

unendliche Listen erlauben eine natiirliche Formulierung einiger Algorithmen
(ohne auf Randbedingungen achten zu miissen)

(IF1 @ UIBK) Woche 11

25/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Auswertungs-Strategien
	
	Endrekursion und Strikte Auswertung
	
	Lazy Evaluation und Unendliche Listen
	

