

Solutions

1 For \mathcal{A}_1 we can take the ARS

 $\mathsf{a} \longleftarrow \mathsf{b} \bigcirc \mathsf{c} \longrightarrow \mathsf{d}$

For \mathcal{A}_2 we can take the ARS

 $\mathsf{a} \longleftarrow \mathsf{b} \bigcirc \mathsf{c} \longrightarrow \mathsf{d} \circlearrowright$

ARS A_3 does not exist because every ARS with the properties WN and UN must satisfy CR as well.

2 (a) For instance,

$$\begin{split} \mathsf{g}(\mathsf{c}(\mathsf{f}(\mathsf{a}))) &\to \mathsf{g}(\mathsf{c}(\mathsf{a})) \to \mathsf{f}(\mathsf{g}(\mathsf{a})) \to \mathsf{f}(\mathsf{f}(\mathsf{c}(\mathsf{a}))) \to \mathsf{f}(\mathsf{c}(\mathsf{c}(\mathsf{f}(\mathsf{a})))) \to \mathsf{f}(\mathsf{c}(\mathsf{c}(\mathsf{c}(\mathsf{a})))) \\ &\to \mathsf{c}(\mathsf{c}(\mathsf{c}(\mathsf{f}(\mathsf{c}(\mathsf{a}))))) \to \mathsf{c}(\mathsf{c}(\mathsf{c}(\mathsf{c}(\mathsf{c}(\mathsf{a}))))) \to \mathsf{c}(\mathsf{c}(\mathsf{c}(\mathsf{c}(\mathsf{c}(\mathsf{a}))))) \end{split}$$

- (b) Yes, because \mathcal{R} is orthogonal.
- (c) The polynomial interpretation $a_{\mathbb{N}} = 1$, $c_{\mathbb{N}}(x) = x + 3$, $f_{\mathbb{N}}(x) = 3x + 1$, and $g_{\mathbb{N}}(x) = 14x$ orients the rewrite rules of \mathcal{R} from left to right:

$$\begin{array}{c} 4 > 1 \\ 3x + 10 > 3x + 7 \end{array} \qquad \begin{array}{c} 14 > 13 \\ 56 > 43 \\ 14x + 84 > 14x + 9 \end{array}$$

for all $x \in \mathbb{N}$.

- (d) Yes. If we take the precedence g > f > c then $l >_{lpo} r$ for all rewrite rules $l \to r \in \mathcal{R}$.
- (e) No. The rewrite rule $f(c(x)) \rightarrow c(c(f(x)))$ requires w(c) = 0. Hence the rule $g(c(a)) \rightarrow f(g(a))$ requires w(f) = 0. However, we cannot have different unary function symbols of weight 0 because KBO can only be used to prove termination if every unary function symbol of weight 0 is greater than any other function symbol in the precedence (*admissibility*).
- 3 (a) For instance, $f(f(x)) >_{lpo} g(g(h(x)))$ for the precedence $f \succ g, h$.
 - (b) There is only one critical pair, $f(g(g(h(x)))) \leftarrow \rtimes \rightarrow g(g(h(f(x))))$, stemming from the overlap $\langle f(f(x)) \rightarrow g(g(h(x))), 1, f(f(y)) \rightarrow g(g(h(y))) \rangle$. Since the critical pair consists of different normal forms, it is not convergent.
 - (c) Adding the rewrite rule

$$f(g(g(h(x)))) \to g(g(h(f(x))))$$
⁽²⁾

to \mathcal{R} makes the critical pair of part (b) convergent while preserving termination. There is one new critical pair: $f(g(g(h(f(x))))) \leftarrow \rtimes \rightarrow g(g(h(g(g(h(x))))))$. The left-hand side rewrites in two step to the right-hand side. Hence the critical pair is convergent. A different complete reduced TRS is obtained by reversing rewrite rule (2):

$$g(g(h(f(x)))) \to f(g(g(h(x)))) \tag{3}$$

Again the single new critical pair is convergent. Termination of this TRS can be shown by the following polynomial interpretation: $f_{\mathbb{N}}(x) = 3x + 1$ and $g_{\mathbb{N}}(x) = h_{\mathbb{N}}(x) = 2x$. These are not the only complete reduced TRSs with the same conversion as \mathcal{R} . For instance, completion with respect to LPO with precedence g > f results in the complete reduced TRS consisting of the single rule

$$g(g(h(x))) \to f(f(x)) \tag{4}$$

- (a) We have $SII(SII) \rightarrow I(SII)(I(SII)) \rightarrow SII(I(SII) \rightarrow SII(SII)$ and thus t admits an infinite rewrite sequence as it contains SII(SII) as subterm.
 - (b) The leftmost outermost strategy produces the following rewrite sequence:

 $t \to \mathsf{K}(\mathsf{KI}(\mathsf{SII}(\mathsf{SII})))(\mathsf{I}(\mathsf{KI}(\mathsf{SII}(\mathsf{SII})))) \to \mathsf{KI}(\mathsf{SII}(\mathsf{SII})) \to \mathsf{I}$

(c) The full substitution strategy produces the following rewrite sequence:

 $t \twoheadrightarrow \mathsf{KI}(\mathsf{II}) \twoheadrightarrow \mathsf{I}$

4