

Exercises

- 1. Study the slides.
- 2. Consider the term t = (s(0) + x) + s(s(0)).
 - (a) Determine Var(t), $\mathcal{F}un(t)$, root(t), |t|, and ||t||.
 - (b) Determine all subterms of t and their positions.
- 3. Let t = x + (y + (x + y)). Determine $t\sigma$ and $\mathcal{D}om(\sigma)$ for the following substitutions σ .
 - (a) $\{x \mapsto y\}$
 - (b) $\{x \mapsto y + x, y \mapsto y + y, z \mapsto x\}$
 - (c) { $x \mapsto 0 + z, y \mapsto s(0), z \mapsto x + x$ }
- 4. Which of the following terms match the term x + (y + (x + y))?
 - (a) x + (y + z)
 - (b) (x+y) + z
 - (c) x + x
 - (d) x
- 5. Consider the following ARS:

(a) Complete the following table:

	SN	WN	UN	CR	WCR
а				×	
d					
f					
h		\checkmark			
k					

- (b) Suppose we add the arrows $\mathsf{c} \to \mathsf{d}$ and $\mathsf{s} \to \mathsf{t}.$
 - i. Does $a \downarrow g$ hold?
 - ii. Does $a \uparrow g$ hold?
- 6. Let $\mathcal{A} = \langle A, \rightarrow \rangle$ be an ARS and let *a* be an arbitrary element of *A*.
 - (a) Which of the following implications hold?
 - i. $SN(a) \Rightarrow WN(a)$
 - ii. $CR(a) \Rightarrow WCR(a)$
 - iii. $CR(a) \Rightarrow UN(a)$

- (b) Show that the implication $WN(a) \& UN(a) \Rightarrow CR(a)$ does not hold in general.
- (c) Does the implication $WN(a) \& UN(\mathcal{A}) \Rightarrow CR(a)$ hold?
- 7. An ARS $\mathcal{A} = \langle A, \rightarrow \rangle$ has the normal form property (NFP) if all elements that have a normal form are confluent ($\forall a \in A$ if WN(a) then CR(a)).
 - (a) Show that every confluent ARS has the normal form property.
 - (b) Does the converse hold?
 - (c) Show that the following statements are equivalent:
 - i. \mathcal{A} has the normal form property,
 - $\mathrm{ii.}\ \leftarrow\cdot\rightarrow^!\subseteq\rightarrow^!,$
 - iii. every element convertible to a normal form rewrites to that normal form.
- 8. (a) Order the multisets
 - $M_1 = \{2\},\$
 - $M_2 = \{1, 3\},\$
 - $M_3 = \{1, 1, 1, 2\},\$
 - $M_4 = \{2, 2, 2, 2\}$, and
 - $M_5 = \{1, 2\}$

with respect to the multiset extension of the standard order on natural numbers.

- (b) Order the multisets
 - $N_1 = \{0, x, 0, y, 0, 0\},\$
 - $N_2 = \{ s(x), s(0), 0, s(0), y \times s(0), s(s(0)) \},\$
 - $N_3 = \{ s(0), y, s(x) \},\$
 - $N_4 = \{ s(y \times s(0)), s(s(s(0))), s(x) \}, and$
 - $N_5 = \{ s(s(s(0))), s(y \times s(0)) + s(x) \}$

with respect to the multiset extension of \triangleright .

9. Consider the ES \mathcal{E} consisting of the three equations

$$f(x) \approx x$$
 $f(f(a)) \approx g(x, x)$ $g(x, f(x)) \approx b$

Which of the following equations belong to the equational theory of \mathcal{E} ?

(a) a \approx b

(b)
$$g(x,y) \approx g(y,x)$$

(c) $g(f(a), a) \approx f(b)$

10. Which of the following equations are valid in group theory?

- (a) $(x \cdot (y^- \cdot x)^-) \cdot y \approx e$
- (b) $(x \cdot x^-) \cdot ((y^- \cdot (\mathbf{e}^- \cdot x))^- \cdot y^-) \approx (x^- \cdot \mathbf{e})^-$

(c)
$$(x^{--} \cdot (x \cdot (x \cdot e)^{-}))^{-} \approx x^{--}$$

- 11. Consider the term t = (0 + s(0)) + (s(s(0)) + (0 + 0)). Which terms are denoted by the following expressions?
 - (a) $t|_{21}$
 - (b) $t[0 + s(0)]_{121}$
 - (c) $(t|_{2}[t|_{1}[t|_{22}]_{21}]_{11})|_{1}[t|_{211}[t|_{121}]_{1}]_{12}$
- *12. Prove that TAGCTAGCTAGCT $\approx_{\mathcal{E}}$ CTGACTGACT with respect to the ES \mathcal{E} consisting of the following equations between strings:

 $\mathsf{TCAT} \approx \mathsf{T}$ $\mathsf{GAG} \approx \mathsf{AG}$ $\mathsf{CTC} \approx \mathsf{TC}$ $\mathsf{AGTA} \approx \mathsf{A}$ $\mathsf{TAT} \approx \mathsf{CT}$

13. Is the TRS consisting of the rewrite rules

$$double(0) \rightarrow 0$$

 $double(s(x)) \rightarrow s(s(double(x)))$

terminating?