Selected Topics in Term Rewriting

25W

LVA 703552

Lecture 2 October 27, 2025

Selected Solutions

Let $p = \deg(P)$ and $q = \deg(Q)$. The result is trivial if p = 0, since then P is a constant and hence P = Q. Let p > 0. From Q(x) = P(x, ..., x) it follows that P contains at least one monomial of degree q, implying $p \geqslant q$. We can split P into the polynomials $P_1(x_1, ..., x_n)$ which contains all monomials of P of degree p and $P_2(x_1, ..., x_n)$ consisting of the remaining monomials of degree strictly less than p. Therefore, $P(x_1, ..., x_n) = P_1(x_1, ..., x_n) + P_2(x_1, ..., x_n)$, where $P_1 \neq 0$ since p > 0. So there are $b_1, ..., b_n \geqslant 0$ with $P_1(b_1, ..., b_n) \neq 0$. Define $c = \max\{b_1, ..., b_n\}$. We conclude $Q(ca) = P(ca, ..., ca) \geqslant P(b_1 a, ..., b_n a) \geqslant P(0, ..., 0)$ for every $a \geqslant 0$ by using monotonicity of P. Therefore,

$$q = \deg(Q(x)) = \deg(Q(cx)) \geqslant \deg(P(b_1x, ..., b_nx))$$

= \deg(P_1(b_1x, ..., b_nx) + P_2(b_1x, ..., b_nx))
= \deg(P_1(b_1, ..., b_n) \cdot x^p + P_2(b_1x, ..., b_nx)) = p

where the last equality is a consequence of $P_1(b_1, \ldots, b_n) \neq 0$ and $\deg(P_2(b_1x, \ldots, b_nx)) < p$. Since $q \leq p$ and $q \geq p$ we arrive at $\deg(Q) = q = p = \deg(P)$.

Consider the following strictly monotone interpretation in \mathbb{N} : $a_{\mathbb{N}}(x) = 3^x$, $b_{\mathbb{N}}(x) = 2x$ and $c_{\mathbb{N}}(x) = x + 1$. Since

$$a_{\mathbb{N}}(b_{\mathbb{N}}(c_{\mathbb{N}}(x))) = 3^{2x+2} > 2 \cdot 3^{2x+1} = b_{\mathbb{N}}(a_{\mathbb{N}}(c_{\mathbb{N}}(b_{\mathbb{N}}(x))))$$

for all $x \ge 0$, the SRS is ω -terminating. Assume the SRS is polynomially terminating. So there exist strictly monotone univariate polynomials $a_{\mathbb{N}}$, $b_{\mathbb{N}}$ and $c_{\mathbb{N}}$ such that $a_{\mathbb{N}}(b_{\mathbb{N}}(c_{\mathbb{N}}(x))) > b_{\mathbb{N}}(a_{\mathbb{N}}(c_{\mathbb{N}}(b_{\mathbb{N}}(x))))$ for all $x \ge 0$. In particular, $\deg(a_{\mathbb{N}} \circ b_{\mathbb{N}} \circ c_{\mathbb{N}}) \ge \deg(b_{\mathbb{N}} \circ a_{\mathbb{N}} \circ c_{\mathbb{N}} \circ b_{\mathbb{N}})$ which gives $\deg(b_{\mathbb{N}}) = 1$. So $b_{\mathbb{N}}(x) = ax + b$ for some $a \ge 1$ and b > 0. Moreover, the leading coefficient of $a_{\mathbb{N}} \circ b_{\mathbb{N}} \circ c_{\mathbb{N}}$ cannot be smaller than that of $b_{\mathbb{N}} \circ a_{\mathbb{N}} \circ c_{\mathbb{N}} \circ b_{\mathbb{N}}$ and thus a = 1. Using strict monotonicity one easily proves by induction on n that $b_{\mathbb{N}}(n) \ge n$ and $c_{\mathbb{N}}(m+n) \ge c_{\mathbb{N}}(m) + n$ for all $m, n \in \mathbb{N}$. Hence

$$b_{\mathbb{N}}(a_{\mathbb{N}}(c_{\mathbb{N}}(b_{\mathbb{N}}(x)))) \geqslant a_{\mathbb{N}}(c_{\mathbb{N}}(b_{\mathbb{N}}(x))) = a_{\mathbb{N}}(c_{\mathbb{N}}(x+b)) \geqslant a_{\mathbb{N}}(c_{\mathbb{N}}(x)+b) = a_{\mathbb{N}}(b_{\mathbb{N}}(c_{\mathbb{N}}(x)))$$

contradicting the assumption. So the given SRS is not polynomially terminating.