Some Solutions

1. Study the slides.
2. If we orient the equation $\mathrm{f}(\mathrm{f}(x)) \approx \mathrm{g}(x)$ from right to left, we obtain the complete TRS consisting of the rule

$$
\begin{equation*}
\mathrm{g}(x) \rightarrow \mathrm{f}(\mathrm{f}(x)) \tag{1}
\end{equation*}
$$

Orienting the given equation from left to right gives the rule

$$
\begin{equation*}
\mathrm{f}(\mathrm{f}(x)) \rightarrow \mathrm{g}(x) \tag{2}
\end{equation*}
$$

The only critical pair, $\mathrm{f}(\mathrm{g}(x)) \approx \mathrm{g}(\mathrm{f}(x))$, can be oriented both ways:

$$
\begin{equation*}
\mathrm{f}(\mathrm{~g}(x)) \rightarrow \mathrm{g}(\mathrm{f}(x)) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{g}(\mathrm{f}(x)) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \tag{4}
\end{equation*}
$$

In both cases there is one new convergent critical pair. So we end up with the following three TRSs: $\mathcal{R}_{1}=\{(1)\}, \mathcal{R}_{2}=\{(2),(3)\}$, and $\mathcal{R}_{3}=\{(2),(4)\}$. All three TRSs are reduced and terminating. The first two are compatible with LPO with respective precedences $g>f$ and $f>g$. For \mathcal{R}_{3} we can take KBO with $w(\mathrm{f})=w(\mathrm{~g})=w_{0}=1$ and $\mathrm{g}>\mathrm{f}$.
3. The first equation of the given ES is oriented into

$$
\begin{equation*}
\mathrm{f}(\mathrm{f}(\mathrm{f}(x))) \rightarrow x \tag{1}
\end{equation*}
$$

Using this rule, the second equation simplifies to $\mathrm{f}(\mathrm{f}(x)) \approx x$ and is subsequently oriented into

$$
\begin{equation*}
\mathrm{f}(\mathrm{f}(x)) \rightarrow x \tag{2}
\end{equation*}
$$

Rule (2) simplifies rule (1) into

$$
\begin{equation*}
\mathrm{f}(x) \rightarrow x \tag{3}
\end{equation*}
$$

Rule (3) makes rule (2) superfluous. It follows that the last rule constitutes a complete and reduced TRS for the given ES.
4. None of the ten critical pairs are reduced. The reason is simply that critical pairs of a reduced SRS are never reduced.
5. Use the weight function $w(0)=w(\mathbf{s})=w(\mathbf{p})=w(\ominus)=w(-)=1$ and $w(+)=3$ together with the precedence $-, \ominus>\mathrm{s}, \mathrm{p}$.
6. Use the weight function w (average) $=0$ and $w(0)=w(\mathbf{s})=1$ together with the empty precedence.
7. (a) Suppose \mathcal{R} is simply terminating. By definition there exists a compatible reduction order $>$ with the subterm property. Because $>$ has the subterm property, $\mathcal{E} \mathrm{mb} \subseteq>$. Hence $\mathcal{R} \cup \mathcal{E} \mathrm{mb}$ is terminating. Conversely, if $\mathcal{R} \cup \mathcal{E} \mathrm{mb}$ is terminating then $>:=\rightarrow_{\mathcal{R} \cup \mathcal{E} \mathrm{mb}}^{+}$is a reduction order that is compatible with $\mathcal{R} \cup \mathcal{E} \mathrm{mb}$ and thus also with \mathcal{R}. From the inclusion $\rightarrow_{\mathcal{E} \mathrm{mb}}^{+} \subseteq>$ it easily follows that $>$ has the subterm property. Hence \mathcal{R} is simply terminating.
(b) It suffices to show that

$$
f\left(x_{1}, \ldots, x_{n}\right)>_{\text {kbo }} x_{i}
$$

for every n-ary function symbol f with $n \geqslant 1$ and $i \in\{1, \ldots, n\}$, and any precedence and admissible weight function. We distinguish two cases. If $n>1$ or $w(f)>0$ then $w\left(f\left(x_{1}, \ldots, x_{n}\right)\right)>$ $w\left(x_{i}\right)$. In the other case $n=1$ and $w(f)=0$, and thus $w\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=w\left(x_{i}\right)$. In this case we conclude

$$
f\left(x_{1}, \ldots, x_{n}\right)>_{\text {kbo }} x_{i}
$$

by the first clause of the second case in the definition of KBO.
(c) Suppose \mathcal{R} is a polynomially terminating TRS. Let \mathcal{F} be the signature of \mathcal{R}. So \mathcal{R} is compatible with an algebra $\left(\mathbb{N},\left\{f_{\mathbb{N}}\right\}_{f \in \mathcal{F}},>\right)$ such that $f_{\mathbb{N}}$ is a strictly monotone polynomial function for every function symbol $f \in \mathcal{F}$. An easy induction on the value of a_{i} shows that $(\star) f_{\mathbb{N}}\left(a_{1}, \ldots, a_{n}\right) \geqslant a_{i}$ for all n-ary function symbols f, natural numbers a_{1}, \ldots, a_{n}, and $i \in\{1, \ldots, n\}$. We will now construct a reduction order with the subterm property that is compatible with \mathcal{R}. The obvious candidate $>_{\mathbb{N}}$ does not work since the subterm property may not be satisfied. The trick is to extend $>_{\mathbb{N}}$ to a relation \sqsupset as follows: $s \sqsupset t$ if

- $s>_{\mathbb{N}} t$, or
- $s \geqslant_{\mathbb{N}} t$ and $|s \sigma|>|t \sigma|$ for all substitutions σ.

It is not difficult to check that \sqsupset is a reduction order with the subterm property that is compatible with \mathcal{R}. The proof of the subterm property of \sqsupset uses (\star).
8. (a) The following sequence in $\mathcal{R} \cup \mathcal{E} \mathrm{mb}$ reveals that \mathcal{R} cannot be simply terminating:

$$
\mathbf{s}(x) \div \mathbf{s}(\mathbf{s}(x)) \rightarrow_{\mathcal{R}} \mathbf{s}((x-\mathbf{s}(x)) \div \mathbf{s}(\mathrm{s}(x))) \rightarrow_{\mathcal{E} \mathrm{mb}}(x-\mathrm{s}(x)) \div \mathbf{s}(\mathrm{s}(x)) \rightarrow_{\mathcal{E} \mathrm{mb}} \mathbf{s}(x) \div \mathrm{s}(\mathrm{~s}(x))
$$

According to part (c) of the previous exercise, \mathcal{R} is not polynomially terminating.
(b) No. Since LPO has the subterm property (cf. exercise 6 of day 2) and \mathcal{R} is not simply terminating, LPO cannot be used to show the termination of \mathcal{R}.
(c) No. The rule $\mathrm{s}(x) \div \mathrm{s}(y) \rightarrow \mathrm{s}((x-y) \div \mathrm{s}(y))$ is duplicating. Alternatively, one can use part (b) of the previous exercise.
9. (a) There are two dependency pairs:

$$
\mathbf{f}^{\sharp}(\mathbf{s}(x), y) \rightarrow \mathbf{f}^{\sharp}(\mathbf{f}(x, y), y) \quad \mathbf{f}^{\sharp}(\mathbf{s}(x), y) \rightarrow \mathbf{f}^{\sharp}(x, y)
$$

(b) No, because the rule $\mathrm{f}(\mathrm{s}(x), y) \rightarrow \mathrm{f}(\mathrm{f}(x, y), y)$ is duplicating.
(c) Consider the reduction pair $\left(>_{\mathbb{N}}, \geqslant_{\mathbb{N}}\right)$ induced by the following weakly monotone interpretation in $\mathbb{N}: 0_{\mathbb{N}}=0, \mathrm{~s}_{\mathbb{N}}(x)=x+1$, and $\mathrm{f}_{\mathbb{N}}(x, y)=\mathrm{f}_{\mathbb{N}}^{\sharp}(x, y)=x$. Since $\operatorname{DP}(\mathcal{R}) \subseteq>_{\mathbb{N}}$ and $\mathcal{R} \subseteq \geqslant_{\mathbb{N}}, \mathcal{R}$ is terminating.
$\star 10$. (a) No, because the rule $\operatorname{low}(n, m: x) \rightarrow \operatorname{if}-\operatorname{low}(m \leq n, n, m: x)$ is duplicating.
(b) There are 15 dependency pairs:

$$
\begin{aligned}
& \operatorname{low}^{\sharp}(n, m: x) \rightarrow \mathrm{if-low}^{\sharp}(m \leq n, n, m: x) \quad \text { if-low }{ }^{\sharp}(\text { false, } n, m: x) \rightarrow \operatorname{low}^{\sharp}(n, x) \\
& \left.\operatorname{low}^{\sharp}(n, m: x) \rightarrow m \leq \leq^{\sharp} n \quad \text { if-low }{ }^{\sharp} \text { (true, } n, m: x\right) \rightarrow \operatorname{low}^{\sharp}(n, x) \\
& \operatorname{high}^{\sharp}(n, m: x) \rightarrow m \leq^{\sharp} n \quad \quad \text { if-high } h^{\sharp}(\text { false }, n, m: x) \rightarrow \operatorname{high}^{\sharp}(n, x) \\
& \operatorname{high}^{\sharp}(n, m: x) \rightarrow \text { if-high }^{\sharp}(m \leq n, n, m: x) \quad \text { if-high }{ }^{\sharp}(\text { true }, n, m: x) \rightarrow \operatorname{high}^{\sharp}(n, x) \\
& (n: x)++^{\sharp} y \rightarrow x++^{\sharp} y \quad \mathbf{s}(x) \leq^{\sharp} \mathbf{s}(y) \rightarrow x \leq^{\sharp} y \\
& \text { quicksort } \left.{ }^{\sharp}(n: x) \rightarrow \text { quicksort }(\operatorname{low}(n, x)) H^{\sharp}(n \text { : quicksort(high }(n, x))\right) \\
& \text { quicksort }{ }^{\sharp}(n: x) \rightarrow \text { quicksort }^{\sharp}(\operatorname{low}(n, x)) \quad \text { quicksort }{ }^{\sharp}(n: x) \rightarrow \operatorname{low}^{\sharp}(n, x) \\
& \text { quicksort }{ }^{\sharp}(n: x) \rightarrow \text { quicksort }^{\sharp}(\operatorname{high}(n, x)) \quad \text { quicksort }{ }^{\sharp}(n: x) \rightarrow \operatorname{high}^{\sharp}(n, x)
\end{aligned}
$$

(c) The resulting constraints are satisfied by the following weakly monotone interpretation in the positive natural numbers: $0_{\mathbb{N}}=$ false $_{\mathbb{N}}=\operatorname{true}_{\mathbb{N}}=\operatorname{nil}_{\mathbb{N}}=1, \mathbf{s}_{\mathbb{N}}(x)=x+1, \operatorname{low}_{\mathbb{N}}(x, y)=$ $\operatorname{high}_{\mathbb{N}}(x, y)=y, \quad$ if- $\operatorname{low}_{\mathbb{N}}(b, x, y)=$ if-high $_{\mathbb{N}}(b, x, y)=\mathrm{if}-\operatorname{low}_{\mathbb{N}}^{\sharp}(b, x, y)=$ if-high ${ }_{\mathbb{N}}^{\sharp}(b, x, y)=y$, $\operatorname{low}_{\mathbb{N}}^{\sharp}(x, y)=\operatorname{high}_{\mathbb{N}}^{\sharp}(x, y)=y+1, \leq_{\mathbb{N}}(x, y)=\leq_{\mathbb{N}}^{\sharp}(x, y)=H_{\mathbb{N}}^{\sharp}(x, y)=x,:_{\mathbb{N}}(x, y)=x+y+1$, $\#_{\mathbb{N}}(x, y)=x+y$, and quicksort ${ }_{\mathbb{N}}(x)=$ quicksort $_{\mathbb{N}}^{\sharp}(x)=3^{x+1}$. (Using techniques developed in lecture 10, the termination proof becomes much simpler.)

