

Selected Topics in Term Rewriting

25W

LVA 703552

Lecture 1 October 20, 2025

Selected Solutions

1 Consider the following interpretations in $\mathbb{N} \setminus \{0,1\}$: $f_{\mathbb{N}}(x,y) = xy$ and $g_{\mathbb{N}}(x,y) = 2x + y + 1$. Since

$$x(2y+z+1) > 2xy+xz+1$$

$$(2x+y+1)z > 2xz+yz+1$$

$$2(2x+y+1)+z+1 > 2x+(2y+z+1)+1$$

for all $x, y, z \ge 2$, the TRS is polynomially terminating. If we change the interpretations of f and g to $f_{\mathbb{N}}(x,y) = xy + 2x + 2y + 2$ and $g_{\mathbb{N}}(x,y) = 2x + y + 5$ then the resulting inequalities are satisfied for all $x,y,z \in \mathbb{N}$.

Consider the well-founded monotone algebra $(A, >_{\mathbb{N}})$ with carrier $\mathbb{N} \setminus \{0\}$ and interpretations $f_{A}(x, y) = 3^{x} + y$ and $g_{A}(x) = x + 1$. Since

$$3^{x+1} + y >_{\mathbb{N}} 3^x + (3^x + y) + 1$$

 $3^x + x >_{\mathbb{N}} x + 2$

for all $x, y \in \mathbb{N} \setminus \{0\}$, the TRS is terminating.

 $\boxed{3}$ (b) Consider the TRS \mathcal{R}_k consisting of the two rewrite rules

$$\mathsf{f}(\mathsf{g}(\mathsf{a})) \to \mathsf{g}(\mathsf{f}(\mathsf{a})) \hspace{1cm} \mathsf{a} \to \mathsf{g}^k(\mathsf{b})$$

for $k \ge 0$. By taking the weight function

$$w(f) = 0$$
 $w(g) = w(b) = w_0 = 1$ $w(a) = k + 1$

together with the admissible precedence f > a > g > b we obtain $\mathcal{R} \subseteq >_{\mathsf{kbo}}$. In the following we argue that the weight of a must be at least k+1. The two sides of the first rewrite rule have the same weight, regardless of the weight function, and hence f > g. Since g is unary, it cannot have weight zero as this would contradict admissibility. We have $w(\mathsf{b}) > 0$ by definition of weight function. It follows that the weight of the term $g^k(\mathsf{b})$ is at least k+1. To orient the second rule with KBO, we thus must have $w(\mathsf{a}) \geqslant k+1$.