

Some Solutions

- 1. Study the slides.
- 2. If we orient the equation $f(f(x)) \approx g(x)$ from right to left, we obtain the complete TRS consisting of the rule

$$g(x) \to f(f(x)) \tag{1}$$

Orienting the given equation from left to right gives the rule

$$\mathsf{f}(\mathsf{f}(x)) \to \mathsf{g}(x) \tag{2}$$

The only critical pair, $f(g(x)) \approx g(f(x))$, can be oriented both ways:

$$f(g(x)) \to g(f(x)) \tag{3}$$

 \mathbf{or}

$$g(f(x)) \to f(g(x)) \tag{4}$$

In both cases there is one new convergent critical pair. So we end up with the following three TRSs: $\mathcal{R}_1 = \{(1)\}, \mathcal{R}_2 = \{(2), (3)\}, \text{ and } \mathcal{R}_3 = \{(2), (4)\}.$ All three TRSs are reduced and terminating. The first two are compatible with LPO with respective precedences g > f and f > g. For \mathcal{R}_3 we can take KBO with $w(f) = w(g) = w_0 = 1$ and g > f.

3. The first equation of the given ES is oriented into

$$\mathsf{f}(\mathsf{f}(\mathsf{f}(x))) \to x \tag{1}$$

Using this rule, the second equation simplifies to $f(f(x)) \approx x$ and is subsequently oriented into

$$\mathsf{f}(\mathsf{f}(x)) \to x \tag{2}$$

Rule (2) simplifies rule (1) into

$$f(x) \to x \tag{3}$$

Rule (3) makes rule (2) superfluous. It follows that the last rule constitutes a complete and reduced TRS for the given ES.

- 4. None of the ten critical pairs are reduced. The reason is simply that critical pairs of a reduced SRS are never reduced.
- 5. Use the weight function $w(0) = w(s) = w(p) = w(\ominus) = w(-) = 1$ and w(+) = 3 together with the precedence $-, \ominus > s, p$.
- 6. Use the weight function w(average) = 0 and w(0) = w(s) = 1 together with the empty precedence.
- 7. (a) Suppose \mathcal{R} is simply terminating. By definition there exists a compatible reduction order > with the subterm property. Because > has the subterm property, $\mathcal{E}mb \subseteq$ >. Hence $\mathcal{R} \cup \mathcal{E}mb$ is terminating. Conversely, if $\mathcal{R} \cup \mathcal{E}mb$ is terminating then > := $\rightarrow^+_{\mathcal{R} \cup \mathcal{E}mb}$ is a reduction order that is compatible with $\mathcal{R} \cup \mathcal{E}mb$ and thus also with \mathcal{R} . From the inclusion $\rightarrow^+_{\mathcal{E}mb} \subseteq$ > it easily follows that > has the subterm property. Hence \mathcal{R} is simply terminating.
 - (b) It suffices to show that

 $f(x_1,\ldots,x_n)>_{\mathsf{kbo}} x_i$

for every *n*-ary function symbol f with $n \ge 1$ and $i \in \{1, \ldots, n\}$, and any precedence and admissible weight function. We distinguish two cases. If n > 1 or w(f) > 0 then $w(f(x_1, \ldots, x_n)) > w(x_i)$. In the other case n = 1 and w(f) = 0, and thus $w(f(x_1, \ldots, x_n)) = w(x_i)$. In this case we conclude

$$f(x_1,\ldots,x_n) >_{\mathsf{kbo}} x_i$$

by the first clause of the second case in the definition of KBO.

- (c) Suppose \mathcal{R} is a polynomially terminating TRS. Let \mathcal{F} be the signature of \mathcal{R} . So \mathcal{R} is compatible with an algebra $(\mathbb{N}, \{f_{\mathbb{N}}\}_{f \in \mathcal{F}}, >)$ such that $f_{\mathbb{N}}$ is a strictly monotone polynomial function for every function symbol $f \in \mathcal{F}$. An easy induction on the value of a_i shows that $(\star) f_{\mathbb{N}}(a_1, \ldots, a_n) \ge a_i$ for all *n*-ary function symbols f, natural numbers a_1, \ldots, a_n , and $i \in \{1, \ldots, n\}$. We will now construct a reduction order with the subterm property that is compatible with \mathcal{R} . The obvious candidate $>_{\mathbb{N}}$ does not work since the subterm property may not be satisfied. The trick is to extend $>_{\mathbb{N}}$ to a relation \square as follows: $s \square t$ if
 - $s >_{\mathbb{N}} t$, or
 - $s \ge_{\mathbb{N}} t$ and $|s\sigma| > |t\sigma|$ for all substitutions σ .

It is not difficult to check that \Box is a reduction order with the subterm property that is compatible with \mathcal{R} . The proof of the subterm property of \Box uses (\star).

8. (a) The following sequence in $\mathcal{R} \cup \mathcal{E}mb$ reveals that \mathcal{R} cannot be simply terminating:

$$\mathsf{s}(x) \div \mathsf{s}(\mathsf{s}(x)) \to_{\mathcal{R}} \mathsf{s}((x - \mathsf{s}(x)) \div \mathsf{s}(\mathsf{s}(x))) \to_{\mathcal{E}\mathsf{mb}} (x - \mathsf{s}(x)) \div \mathsf{s}(\mathsf{s}(x)) \to_{\mathcal{E}\mathsf{mb}} \mathsf{s}(x) \div \mathsf{s}(\mathsf{s}(x))$$

According to part (c) of the previous exercise, \mathcal{R} is not polynomially terminating.

- (b) No. Since LPO has the subterm property (cf. exercise 6 of day 2) and \mathcal{R} is not simply terminating, LPO cannot be used to show the termination of \mathcal{R} .
- (c) No. The rule $s(x) \div s(y) \rightarrow s((x-y) \div s(y))$ is duplicating. Alternatively, one can use part (b) of the previous exercise.
- 9. (a) There are two dependency pairs:

$$f^{\sharp}(\mathbf{s}(x), y) \to f^{\sharp}(\mathbf{f}(x, y), y) \qquad \qquad \mathbf{f}^{\sharp}(\mathbf{s}(x), y) \to \mathbf{f}^{\sharp}(x, y)$$

- (b) No, because the rule $f(s(x), y) \rightarrow f(f(x, y), y)$ is duplicating.
- (c) Consider the reduction pair $(>_{\mathbb{N}}, \geq_{\mathbb{N}})$ induced by the following weakly monotone interpretation in \mathbb{N} : $0_{\mathbb{N}} = 0$, $s_{\mathbb{N}}(x) = x + 1$, and $f_{\mathbb{N}}(x, y) = f_{\mathbb{N}}^{\sharp}(x, y) = x$. Since $\mathsf{DP}(\mathcal{R}) \subseteq >_{\mathbb{N}}$ and $\mathcal{R} \subseteq \geq_{\mathbb{N}}$, \mathcal{R} is terminating.
- *10. (a) No, because the rule $low(n, m: x) \rightarrow if-low(m \le n, n, m: x)$ is duplicating.
 - (b) There are 15 dependency pairs:

(c) The resulting constraints are satisfied by the following weakly monotone interpretation in the positive natural numbers: $0_{\mathbb{N}} = \mathsf{false}_{\mathbb{N}} = \mathsf{true}_{\mathbb{N}} = \mathsf{nil}_{\mathbb{N}} = 1$, $s_{\mathbb{N}}(x) = x + 1$, $\mathsf{low}_{\mathbb{N}}(x,y) = \mathsf{high}_{\mathbb{N}}(x,y) = y$, if- $\mathsf{low}_{\mathbb{N}}(b,x,y) = \mathsf{if-high}_{\mathbb{N}}(b,x,y) = \mathsf{if-high}_{\mathbb{N}}(b,x,y) = \mathsf{if-high}_{\mathbb{N}}^{\sharp}(b,x,y) = y$, $\mathsf{low}_{\mathbb{N}}^{\sharp}(x,y) = \mathsf{high}_{\mathbb{N}}^{\sharp}(x,y) = y + 1$, $\leq_{\mathbb{N}}(x,y) = \leq_{\mathbb{N}}^{\sharp}(x,y) = ++_{\mathbb{N}}^{\sharp}(x,y) = x$, $:_{\mathbb{N}}(x,y) = x + y + 1$, $+_{\mathbb{N}}(x,y) = x + y$, and $\mathsf{quicksort}_{\mathbb{N}}(x) = \mathsf{quicksort}_{\mathbb{N}}^{\sharp}(x) = 3^{x+1}$. (Using techniques developed in lecture 10, the termination proof becomes much simpler.)