July 8, 2010

Exam

This exam consists of <u>four</u> exercises. The available points for each item are written in the margin. You need 50 points to pass. Explain your answers!

[15] Construct ARSs A_1 , A_2 , and A_3 that satisfy the properties indicated in the following table, if possible.

	UN	SN	CR	WN	WCR
\mathcal{A}_1	×	×	×	✓	✓
\mathcal{A}_2	✓	×	×	×	✓
\mathcal{A}_3	✓	×	×	✓	×

2 Consider the TRS \mathcal{R} consisting of the following five rewrite rules:

$$\begin{split} \mathsf{f}(\mathsf{a}) \to \mathsf{a} & \mathsf{g}(\mathsf{a}) \to \mathsf{f}(\mathsf{c}(\mathsf{a})) \\ \mathsf{f}(\mathsf{c}(x)) \to \mathsf{c}(\mathsf{c}(\mathsf{f}(x))) & \mathsf{g}(\mathsf{c}(\mathsf{a})) \to \mathsf{f}(\mathsf{g}(\mathsf{a})) \\ & \mathsf{g}(\mathsf{c}(\mathsf{c}(x))) \to \mathsf{c}(\mathsf{c}(\mathsf{c}(\mathsf{g}(x)))) \end{split}$$

- [5] (a) Rewrite the term g(c(f(a))) to normal form.
- [5] (b) Is \mathcal{R} confluent?
- [10] (c) Prove that \mathcal{R} is polynomially terminating.
- [5] (d) Can the termination of \mathcal{R} be shown using LPO?
- [10] (e) Can the termination of \mathcal{R} be shown using KBO?
 - 3 Consider the TRS $\mathcal{R} = \{f(f(x)) \to g(g(h(x)))\}.$
- [5] (a) Prove that \mathcal{R} is terminating.
- [10] (b) Compute all critical pairs of \mathcal{R} and determine whether they are convergent.
- [10] (c) Construct a complete reduced TRS with the same conversion as \mathcal{R} .
 - 4 Consider the TRS combinatory logic

$$\mathsf{S} xyz \to xz(yz)$$
 $\mathsf{K} xy \to x$ $\mathsf{I} x \to x$

and the term t = SKI(KI(SII(SII))).

- [5] (a) Show that t admits an infinite rewrite sequence.
- [10] (b) Rewrite t to normal form using the leftmost outermost strategy.
- [10] (c) Rewrite t to normal form using the full substitution strategy.