July 5, 2010

## Exercises

1. Study the slides.
2. Prove that the TRS consisting of the three rewrite rules

$$
\mathrm{f}(x) \otimes \mathrm{f}(y) \rightarrow \mathrm{f}(x \otimes y) \quad \mathrm{f}(x) \otimes(\mathrm{f}(y) \otimes z) \rightarrow \mathrm{f}(x \otimes y) \otimes z \quad(x \otimes y) \otimes z \rightarrow x \otimes(y \otimes z)
$$

is polynomially terminating.
$\star 3$. Is the TRS consisting of the six rewrite rules

$$
\begin{array}{rlrl}
\mathrm{f}(0) & \rightarrow 0 & \mathrm{~s}(\mathrm{~s}(0)) & \rightarrow \mathrm{f}(0) \\
\mathrm{f}(\mathrm{~s}(0)) & \rightarrow \mathrm{s}(0) & \mathrm{s}(\mathrm{~s}(\mathrm{~s}(0))) & \rightarrow \mathrm{f}(\mathrm{~s}(0)) \\
\mathrm{f}(\mathrm{~s}(\mathrm{~s}(0))) & \rightarrow \mathrm{s}(\mathrm{~s}(\mathrm{~s}(\mathrm{~s}(\mathrm{~s}(\mathrm{~s}(0)))))) & \mathrm{s}(\mathrm{~s}(\mathrm{~s}(\mathrm{~s}(\mathrm{~s}(\mathrm{~s}(\mathrm{~s}(\mathrm{~s}(0)))))))) & \rightarrow \mathrm{f}(\mathrm{~s}(\mathrm{~s}(0)))
\end{array}
$$

polynomially terminating?
4. Consider the TRS $\mathcal{R}$ consisting of the two rewrite rules

$$
\mathrm{f}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{~b}) \quad \mathrm{g}(\mathrm{~b}) \rightarrow \mathrm{g}(\mathrm{a})
$$

(a) Prove that $\mathcal{R}$ is not polynomially terminating.
(b) Prove the termination of $\mathcal{R}$ by constructing a suitable well-founded monotone algebra.
5. Can the termination of the TRSs of exercises 2 and 4 be shown using LPO?
6. Show that $s>_{\text {Ipo }} t$ whenever $s \triangleright t$, for any precedence $>$.
7. Show the termination of the TRS consisting of the two rewrite rules

$$
\mathrm{f}(\mathrm{~g}(\mathrm{~g}(x)), y) \rightarrow \mathrm{f}(\mathrm{~g}(x), \mathrm{f}(x, y))
$$

$$
\mathrm{f}(\mathrm{~g}(x), \mathrm{g}(y)) \rightarrow \mathrm{f}(\mathrm{f}(x, x), \mathrm{f}(y, y))
$$

using LPO.
$\star 8$. Is the SRS consisting of the rewrite rules

terminating?
9. Determine most general unifiers of the following pairs of terms, if possible.
(a) $\mathrm{f}(\mathrm{g}(x, y), x, y)$ and $\mathrm{f}(z, \mathrm{~g}(y, y), y)$
(b) $\mathrm{g}(\mathrm{h}(x), \mathrm{g}(x, y))$ and $\mathrm{g}(z, \mathrm{~g}(\mathrm{~g}(x, x), z))$
(c) $\mathrm{f}(x, \mathrm{~g}(x, y), \mathrm{h}(y))$ and $\mathrm{f}(\mathrm{g}(z, z), x, x)$
10. Consider the TRS $\mathcal{R}$ consisting of the rewrite rules

$$
\left.\begin{array}{rlrl}
0+y & \rightarrow y & 0 \times y & \rightarrow 0 \\
\mathbf{s}(x)+y & \rightarrow \mathbf{s}(x+y) & \mathbf{s}(x) & \times y
\end{array}\right)
$$

(a) Prove that $\mathcal{R}$ is terminating.
(b) Compute the critical pairs of $\mathcal{R}$.
(c) Complete $\mathcal{R}$.
11. Complete the TRS consisting of the rewrite rules

$$
\mathrm{f}(\mathrm{f}(x)) \rightarrow \mathrm{g}(x) \quad \mathrm{f}(\mathrm{~g}(\mathrm{f}(x))) \rightarrow \mathrm{f}(x)
$$

12. Compute the critical pairs of the SRS consisting of the rewrite rules

$$
\text { TCAT } \rightarrow \mathrm{T} \quad \mathrm{GAG} \rightarrow \mathrm{AG} \quad \text { CTC } \rightarrow \mathrm{TC} \quad \text { AGTA } \rightarrow \mathrm{A} \quad \text { TAT } \rightarrow \text { CT }
$$

