## Exercises

1. Study the slides.
2. Consider the term $t=(\mathrm{s}(0)+x)+\mathrm{s}(\mathrm{s}(0))$.
(a) Determine $\mathcal{V} \operatorname{ar}(t), \mathcal{F} \operatorname{un}(t), \operatorname{root}(t),|t|$, and $\|t\|$.
(b) Determine all subterms of $t$ and their positions.
3. Let $t=x+(y+(x+y))$. Determine $t \sigma$ and $\operatorname{Dom}(\sigma)$ for the following substitutions $\sigma$.
(a) $\{x \mapsto y\}$
(b) $\{x \mapsto y+x, y \mapsto y+y, z \mapsto x\}$
(c) $\{x \mapsto 0+z, y \mapsto \mathbf{s}(0), z \mapsto x+x\}$
4. Which of the following terms match the term $x+(y+(x+y))$ ?
(a) $x+(y+z)$
(b) $(x+y)+z$
(c) $x+x$
(d) $x$
5. Consider the following ARS:
a


(a) Complete the following table:

|  | SN | WN | UN | CR | WCR |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a |  |  |  | $\times$ |  |
| d |  |  |  |  |  |
| f |  |  |  |  |  |
| h |  | $\checkmark$ |  |  |  |
| k |  |  |  |  |  |

(b) Suppose we add the arrows $\mathrm{c} \rightarrow \mathrm{d}$ and $\mathrm{s} \rightarrow \mathrm{t}$.
i. Does a $\downarrow \mathrm{g}$ hold?
ii. Does a $\uparrow$ g hold?
6. Let $\mathcal{A}=\langle A, \rightarrow\rangle$ be an ARS and let $a$ be an arbitrary element of $A$.
(a) Which of the following implications hold?
i. $\mathrm{SN}(a) \Rightarrow \mathrm{WN}(a)$
ii. $\mathrm{CR}(a) \Rightarrow \operatorname{WCR}(a)$
iii. $\mathrm{CR}(a) \Rightarrow \mathrm{UN}(a)$
(b) Show that the implication $\mathrm{WN}(a) \& \mathrm{UN}(a) \Rightarrow \mathrm{CR}(a)$ does not hold in general.
(c) Does the implication $\mathrm{WN}(a) \& \operatorname{UN}(\mathcal{A}) \Rightarrow \mathrm{CR}(a)$ hold?
7. An ARS $\mathcal{A}=\langle A, \rightarrow\rangle$ has the normal form property (NFP) if all elements that have a normal form are confluent $(\forall a \in A$ if $\mathrm{WN}(a)$ then $\mathrm{CR}(a))$.
(a) Show that every confluent ARS has the normal form property.
(b) Does the converse hold?
(c) Show that the following statements are equivalent:
i. $\mathcal{A}$ has the normal form property,
ii. $\leftarrow \cdot \rightarrow$ ! $\subseteq \rightarrow$ !,
iii. every element convertible to a normal form rewrites to that normal form.
8. (a) Order the multisets

- $M_{1}=\{2\}$,
- $M_{2}=\{1,3\}$,
- $M_{3}=\{1,1,1,2\}$,
- $M_{4}=\{2,2,2,2\}$, and
- $M_{5}=\{1,2\}$
with respect to the multiset extension of the standard order on natural numbers.
(b) Order the multisets
- $N_{1}=\{0, x, 0, y, 0,0\}$,
- $N_{2}=\{\mathbf{s}(x), \mathrm{s}(0), 0, \mathrm{~s}(0), y \times \mathrm{s}(0), \mathrm{s}(\mathrm{s}(0))\}$,
- $N_{3}=\{\mathrm{s}(0), y, \mathrm{~s}(x)\}$,
- $N_{4}=\{\mathbf{s}(y \times \mathbf{s}(0)), \mathbf{s}(\mathbf{s}(\mathbf{s}(0))), \mathbf{s}(x)\}$, and
- $N_{5}=\{\mathrm{s}(\mathrm{s}(\mathrm{s}(0))), \mathrm{s}(y \times \mathrm{s}(0))+\mathrm{s}(x)\}$
with respect to the multiset extension of $\triangleright$.

9. Consider the ES $\mathcal{E}$ consisting of the three equations

$$
\mathrm{f}(x) \approx x \quad \mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{g}(x, x) \quad \mathrm{g}(x, \mathrm{f}(x)) \approx \mathrm{b}
$$

Which of the following equations belong to the equational theory of $\mathcal{E}$ ?
(a) $\mathrm{a} \approx \mathrm{b}$
(b) $\mathrm{g}(x, y) \approx \mathrm{g}(y, x)$
(c) $\mathrm{g}(\mathrm{f}(\mathrm{a}), \mathrm{a}) \approx \mathrm{f}(\mathrm{b})$
10. Which of the following equations are valid in group theory?
(a) $\left(x \cdot\left(y^{-} \cdot x\right)^{-}\right) \cdot y \approx \mathrm{e}$
(b) $\left(x \cdot x^{-}\right) \cdot\left(\left(y^{-} \cdot\left(\mathrm{e}^{-} \cdot x\right)\right)^{-} \cdot y^{-}\right) \approx\left(x^{-} \cdot \mathrm{e}\right)^{-}$
(c) $\left(x^{--} \cdot\left(x \cdot(x \cdot \mathrm{e})^{-}\right)\right)^{-} \approx x^{-----}$
11. Consider the term $t=(0+\mathrm{s}(0))+(\mathrm{s}(\mathrm{s}(0))+(0+0))$. Which terms are denoted by the following expressions?
(a) $\left.t\right|_{21}$
(b) $t[0+\mathrm{s}(0)]_{121}$
(c) $\left.\left(\left.t\right|_{2}\left[\left.t\right|_{1}\left[\left.t\right|_{22}\right]_{21}\right]_{11}\right)\right|_{1}\left[\left.t\right|_{211}\left[\left.t\right|_{121}\right]_{1}\right]_{12}$
$\star$ 12. Prove that TAGCTAGCTAGCT $\approx_{\mathcal{E}}$ CTGACTGACT with respect to the ES $\mathcal{E}$ consisting of the following equations between strings:

$$
\mathrm{TCAT} \approx \mathrm{~T} \quad \mathrm{GAG} \approx \mathrm{AG} \quad \mathrm{CTC} \approx \mathrm{TC} \quad \mathrm{AGTA} \approx \mathrm{~A} \quad \mathrm{TAT} \approx \mathrm{CT}
$$

13. Is the TRS consisting of the rewrite rules

$$
\begin{aligned}
\text { double }(0) & \rightarrow 0 \\
\text { double }(\mathrm{s}(x)) & \rightarrow \mathrm{s}(\mathrm{~s}(\text { double }(x)))
\end{aligned}
$$

terminating?

