

Solutions

- 2. (a) $\mathcal{V}ar(t) = \{x\}, \mathcal{F}un(t) = \{s, 0, +\}, |t| = 8, ||t|| = 7$
 - (b) t at position ϵ , s(0) + x at position 1, s(0) at positions 11 and 21, 0 at positions 111 and 211, x at position 12, s(s(0)) at position 2
- 3. (a) $t\sigma = y + (y + (y + y)), \mathcal{D}om(\sigma) = \{x\}$
 - (b) $t\sigma = (y+x) + ((y+y) + ((y+x) + (y+y))), \mathcal{D}om(\sigma) = \{x, y, z\}$ (c) $t\sigma = (0+z) + (s(0) + ((0+z) + s(0))), \mathcal{D}om(\sigma) = \{x, y, z\}$
- 4. The terms x + (y + z) and x.

5. (a)

	SN	WN	UN	\mathbf{CR}	WCR
а	\checkmark	\checkmark	×	×	\checkmark
d	×	\checkmark	×	×	\checkmark
f	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
h	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
k	×	\checkmark	×	×	×

- ${\rm (b)} \quad \text{ i. Yes: } \mathsf{a} \to \mathsf{b} \to \mathsf{c} \to \mathsf{d} \to \mathsf{e} \to \mathsf{I} \to \mathsf{k} \to \mathsf{s} \to \mathsf{t} \to \mathsf{u} \leftarrow \mathsf{n} \leftarrow \mathsf{m} \leftarrow \mathsf{f} \leftarrow \mathsf{g}$
 - ii. No. The only element that rewrites to **a** is **a** itself and the only element that rewrites to **g** is **g** itself.
- 6. (a) All three implications are valid.
 - (b) The ARS

 $\mathsf{a} \longleftarrow \mathsf{b} \longrightarrow \mathsf{c} \bigcirc$

constitutes a counterexample. Element ${\sf b}$ is weakly normalizing and has unique normal forms but it is not confluent.

- (c) No. The ARS of part (b) is a counterexample. (The implication $WN(\mathcal{A}) \& UN(a) \Rightarrow CR(a)$ does hold in general.)
- 7. (a) Obvious.
 - (b) No. The ARS

 $\bigcirc \mathsf{a} \longleftarrow \mathsf{b} \longrightarrow \mathsf{c} \bigcirc$

has no normal forms, so the normal form property is vacuously satisfied, but it is not confluent.

- (c) We have to show the equivalence of (1) the normal form property, (2) $\leftarrow \cdot \rightarrow^! \subseteq \rightarrow^!$, and (3) every element convertible to a normal form rewrites to that normal form.
- (1) \Rightarrow (2) Suppose $b \leftarrow a \rightarrow c$. Since *a* has a normal form, *a* is confluent according to the normal form property. So $b \downarrow c$, which is only possible if $b \rightarrow c$.
- (2) \Rightarrow (3) Suppose that $\leftarrow \cdot \rightarrow^! \subseteq \rightarrow^!$ and let $a \leftrightarrow^* b$ with b a normal form. We show that $a \rightarrow^! b$ by induction on the length of the conversion between a and b. The case of zero length is trivial. Let $a \leftrightarrow a' \leftrightarrow^* b$. From the induction hypothesis we obtain $a' \rightarrow^! b$. If $a \rightarrow a'$ then clearly $a \rightarrow^! b$. Otherwise $a \leftarrow a'$ and hence we obtain $a \rightarrow^! b$ from the inclusion $\leftarrow \cdot \rightarrow^! \subseteq \rightarrow^!$.
- (3) \Rightarrow (1) Suppose $a \rightarrow b$. We have to show that a is confluent. Let c be an arbitrary reduct of a. Clearly $c \leftrightarrow^* b$. By assumption $c \rightarrow b$. So every reduct of a rewrites to b. This implies confluence.

- 8. (a) M₂ >_{mul} M₄ >_{mul} M₃ >_{mul} M₅ >_{mul} M₁
 (b) N₅ ⊳_{mul} N₄ ⊳_{mul} N₂ ⊳_{mul} N₃ ⊳_{mul} N₁
- 9. (a) The following proof tree shows that $a \approx_{\mathcal{E}} b$:

Using Birkhoff's theorem, it follows that $a \approx b$ belongs to the equational theory of \mathcal{E} . You may find the following equational proof easier:

$$\mathsf{a} \gets \mathsf{f}(\mathsf{a}) \gets \mathsf{f}(\mathsf{f}(\mathsf{a})) \to \mathsf{g}(\mathsf{a},\mathsf{a}) \gets \mathsf{g}(\mathsf{a},\mathsf{f}(\mathsf{a})) \to \mathsf{b}$$

- (b) Consider the algebra \mathcal{A} with carrier $A = \{0, 1\}$ and interpretations $\mathbf{a}_{\mathcal{A}} = \mathbf{b}_{\mathcal{A}} = 0$, $\mathbf{f}_{\mathcal{A}}(0) = 0$, $\mathbf{f}_{\mathcal{A}}(1) = 1$, $\mathbf{g}_{\mathcal{A}}(0,0) = \mathbf{g}_{\mathcal{A}}(0,1) = \mathbf{g}_{\mathcal{A}}(1,1) = 0$, and $\mathbf{g}_{\mathcal{A}}(1,0) = 1$. We have $\mathbf{f}(x) =_{\mathcal{A}} x$, $\mathbf{f}(\mathbf{f}(\mathbf{a})) =_{\mathcal{A}} \mathbf{g}(x,x)$, and $\mathbf{g}(x,\mathbf{f}(x)) =_{\mathcal{A}} \mathbf{b}$, so \mathcal{A} is a model for \mathcal{E} . The equation $\mathbf{g}(x,y) \approx \mathbf{g}(y,x)$ is not valid in \mathcal{A} because $\mathbf{g}_{\mathcal{A}}(0,1) = 0 \neq 1 = \mathbf{g}_{\mathcal{A}}(1,0)$. Hence $\mathbf{g}(x,y) \approx \mathbf{g}(y,x)$ does not belong to the equational theory of \mathcal{E} .
- (c) The following proof tree shows that $g(f(a), a) \approx_{\mathcal{E}} f(b)$:

Using Birkhoff's theorem, it follows that $g(f(a), a) \approx f(b)$ belongs to the equational theory of \mathcal{E} . Again, we present a simpler equational proof:

$$\mathsf{g}(\mathsf{f}(\mathsf{a}),\mathsf{a}) \to \mathsf{g}(\mathsf{a},\mathsf{a}) \gets \mathsf{g}(\mathsf{a},(\mathsf{f}(\mathsf{a})) \to \mathsf{b} \gets \mathsf{f}(\mathsf{b})$$

- 10. The idea is to compute the normal forms of both sides of the given equations with respect to the complete TRS on slide 23 of lecture 3.
 - (a) $(x \cdot (y^- \cdot x)^-) \cdot y \approx \mathbf{e}$ We have $(x \cdot (y^- \cdot x)^-) \cdot y \to (x \cdot (x^- \cdot y^{--})) \cdot y \to y^{--} \cdot y \to y \cdot y$ and the normal form $y \cdot y$ is different from \mathbf{e} . Hence the equation $(x \cdot (y^- \cdot x)^-) \cdot y \approx \mathbf{e}$ is not valid in group theory.
 - (b) We have $(x \cdot x^{-}) \cdot ((y^{-} \cdot (\mathbf{e}^{-} \cdot x))^{-} \cdot y^{-}) \to^{*} \mathbf{e} \cdot ((y^{-} \cdot (\mathbf{e} \cdot x))^{-} \cdot y^{-}) \to^{*} (y^{-} \cdot x)^{-} \cdot y^{-} \to (x^{-} \cdot y^{-}) \cdot y^{-} \to (x^{-} \cdot y) \cdot y^{-} \to x^{-} \cdot (y \cdot y^{-}) \to x^{-} \cdot \mathbf{e} \to x^{-} \text{ and } (x^{-} \cdot \mathbf{e})^{-} \to x^{-} \to x.$ Since x^{-} and x are different normal forms, the given equation is not valid in group theory.
 - (c) Both sides rewrite to x^- : $(x^- \cdot (x \cdot (x \cdot \mathbf{e})^-))^- \to^* (x \cdot (x \cdot x^-))^- \to (x \cdot \mathbf{e})^- \to x^-$ and $x^{----} \to x^{---} \to x^-$. Hence the given equation is valid in group theory.
- 11. Consider the term t = (0 + s(0)) + (s(s(0)) + (0 + 0)). Which terms are denoted by the following expressions?
 - (a) $t|_{21} = s(s(0))$
 - (b) $t[0 + s(0)]_{121} = (0 + s(0 + s(0))) + (s(s(0)) + (0 + 0))$
 - (c) $(t|_{2}[t|_{1}[t|_{22}]_{21}]_{11})|_{1}[t|_{211}[t|_{121}]_{1}]_{12} = s(0 + s(0))$

 $\star 12$. (This can be easily solved after lecture 6; a solution will be shown in lecture 7.)

13. Yes. Define

$$\phi(t) = \begin{cases} 0 & \text{if } t = 0 \text{ or } t \in \mathcal{V} \\ \phi(u) + 1 & \text{if } t = \mathsf{s}(u) \\ 2\phi(u) & \text{if } t = \mathsf{double}(u) \end{cases}$$

and

$$\psi(t) = \sum \left\{ \phi(u) \mid u \trianglelefteq t \text{ and } \mathsf{root}(u) = \mathsf{double} \right\}$$

It is easy to show that $\phi(t) = \phi(u)$ whenever $s \to t$. Using this fact, it can be shown that $\psi(t) > \psi(u)$ whenever $s \to t$. Since the standard order > on natural numbers is well-founded, it follows that the TRS is terminating. (After lecture 4, proving termination is a piece of cake.)