Solutions

2. (a) $\operatorname{Var}(t)=\{x\}, \mathcal{F} \mathbf{u n}(t)=\{\mathrm{s}, 0,+\},|t|=8,\|t\|=7$
(b) t at position $\epsilon, \mathrm{s}(0)+x$ at position $1, \mathrm{~s}(0)$ at positions 11 and 21, 0 at positions 111 and 211, x at position $12, \mathrm{~s}(\mathrm{~s}(0))$ at position 2
3. (a) $t \sigma=y+(y+(y+y)), \mathcal{D} \circ \mathrm{m}(\sigma)=\{x\}$
(b) $t \sigma=(y+x)+((y+y)+((y+x)+(y+y))), \mathcal{D} \circ \mathbf{m}(\sigma)=\{x, y, z\}$
(c) $t \sigma=(0+z)+(\mathrm{s}(0)+((0+z)+\mathrm{s}(0))), \mathcal{D} \circ \mathrm{m}(\sigma)=\{x, y, z\}$
4. The terms $x+(y+z)$ and x.
5. (a)

	SN	WN	UN	CR	WCR
a	\checkmark	\checkmark	\times	\times	\checkmark
d	\times	\checkmark	\times	\times	\checkmark
f	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
h	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
k	\times	\checkmark	\times	\times	\times

(b) i. Yes: $\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{c} \rightarrow \mathrm{d} \rightarrow \mathrm{e} \rightarrow \mathrm{I} \rightarrow \mathrm{k} \rightarrow \mathrm{s} \rightarrow \mathrm{t} \rightarrow \mathrm{u} \leftarrow \mathrm{n} \leftarrow \mathrm{m} \leftarrow \mathrm{f} \leftarrow \mathrm{g}$
ii. No. The only element that rewrites to a is a itself and the only element that rewrites to g is g itself.
6. (a) All three implications are valid.
(b) The ARS

$$
a \longleftarrow b \longrightarrow c \longrightarrow
$$

constitutes a counterexample. Element b is weakly normalizing and has unique normal forms but it is not confluent.
(c) No. The ARS of part (b) is a counterexample. (The implication $\mathrm{WN}(\mathcal{A}) \& \operatorname{UN}(a) \Rightarrow \mathrm{CR}(a)$ does hold in general.)
7. (a) Obvious.
(b) No. The ARS

$$
C a \longleftarrow b \longrightarrow c ?
$$

has no normal forms, so the normal form property is vacuously satisfied, but it is not confluent.
(c) We have to show the equivalence of (1) the normal form property, $(2) \leftarrow \cdot \rightarrow$! $\subseteq \rightarrow^{!}$, and (3) every element convertible to a normal form rewrites to that normal form.
$(1) \Rightarrow(2)$ Suppose $b \leftarrow a \rightarrow^{!} c$. Since a has a normal form, a is confluent according to the normal form property. So $b \downarrow c$, which is only possible if $b \rightarrow!c$.
$(2) \Rightarrow(3)$ Suppose that $\leftarrow \cdot \rightarrow^{!} \subseteq \rightarrow^{!}$and let $a \leftrightarrow^{*} b$ with b a normal form. We show that $a \rightarrow^{!} b$ by induction on the length of the conversion between a and b. The case of zero length is trivial. Let $a \leftrightarrow a^{\prime} \leftrightarrow^{*} b$. From the induction hypothesis we obtain $a^{\prime} \rightarrow!b$. If $a \rightarrow a^{\prime}$ then clearly $a \rightarrow!b$. Otherwise $a \leftarrow a^{\prime}$ and hence we obtain $a \rightarrow$! b from the inclusion $\leftarrow \cdot \rightarrow!\subseteq \rightarrow!$.
$(3) \Rightarrow(1)$ Suppose $a \rightarrow!b$. We have to show that a is confluent. Let c be an arbitrary reduct of a. Clearly $c \leftrightarrow^{*} b$. By assumption $c \rightarrow!b$. So every reduct of a rewrites to b. This implies confluence.
8. (a) $M_{2}>_{\text {mul }} M_{4}>_{\text {mul }} M_{3}>_{\text {mul }} M_{5}>_{\text {mul }} M_{1}$
(b) $N_{5} \triangleright_{\text {mul }} N_{4} \triangleright_{\text {mul }} N_{2} \triangleright_{\text {mul }} N_{3} \triangleright_{\text {mul }} N_{1}$
9. (a) The following proof tree shows that $\mathrm{a} \approx_{\mathcal{E}} \mathrm{b}$:

Using Birkhoff's theorem, it follows that $\mathrm{a} \approx \mathrm{b}$ belongs to the equational theory of \mathcal{E}. You may find the following equational proof easier:

$$
\mathrm{a} \leftarrow \mathrm{f}(\mathrm{a}) \leftarrow \mathrm{f}(\mathrm{f}(\mathrm{a})) \rightarrow \mathrm{g}(\mathrm{a}, \mathrm{a}) \leftarrow \mathrm{g}(\mathrm{a}, \mathrm{f}(\mathrm{a})) \rightarrow \mathrm{b}
$$

(b) Consider the algebra \mathcal{A} with carrier $A=\{0,1\}$ and interpretations $\mathrm{a}_{\mathcal{A}}=\mathrm{b}_{\mathcal{A}}=0, \mathrm{f}_{\mathcal{A}}(0)=0$, $\mathrm{f}_{\mathcal{A}}(1)=1, \mathrm{~g}_{\mathcal{A}}(0,0)=\mathrm{g}_{\mathcal{A}}(0,1)=\mathrm{g}_{\mathcal{A}}(1,1)=0$, and $\mathrm{g}_{\mathcal{A}}(1,0)=1$. We have $\mathrm{f}(x)=\mathcal{A}_{\mathcal{A}} x$, $\mathrm{f}(\mathrm{f}(\mathrm{a}))==_{\mathcal{A}} \mathrm{g}(x, x)$, and $\mathrm{g}(x, \mathrm{f}(x))={ }_{\mathcal{A}} \mathrm{b}$, so \mathcal{A} is a model for \mathcal{E}. The equation $\mathrm{g}(x, y) \approx \mathrm{g}(y, x)$ is not valid in \mathcal{A} because $\mathrm{g}_{\mathcal{A}}(0,1)=0 \neq 1=\mathrm{g}_{\mathcal{A}}(1,0)$. Hence $\mathrm{g}(x, y) \approx \mathrm{g}(y, x)$ does not belong to the equational theory of \mathcal{E}.
(c) The following proof tree shows that $g(f(a), a) \approx_{\mathcal{E}} f(b)$:

Using Birkhoff's theorem, it follows that $g(f(a), a) \approx f(b)$ belongs to the equational theory of \mathcal{E}. Again, we present a simpler equational proof:

$$
\mathrm{g}(\mathrm{f}(\mathrm{a}), \mathrm{a}) \rightarrow \mathrm{g}(\mathrm{a}, \mathrm{a}) \leftarrow \mathrm{g}(\mathrm{a},(\mathrm{f}(\mathrm{a})) \rightarrow \mathrm{b} \leftarrow \mathrm{f}(\mathrm{~b})
$$

10. The idea is to compute the normal forms of both sides of the given equations with respect to the complete TRS on slide 23 of lecture 3.
(a) $\left(x \cdot\left(y^{-} \cdot x\right)^{-}\right) \cdot y \approx \mathrm{e}$ We have $\left(x \cdot\left(y^{-} \cdot x\right)^{-}\right) \cdot y \rightarrow\left(x \cdot\left(x^{-} \cdot y^{--}\right)\right) \cdot y \rightarrow y^{--} \cdot y \rightarrow y \cdot y$ and the normal form $y \cdot y$ is different from e . Hence the equation $\left(x \cdot\left(y^{-} \cdot x\right)^{-}\right) \cdot y \approx \mathrm{e}$ is not valid in group theory.
(b) We have $\left(x \cdot x^{-}\right) \cdot\left(\left(y^{-} \cdot\left(\mathrm{e}^{-} \cdot x\right)\right)^{-} \cdot y^{-}\right) \rightarrow^{*} \mathrm{e} \cdot\left(\left(y^{-} \cdot(\mathrm{e} \cdot x)\right)^{-} \cdot y^{-}\right) \rightarrow^{*}\left(y^{-} \cdot x\right)^{-} \cdot y^{-} \rightarrow$ $\left(x^{-} \cdot y^{--}\right) \cdot y^{-} \rightarrow\left(x^{-} \cdot y\right) \cdot y^{-} \rightarrow x^{-} \cdot\left(y \cdot y^{-}\right) \rightarrow x^{-} \cdot \mathrm{e} \rightarrow x^{-}$and $\left(x^{-} \cdot \mathrm{e}\right)^{-} \rightarrow x^{--} \rightarrow x$. Since x^{-}and x are different normal forms, the given equation is not valid in group theory.
(c) Both sides rewrite to $x^{-}:\left(x^{--} \cdot\left(x \cdot(x \cdot \mathrm{e})^{-}\right)\right)^{-} \rightarrow^{*}\left(x \cdot\left(x \cdot x^{-}\right)\right)^{-} \rightarrow(x \cdot \mathrm{e})^{-} \rightarrow x^{-}$and $x^{-----} \rightarrow x^{---} \rightarrow x^{-}$. Hence the given equation is valid in group theory.
11. Consider the term $t=(0+s(0))+(s(s(0))+(0+0))$. Which terms are denoted by the following expressions?
(a) $\left.t\right|_{21}=\mathrm{s}(\mathrm{s}(0))$
(b) $t[0+s(0)]_{121}=(0+s(0+s(0)))+(s(s(0))+(0+0))$
(c) $\left.\left(\left.t\right|_{2}\left[\left.t\right|_{1}\left[\left.t\right|_{22}\right]_{21}\right]_{11}\right)\right|_{1}\left[\left.t\right|_{211}\left[\left.t\right|_{121}\right]_{1}\right]_{12}=\mathrm{s}(0+\mathrm{s}(0))$
$\star 12$. (This can be easily solved after lecture 6 ; a solution will be shown in lecture 7.)
12. Yes. Define

$$
\phi(t)= \begin{cases}0 & \text { if } t=0 \text { or } t \in \mathcal{V} \\ \phi(u)+1 & \text { if } t=\mathrm{s}(u) \\ 2 \phi(u) & \text { if } t=\operatorname{double}(u)\end{cases}
$$

and

$$
\psi(t)=\sum\{\phi(u) \mid u \unlhd t \text { and } \operatorname{root}(u)=\text { double }\}
$$

It is easy to show that $\phi(t)=\phi(u)$ whenever $s \rightarrow t$. Using this fact, it can be shown that $\psi(t)>\psi(u)$ whenever $s \rightarrow t$. Since the standard order $>$ on natural numbers is well-founded, it follows that the TRS is terminating. (After lecture 4, proving termination is a piece of cake.)

