July 6, 2010

Exercises

1. Study the slides.
2. Consider the ES \mathcal{E} consisting of the single rewrite rule

$$
\mathrm{f}(\mathrm{f}(x)) \approx \mathrm{g}(x)
$$

Construct three different complete and reduced TRSs \mathcal{R} such that $\underset{\mathcal{E}}{\stackrel{*}{\longrightarrow}}=\stackrel{*}{\underset{\mathcal{R}}{\longrightarrow}}$.
3. Construct a complete and reduced TRS for the ES consisting of the two equations

$$
\mathrm{f}(\mathrm{f}(\mathrm{f}(x))) \approx x \quad \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(x))))) \approx x
$$

4. Which of the critical pairs of the SRS

$$
\text { TCAT } \rightarrow \mathrm{T} \quad \mathrm{GAG} \rightarrow \mathrm{AG} \quad \text { CTC } \rightarrow \text { TC } \quad \text { AGTA } \rightarrow \mathrm{A} \quad \text { TAT } \rightarrow \text { CT }
$$

are reducible?
5. Show the termination of the TRS consisting of the rewrite rules

$$
\left.\begin{array}{rlrl}
\ominus(0) & \rightarrow 0 & x-0 & \rightarrow x \\
\ominus(\mathrm{~s}(x)) & \rightarrow \mathrm{p}(\ominus(x)) & x-\mathrm{s}(y) & \rightarrow \mathrm{p}(x-y) \\
\ominus(\mathrm{p}(x)) & \rightarrow \mathbf{s}(\ominus(x)) & \mathrm{p}(\mathrm{~s}(x)) & \rightarrow x \\
& x-\mathrm{p}(y) & \rightarrow \mathbf{s}(x-y) & x+y
\end{array}\right)
$$

using KBO.
6. Show the termination of the TRS consisting of the rewrite rules

$$
\begin{array}{rlrl}
\text { average }(0,0) & \rightarrow 0 & \text { average }(\mathrm{s}(x), y) & \rightarrow \text { average }(x, \mathrm{~s}(y)) \\
\text { average }(0, \mathrm{~s}(0)) & \rightarrow 0 & \text { average }(x, \mathrm{~s}(\mathrm{~s}(\mathrm{~s}(y)))) & \rightarrow \mathrm{s} \text { (average }(\mathrm{s}(x), y)) \\
\text { average }(0, \mathrm{~s}(\mathrm{~s}(0))) & \rightarrow \mathrm{s}(0) &
\end{array}
$$

using KBO.
7. A TRS is said to be simply terminating if it is compatible with a reduction order $>$ that has the subterm property: $s>t$ whenever $s \triangleright t$.
(a) Prove that a TRS \mathcal{R} is simply terminating if and only if the TRS $\mathcal{R} \cup \mathcal{E} \mathrm{mb}$ is terminating. Here $\mathcal{E} \mathrm{mb}$ consists of all rewrite rules

$$
f\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{i}
$$

with f a function symbol of arity $n \geqslant 1, i \in\{1, \ldots, n\}$, and pairwise different variables x_{1}, \ldots, x_{n}.
(b) Prove that TRSs whose termination can be shown using KBO are simply terminating.
(c) Prove that polynomially terminating TRSs are simply terminating.
8. Consider the terminating TRS \mathcal{R} consisting of the rewrite rules

$$
\begin{array}{rlrl}
x-0 & \rightarrow 0 & 0 \div \mathbf{s}(y) & \rightarrow 0 \\
\mathbf{s}(x)-\mathbf{s}(y) & \rightarrow x-y & \mathbf{s}(x) \div \mathbf{s}(y) & \rightarrow \mathbf{s}((x-y) \div \mathbf{s}(y))
\end{array}
$$

(a) Prove that \mathcal{R} is not polynomially terminating.
(b) Can the termination of \mathcal{R} be shown using LPO?
(c) Can the termination of \mathcal{R} be shown using KBO?
9. Consider the TRS \mathcal{R} consisting of the rewrite rules

$$
\mathrm{f}(0, y) \rightarrow 0 \quad \mathrm{f}(\mathrm{~s}(x), y) \rightarrow \mathrm{f}(\mathrm{f}(x, y), y)
$$

(a) Compute the dependency pairs of \mathcal{R}.
(b) Can the termination of \mathcal{R} be shown using KBO?
(c) Prove the termination of \mathcal{R} by constructing a suitable reduction pair based on a weakly monotone interpretation in \mathbb{N}.
$\star 10$. Repeat the previous questions for the TRS consisting of the rewrite rules

$$
\begin{array}{rlrl}
\operatorname{low}(n, \text { nil }) & \rightarrow \text { nil } & \text { if-low(false, } n, m: x) & \rightarrow \operatorname{low}(n, x) \\
\operatorname{low}(n, m: x) & \rightarrow \text { if-low }(m \leq n, n, m: x) & \text { if-low(true, } n, m: x) & \rightarrow m: \operatorname{low}(n, x) \\
\operatorname{high}(n, \text { nil }) & \rightarrow \text { nil } & \text { if-high(false, } n, m: x) & \rightarrow m: \operatorname{high}(n, x) \\
\operatorname{high}(n, m: x) & \rightarrow \text { if-high }(m \leq n, n, m: x) & \text { if-high(true, } n, m: x) & \rightarrow \operatorname{high}(n, x) \\
\text { nil }+y & \rightarrow y & & \leq y \\
(n: x)+y & \rightarrow n:(x+y) & \rightarrow \operatorname{true} \\
\text { quicksort }(\text { nil }) & \rightarrow \text { nil } & \mathrm{s}(x) \leq 0 & \rightarrow \text { false } \\
\text { quicksort }(n: x) & \rightarrow \text { quicksort }(\operatorname{low}(n, x))+(n: \text { quicksort }(\operatorname{high}(n, x)))
\end{array}
$$

11. Prove that the TRS consisting of the rewrite rules

$$
\begin{aligned}
0+y & \rightarrow y \\
\mathbf{s}(x)+y & \rightarrow \mathbf{s}(x+y)
\end{aligned}
$$

$$
0 \times y \rightarrow 0
$$

$$
\mathbf{s}(x) \times y \rightarrow(x \times y)+y
$$

is not polynomially terminating.
$\star 12$. Let \mathcal{R} be a TRS. Prove that \mathcal{R} is terminating if and only if $\mathcal{R} \cup \operatorname{DP}(\mathcal{R})$ is terminating.

