ISR 2010

Introduction to Term Rewriting lecture 2

Aart Middeldorp and Femke van Raamsdonk

Institute of Computer Science University of Innsbruck

> Department of Computer Science VU Amsterdam

Sunday

introduction, examples, abstract rewriting, equational reasoning, term rewriting

Monday

termination, completion

Tuesday

completion, termination

Wednesday

confluence, modularity, strategies

Thursday

exam, advanced topics

Outline

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

concrete rewrite formalisms

• string rewriting

- string rewriting
- term rewriting

- string rewriting
- term rewriting
- graph rewriting

- string rewriting
- term rewriting
- graph rewriting
- λ -calculus

- string rewriting
- term rewriting
- graph rewriting
- λ -calculus
- interaction nets

- string rewriting
- term rewriting
- graph rewriting
- λ -calculus
- interaction nets
- . . .

concrete rewrite formalisms

- string rewriting
- term rewriting
- graph rewriting
- λ -calculus
- interaction nets
- . . .

abstract rewriting

no structure on objects that are rewritten

concrete rewrite formalisms

- string rewriting
- term rewriting
- graph rewriting
- λ -calculus
- interaction nets
- . . .

abstract rewriting

- no structure on objects that are rewritten
- uniform presentation of properties and proofs

Outline

- Abstract Rewrite Systems
 - Definitions
 - Properties
 - Relationships
- Newman's Lemma
- Multiset Orders
- Further Reading

Definitions

• abstract rewrite system (ARS) is set A equipped with binary relation \rightarrow

AM & FvR | ISR 2010 – lecture 2 | 6/27

ullet abstract rewrite system (ARS) is set A equipped with binary relation ullet

• abstract rewrite system (ARS) is set A equipped with binary relation \rightarrow

AM & FvR ISR 2010 – lecture 2 6/27

ullet abstract rewrite system (ARS) is set A equipped with binary relation ullet

- rewrite sequence
 - finite $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$

• abstract rewrite system (ARS) is set A equipped with binary relation \rightarrow

- rewrite sequence
 - finite $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$
 - empty a

ullet abstract rewrite system (ARS) is set A equipped with binary relation ullet

- rewrite sequence
 - finite $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$
 - empty a
 - infinite $a \rightarrow e \rightarrow b \rightarrow a \rightarrow e \rightarrow b \rightarrow \cdots$

Definition (Derived Relations of \rightarrow)

 $\bullet \leftarrow$ inverse of \rightarrow

- \leftarrow inverse of \rightarrow
- \rightarrow^* transitive and reflexive closure of \rightarrow

Definition (Derived Relations of \rightarrow)

- \leftarrow inverse of \rightarrow
- ullet \to^* transitive and reflexive closure of \to
- $^*\leftarrow$ inverse of \rightarrow^* (transitive and reflexive closure of \leftarrow)

AM & FvR ISR 2010 – lecture 2 7/27

- \leftarrow inverse of \rightarrow
- ullet o^* transitive and reflexive closure of o
- * \leftarrow inverse of \rightarrow * (transitive and reflexive closure of \leftarrow)
- \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$

- \leftarrow inverse of \rightarrow
- ullet o^* transitive and reflexive closure of o
- $^*\leftarrow$ inverse of \rightarrow^* (transitive and reflexive closure of \leftarrow)
- \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$
- $\bullet \leftrightarrow$ symmetric closure of \rightarrow

Definition (Derived Relations of \rightarrow)

- \leftarrow inverse of \rightarrow
- ullet + transitive and reflexive closure of \to
- $^*\leftarrow$ inverse of \rightarrow^* (transitive and reflexive closure of \leftarrow)
- \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$
- $\bullet \ \leftrightarrow \qquad \text{symmetric closure of} \ \rightarrow$
- \leftrightarrow^* conversion (equivalence relation generated by \rightarrow)

AM & FvR ISR 2010 – lecture 2 7/27

- \leftarrow inverse of \rightarrow
- ullet o^* transitive and reflexive closure of o
- $^*\leftarrow$ inverse of \rightarrow^* (transitive and reflexive closure of \leftarrow)
- \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$
- $\bullet \ \, \longleftrightarrow \quad \ \, \text{symmetric closure of} \, \to \,$
- ullet \leftrightarrow^* conversion (equivalence relation generated by \to)
- \rightarrow ⁺ transitive closure of \rightarrow

- \leftarrow inverse of \rightarrow
- ullet + \to^* transitive and reflexive closure of \to
- $^*\leftarrow$ inverse of \rightarrow^* (transitive and reflexive closure of \leftarrow)
- \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$
- $\bullet \ \leftrightarrow \qquad \text{symmetric closure of} \ \rightarrow$
- ullet \leftrightarrow^* conversion (equivalence relation generated by \to)
- ullet + transitive closure of \to
- \rightarrow reflexive closure of \rightarrow

- \leftarrow inverse of \rightarrow
- ullet + \to^* transitive and reflexive closure of \to
- $^*\leftarrow$ inverse of \rightarrow^* (transitive and reflexive closure of \leftarrow)
- \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$
- $\bullet \ \leftrightarrow \qquad \text{symmetric closure of} \ \rightarrow$
- ullet \leftrightarrow^* conversion (equivalence relation generated by \to)
- ullet \to^+ transitive closure of \to
- $\rightarrow^{=}$ reflexive closure of \rightarrow
- \uparrow meetability $\uparrow = * \leftarrow \cdot \rightarrow *$

• if $x \to^* y$ then x rewrites to y and y is reduct of x

• if $x \to^* y$ then x rewrites to y and y is reduct of x

- if $x \to^* y$ then x rewrites to y and y is reduct of x
- if $x \rightarrow^* z * \leftarrow y$ then z is common reduct of x and y

- if $x \to^* y$ then x rewrites to y and y is reduct of x
- if $x \rightarrow^* z * \leftarrow y$ then z is common reduct of x and y

- if $x \to^* y$ then x rewrites to y and y is reduct of x
- if $x \to^* z * \leftarrow y$ then z is common reduct of x and y

- if $x \to^* y$ then x rewrites to y and y is reduct of x
- if $x \to^* z * \leftarrow y$ then z is common reduct of x and y

- if $x \to^* y$ then x rewrites to y and y is reduct of x
- if $x \to^* z *\leftarrow y$ then z is common reduct of x and y
- if $x \leftrightarrow^* y$ then x and y are convertible

- if $x \to^* y$ then x rewrites to y and y is reduct of x
- if $x \to^* z *\leftarrow y$ then z is common reduct of x and y
- if $x \leftrightarrow^* y$ then x and y are convertible

- 2 —× f
- $e \downarrow f$ $f \downarrow d$ not $g \downarrow d$
- g ↔* d

Definition (Normal Forms)

• normal form is element x such that $x \not\rightarrow y$ for all y

• normal form is element x such that $x \not\rightarrow y$ for all y

- normal form is element x such that $x \not\rightarrow y$ for all y
- NF(A) denotes set of normal forms of ARS A

- normal form is element x such that $x \not\rightarrow y$ for all y
- NF(A) denotes set of normal forms of ARS A

- normal form is element x such that $x \not\rightarrow y$ for all y
- ullet NF(${\cal A}$) denotes set of normal forms of ARS ${\cal A}$
- $x \rightarrow y$ if $x \rightarrow y$ for normal form y (x has normal form y)

- normal form is element x such that $x \not\rightarrow y$ for all y
- ullet NF(${\cal A}$) denotes set of normal forms of ARS ${\cal A}$
- $x \to y$ if $x \to y$ for normal form y (x has normal form y)

Example

ARS $\mathcal{A} = \langle A, \rightarrow \rangle$

- d is normal form
 - $NF(A) = \{d, g\}$
 - b → g

bstract Rewrite Systems Properties

Outline

- Abstract Rewrite Systems
 - Definitions
 - Properties
 - Relationships
- Newman's Lemma
- Multiset Orders
- Further Reading

Abstract Rewrite Systems

- SN strong normalization
 - no infinite rewrite sequences

Abstract Rewrite Systems

- SN strong normalization termination
 - no infinite rewrite sequences

bstract Rewrite Systems Properties

- SN strong normalization termination
 - no infinite rewrite sequences
- WN weak normalization
 - every element has at least one normal form

- SN strong normalization termination
 - no infinite rewrite sequences
- WN weak normalization
 - every element has at least one normal form
 - $\forall a \exists b \ a \rightarrow^! b$

Outline

- Abstract Rewrite Systems
 - Definitions
 - Properties
 - Relationships
- Newman's Lemma
- Multiset Orders
- Further Reading

- 1 SN \Longrightarrow WN

- $1 SN \implies WN$

- SN strong normalization termination
 - no infinite rewrite sequences
- WN weak normalization
 - every element has at least one normal form
 - $\forall a \exists b \ a \rightarrow^! b$
- UN unique normal forms
 - no element has more than one normal form

- SN strong normalization termination
 - no infinite rewrite sequences
- WN weak normalization
 - every element has at least one normal form
 - $\forall a \exists b \ a \rightarrow^! b$
- UN unique normal forms
 - no element has more than one normal form
 - $\forall a, b, c$ if $a \rightarrow b$ and $a \rightarrow c$ then b = c

- SN strong normalization termination
 - no infinite rewrite sequences
- WN weak normalization
 - every element has at least one normal form
 - $\forall a \exists b \ a \rightarrow^! b$
- UN unique normal forms
 - no element has more than one normal form
 - $\forall a, b, c$ if $a \rightarrow b$ and $a \rightarrow c$ then b = c
 - $\bullet \ ^{!} \leftarrow \cdot \rightarrow ^{!} \ \subseteq \ =$

- CR confluence
 - $\bullet \ \uparrow \ \subseteq \ \downarrow$

- CR confluence
 - \bullet $\uparrow \subseteq \downarrow$
 - ∀*a*, *b*, *c*

- CR confluence
 - \bullet $\uparrow \subseteq \downarrow$
 - ∀*a*, *b*, *c*

- CR confluence Church-Rosser property
 - \bullet $\uparrow \subseteq \downarrow$
 - ∀*a*, *b*, *c*

- $1 SN \implies WN$
- 3 CR \iff $\leftrightarrow^* \subseteq \downarrow$

- $1 SN \implies WN$

- 1 SN \Longrightarrow WN
- 3 CR \iff $\leftrightarrow^* \subseteq \downarrow$ \iff $\leftrightarrow^* = \downarrow$
- 4 CR \Longrightarrow UN

- 1 SN \Longrightarrow WN
- - 3 CR \iff $\leftrightarrow^* \subseteq \downarrow$ \iff $\leftrightarrow^* = \downarrow$
 - 4 CR \Longrightarrow UN

- 1 SN \Longrightarrow WN

- 4 CR \Longrightarrow UN

- 1 SN \Longrightarrow WN
- 3 CR $\iff \leftrightarrow^* \subseteq \downarrow \iff \leftrightarrow^* = \downarrow$
- 4 $CR \implies UN$
- 6 WN & UN \implies CR

- CR confluence Church-Rosser property
 - \bullet $\uparrow \subseteq \downarrow$
 - ∀*a*, *b*, *c*

Wikimedi

- WCR local confluence
 - $\bullet \leftarrow \cdot \rightarrow \subseteq \downarrow$

- CR confluence Church-Rosser property
 - \bullet $\uparrow \subseteq \downarrow$
 - ∀*a*, *b*, *c*

 $\exists d$

WIKI

- WCR local confluence
 - $\bullet \; \leftarrow \cdot \rightarrow \; \subseteq \; \downarrow$
 - ∀*a*, *b*, *c*

- CR confluence Church-Rosser property
 - \bullet $\uparrow \subseteq \downarrow$
 - ∀*a*, *b*, *c*

 $\exists d$

VVikimed

- WCR local confluence weak Church-Rosser property
 - \bullet $\leftarrow \cdot \rightarrow \subseteq \downarrow$
 - ∀*a*, *b*, *c*

- CR confluence Church-Rosser property
 - \bullet $\uparrow \subseteq \downarrow$
 - ∀*a*, *b*, *c*

 $\exists d$

• WCR local confluence weak Church-Rosser property

- \bullet $\leftarrow \cdot \rightarrow \subseteq \downarrow$
- $\forall a, b, c$

in diagrams: \rightarrow for \rightarrow *

- 1 SN \Longrightarrow WN
- 2 SN \iff WN \bigcirc a \longrightarrow b
- 3 CR $\iff \leftrightarrow^* \subseteq \downarrow \iff \leftrightarrow^* = \downarrow$
- 4 $CR \implies UN$
- 6 WN & UN \implies CR
- 7 $CR \implies WCR$

- 1 SN \Longrightarrow WN
- 3 CR $\iff \leftrightarrow^* \subseteq \downarrow \iff \leftrightarrow^* = \downarrow$
- 4 $CR \implies UN$
- 6 WN & UN \implies CR
- 7 CR \Longrightarrow WCR

- $1 SN \implies WN$
- 3 CR $\iff \leftrightarrow^* \subseteq \downarrow \iff \leftrightarrow^* = \downarrow$
- 4 $CR \implies UN$
- 6 WN & UN \implies CR
- 7 $CR \implies WCR$
- 8 CR \iff WCR $\qquad \qquad a \longleftarrow b \bigcirc c \longrightarrow d$

- 1 SN \Longrightarrow WN
- 3 CR $\iff \leftrightarrow^* \subseteq \downarrow \iff \leftrightarrow^* = \downarrow$
- 4 $CR \implies UN$
- 6 WN & UN \implies CR
- 7 CR \Longrightarrow WCR
- 9 SN & WCR \implies CR

- 1 SN \Longrightarrow WN

- 4 $CR \implies UN$
- 6 WN & UN \implies CR
- 7 CR \Longrightarrow WCR
- 8 CR \iff WCR a \longleftarrow b \bigcirc c \longrightarrow d
- 9 SN & WCR \implies CR Newman's Lemma

Abstract Rewrite Systems Relationship

bstract Rewrite Systems Relationships

Summary

- semi-completeness
 - CR & WN

Summary

- semi-completeness
 - CR & WN

bstract Rewrite Systems Relationships

Summary

- semi-completeness
 - CR & WN
 - every element has unique normal form

bstract Rewrite Systems Relationships

Summary

- semi-completeness
 - CR & WN
 - every element has unique normal form
- completeness
 - CR & SN

- diamond property
 - $\bullet \; \leftarrow \cdot \rightarrow \; \subseteq \; \rightarrow \cdot \leftarrow$

- diamond property
 - $\bullet \ \leftarrow \cdot \rightarrow \ \subseteq \ \rightarrow \cdot \leftarrow$
 - ∀*a*, *b*, *c*

 $\exists d$

- diamond property
 - $\bullet \; \leftarrow \cdot \rightarrow \; \subseteq \; \rightarrow \cdot \leftarrow$
 - ∀*a*, *b*, *c*

 $\exists d$

- diamond property
 - \bullet $\leftarrow \cdot \rightarrow \subset \rightarrow \cdot \leftarrow$
 - $\forall a, b, c$

 $\exists d$

Lemma

ARS $\mathcal{A}=\langle A,
ightarrow \rangle$ is confluent if $ightarrow \subseteq
ightharpoonup \downarrow \diamond$ for some relation $ightharpoonup \diamond$ on A with diamond property

Outline

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

given

• property P of ARSs that satisfies $P(A) \iff \forall a \colon P(a)$

given

- property P of ARSs that satisfies $P(A) \iff \forall a \colon P(a)$
- ullet strongly normalizing ARS $\mathcal{A}=\langle A,
 ightarrow
 angle$

given

- property P of ARSs that satisfies $P(A) \iff \forall a : P(a)$
- ullet strongly normalizing ARS $\mathcal{A}=\langle A,
 ightarrow
 angle$

to conclude

P(A)

given

- property P of ARSs that satisfies $P(A) \iff \forall a : P(a)$
- strongly normalizing ARS $\mathcal{A} = \langle A,
 ightarrow
 angle$

to conclude

P(A)

it is sufficient to prove

• if P(b) for every b with $a \rightarrow b$ then P(a) induction hypothesis

for arbitrary element a

given

- property P of ARSs that satisfies $P(A) \iff \forall a : P(a)$
- strongly normalizing ARS $\mathcal{A} = \langle A, \rightarrow \rangle$

to conclude

P(A)

it is sufficient to prove

• if P(b) for every b with $a \rightarrow b$ then P(a) induction hypothesis

for arbitrary element a

$$\left(\forall a\colon \left(\forall b\colon a\to b\implies \mathsf{P}(b)\right)\implies \mathsf{P}(a)\right) \implies \forall a\colon \mathsf{P}(a)$$

$$SN(A) \& WCR(A) \implies CR(A)$$

$$SN(A) \& WCR(A) \implies CR(A)$$

First Proof

induction hypothesis

 $\forall a'$: if $a \rightarrow a'$ then CR(a')

 $CR(b_1)$

AM & FvR | ISR 2010 – lecture 2 | 19/27

$$SN(A) \& WCR(A) \implies CR(A)$$

First Proof

induction hypothesis

 $\forall a'\colon \mathsf{if}\ a o a' \mathsf{then}\ \mathsf{CR}(a')$

$$SN(A) \& WCR(A) \implies CR(A)$$

First Proof

induction hypothesis

 $\forall a'\colon \mathsf{if}\ a o a' \mathsf{then}\ \mathsf{CR}(a')$

$$SN(A) \& WCR(A) \implies CR(A)$$

First Proof

induction hypothesis

 $\forall a'\colon \text{ if } a o a' \text{ then } \mathsf{CR}(a')$

$$SN(A) \& WCR(A) \implies CR(A)$$

First Proof

induction hypothesis

 $\forall a'\colon \text{ if } a o a' \text{ then } \mathsf{CR}(a')$

 $CR(c_1)$

AM & FvR ISR 2010 – lecture 2 19/27

Outline

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

• finite multiset M over A is function from A to $\mathbb N$ such that M(a)=0 for all but finitely many $a\in A$

- finite multiset M over A is function from A to $\mathbb N$ such that M(a)=0 for all but finitely many $a\in A$
- M(a) is multiplicity of a

- finite multiset M over A is function from A to $\mathbb N$ such that M(a)=0 for all but finitely many $a\in A$
- M(a) is multiplicity of a
- set of all finite multisets over A is denoted by $\mathcal{M}(A)$

- finite multiset M over A is function from A to $\mathbb N$ such that M(a)=0 for all but finitely many $a\in A$
- M(a) is multiplicity of a
- set of all finite multisets over A is denoted by $\mathcal{M}(A)$

Example

 $\{a,a,a,b,d,d,d\} \in \mathcal{M}(\{a,b,c,d\})$

- finite multiset M over A is function from A to $\mathbb N$ such that M(a)=0 for all but finitely many $a \in A$
- M(a) is multiplicity of a
- set of all finite multisets over A is denoted by $\mathcal{M}(A)$

Example

$${a,a,a,b,d,d,d} \in \mathcal{M}({a,b,c,d})$$
:

$$a \mapsto 3$$

$$a \mapsto 3$$
 $b \mapsto 1$ $c \mapsto 0$ $d \mapsto 3$

$$c\mapsto 0$$

$$d \mapsto 3$$

• sum

 $\forall a \colon (M_1 \uplus M_2)(a) = M_1(a) + M_2(a)$

• sum

$$\forall a \colon (M_1 \uplus M_2)(a) = M_1(a) + M_2(a)$$

Example

• ${a, a, a, b, d, d, d} \uplus {a, c, c} = {a, a, a, a, b, c, c, d, d, d}$

- sum $\forall a : (M_1 \uplus M_2)(a) = M_1(a) + M_2(a)$
- difference $\forall a: (M_1 M_2)(a) = \max \{M_1(a) M_2(a), 0\}$

Example

• ${a, a, a, b, d, d, d} \uplus {a, c, c} = {a, a, a, a, b, c, c, d, d, d}$

- sum $\forall a: (M_1 \uplus M_2)(a) = M_1(a) + M_2(a)$
- difference $\forall a: (M_1 M_2)(a) = \max \{M_1(a) M_2(a), 0\}$

Example

- $\{a, a, a, b, d, d, d\} \uplus \{a, c, c\} = \{a, a, a, a, b, c, c, d, d, d\}$
- $\{a, a, a, b, d, d, d\} \{a, c, c\} = \{a, a, b, d, d, d\}$

- sum $\forall a: (M_1 \uplus M_2)(a) = M_1(a) + M_2(a)$
- difference $\forall a: (M_1 M_2)(a) = \max\{M_1(a) M_2(a), 0\}$
- • •

Example

- $\{a, a, a, b, d, d, d\} \uplus \{a, c, c\} = \{a, a, a, a, b, c, c, d, d, d\}$
- $\{a, a, a, b, d, d, d\} \{a, c, c\} = \{a, a, b, d, d, d\}$

multiset extension of proper order > on A is relation $>_{mul}$ defined on $\mathcal{M}(A)$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

• $M_2 = (M_1 - X) \uplus Y$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X \colon x > y$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X \colon x > y$

Example

 $\{2, 3\}$

multiset extension of proper order > on A is relation $>_{mul}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{mul} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X \colon x > y$

$$\{2,3\} >_{\text{mul}} \{0,1,3\}$$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X \colon x > y$

$$\{2,3\}>_{mul}\{0,1,\frac{3}{3}\}>_{mul}\{0,1,\frac{1}{2},\frac{2}{2},\frac{2}{2}\}$$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X : x > y$

$$\{2,3\}>_{mul}\{0,1,3\}>_{mul}\{0,1,1,\textcolor{red}{2},2,2\}>_{mul}\{0,1,1,\textcolor{red}{0},\textcolor{red}{1},\textcolor{red}{1},2,2\}$$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X \colon x > y$

$$\begin{split} \{2,3\}>_{mul}\{0,1,3\}>_{mul}\{0,1,1,2,2,2\}>_{mul}\{0,1,\frac{1}{1},0,1,1,2,2\}\\ >_{mul}\{0,1,0,1,1,2,2\} \end{split}$$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X : x > y$

$$\begin{split} \{2,3\}>_{\mathsf{mul}}\{0,1,3\}>_{\mathsf{mul}}\{0,1,1,2,2,2\}>_{\mathsf{mul}}\{0,1,1,0,1,1,2,2\}\\ >_{\mathsf{mul}}\{0,1,0,1,\frac{1}{2},2\}>_{\mathsf{mul}}\{0,1,0,1,\frac{0}{0},0,2\} \end{split}$$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X : x > y$

$$\begin{split} \{2,3\}>_{\text{mul}}\{0,1,3\}>_{\text{mul}}\{0,1,1,2,2,2\}>_{\text{mul}}\{0,1,1,0,1,1,2,2\}\\ >_{\text{mul}}\{0,1,0,1,1,2,2\}>_{\text{mul}}\{0,1,0,1,0,0,2\}>_{\text{mul}}\{1,1,1,1,1,1\} \end{split}$$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X \colon x > y$

$$\begin{split} \{2,3\}>_{\text{mul}}\{0,1,3\}>_{\text{mul}}\{0,1,1,2,2,2\}>_{\text{mul}}\{0,1,1,0,1,1,2,2\}\\ >_{\text{mul}}\{0,1,0,1,1,2,2\}>_{\text{mul}}\{0,1,0,1,0,0,2\}>_{\text{mul}}\{1,1,1,1,\frac{1}{1},\frac{1}{1}\}\\ >_{\text{mul}}\{1,1,1,1\} \end{split}$$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X \colon x > y$

$$\begin{split} \{2,3\}>_{\mathsf{mul}} \{0,1,3\}>_{\mathsf{mul}} \{0,1,1,2,2,2\}>_{\mathsf{mul}} \{0,1,1,0,1,1,2,2\} \\ >_{\mathsf{mul}} \{0,1,0,1,1,2,2\}>_{\mathsf{mul}} \{0,1,0,1,0,0,2\}>_{\mathsf{mul}} \{1,1,1,1,1,1,1\} \\ >_{\mathsf{mul}} \{\frac{1}{2},1,1,1\}>_{\mathsf{mul}} \{\frac{1}{2},0,0,0,0,1,1,1\} \end{split}$$

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X \colon x > y$

$$\begin{split} \{2,3\}>_{\text{mul}}\{0,1,3\}>_{\text{mul}}\{0,1,1,2,2,2\}>_{\text{mul}}\{0,1,1,0,1,1,2,2\}\\ >_{\text{mul}}\{0,1,0,1,1,2,2\}>_{\text{mul}}\{0,1,0,1,0,0,2\}>_{\text{mul}}\{1,1,1,1,1,1\}\\ >_{\text{mul}}\{1,1,1,1\}>_{\text{mul}}\{0,0,0,0,1,1,1\}>_{\text{mul}}\cdots \end{split}$$

multiset extension of proper order > on A is relation $>_{mul}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{mul} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X \colon x > y$

Example

$$\begin{split} \{2,3\}>_{\text{mul}} \{0,1,3\}>_{\text{mul}} \{0,1,1,2,2,2\}>_{\text{mul}} \{0,1,1,0,1,1,2,2\} \\ >_{\text{mul}} \{0,1,0,1,1,2,2\}>_{\text{mul}} \{0,1,0,1,0,0,2\}>_{\text{mul}} \{1,1,1,1,1,1,1\} \\ >_{\text{mul}} \{1,1,1,1\}>_{\text{mul}} \{0,0,0,0,1,1,1\}>_{\text{mul}} \cdots \end{split}$$

Theorem

• multiset extension of proper order is proper order

multiset extension of proper order > on A is relation $>_{mul}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{mul} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X \colon x > y$

Example

$$\begin{split} \{2,3\}>_{\text{mul}} \{0,1,3\}>_{\text{mul}} \{0,1,1,2,2,2\}>_{\text{mul}} \{0,1,1,0,1,1,2,2\} \\ >_{\text{mul}} \{0,1,0,1,1,2,2\}>_{\text{mul}} \{0,1,0,1,0,0,2\}>_{\text{mul}} \{1,1,1,1,1,1,1\} \\ >_{\text{mul}} \{1,1,1,1\}>_{\text{mul}} \{0,0,0,0,1,1,1\}>_{\text{mul}} \cdots \end{split}$$

Theorem

- multiset extension of proper order is proper order
- multiset extension of well-founded order is well-founded

$$SN(A) \& WCR(A) \implies CR(A)$$

Second Proof

• given $b^* \leftarrow a \rightarrow^* c$

$$SN(A) \& WCR(A) \implies CR(A)$$

- given $b^* \leftarrow a \rightarrow^* c$
- construct sequence of conversions $(C_i)_{i\geqslant 0}$ between b and c

$$SN(A) \& WCR(A) \implies CR(A)$$

- given $b^* \leftarrow a \rightarrow^* c$
- construct sequence of conversions $(C_i)_{i\geqslant 0}$ between b and c
 - C_0 is initial conversion $b^* \leftarrow a \rightarrow^* c$

$$SN(A) \& WCR(A) \implies CR(A)$$

- given $b^* \leftarrow a \rightarrow^* c$
- construct sequence of conversions $(C_i)_{i\geqslant 0}$ between b and c
 - C_0 is initial conversion $b^* \leftarrow a \rightarrow^* c$
 - C_{i+1} is obtained from C_i by replacing peak $e \leftarrow d \rightarrow f$ in C_i by valley $e \rightarrow^* \cdot^* \leftarrow f$

$$SN(A) \& WCR(A) \implies CR(A)$$

- given $b^* \leftarrow a \rightarrow^* c$
- construct sequence of conversions $(C_i)_{i\geqslant 0}$ between b and c
 - C_0 is initial conversion $b^* \leftarrow a \rightarrow^* c$
 - C_{i+1} is obtained from C_i by replacing peak $e \leftarrow d \rightarrow f$ in C_i by valley $e \rightarrow^* \cdot * \leftarrow f$
- $|C_i|$ is multiset of elements appearing in C_i

$$SN(A) \& WCR(A) \implies CR(A)$$

- given $b^* \leftarrow a \rightarrow^* c$
- construct sequence of conversions $(C_i)_{i\geqslant 0}$ between b and c
 - C_0 is initial conversion $b^* \leftarrow a \rightarrow^* c$
 - C_{i+1} is obtained from C_i by replacing peak $e \leftarrow d \rightarrow f$ in C_i by valley $e \rightarrow^* \cdot * \leftarrow f$
- $|C_i|$ is multiset of elements appearing in C_i
- $|C_i| (\to^+)_{\text{mul}} |C_{i+1}|$

$$SN(A)$$
 & $WCR(A) \implies CR(A)$

- given $b^* \leftarrow a \rightarrow^* c$
- construct sequence of conversions $(C_i)_{i\geqslant 0}$ between b and c
 - C_0 is initial conversion $b^* \leftarrow a \rightarrow^* c$
 - C_{i+1} is obtained from C_i by replacing peak $e \leftarrow d \rightarrow f$ in C_i by valley $e \rightarrow^* \cdot * \leftarrow f$
- $|C_i|$ is multiset of elements appearing in C_i
- $|C_i| (\to^+)_{\text{mul}} |C_{i+1}|$
- $(\rightarrow^+)_{\text{mul}}$ is well-founded

$$SN(A) \& WCR(A) \implies CR(A)$$

- given $b^* \leftarrow a \rightarrow^* c$
- construct sequence of conversions $(C_i)_{i\geqslant 0}$ between b and c
 - C_0 is initial conversion $b^* \leftarrow a \rightarrow^* c$
 - C_{i+1} is obtained from C_i by replacing peak $e \leftarrow d \rightarrow f$ in C_i by valley $e \rightarrow^* \cdot * \leftarrow f$
- $|C_i|$ is multiset of elements appearing in C_i
- $|C_i| (\to^+)_{\text{mul}} |C_{i+1}|$
- $(\rightarrow^+)_{mul}$ is well-founded
- hence $\exists n$ such that C_n has no peaks

$$SN(A) \& WCR(A) \implies CR(A)$$

- given $b^* \leftarrow a \rightarrow^* c$
- construct sequence of conversions $(C_i)_{i\geqslant 0}$ between b and c
 - C_0 is initial conversion $b^* \leftarrow a \rightarrow^* c$
 - C_{i+1} is obtained from C_i by replacing peak $e \leftarrow d \rightarrow f$ in C_i by valley $e \rightarrow^* \cdot * \leftarrow f$
- $|C_i|$ is multiset of elements appearing in C_i
- $|C_i| (\to^+)_{\text{mul}} |C_{i+1}|$
- $(\rightarrow^+)_{mul}$ is well-founded
- hence $\exists n$ such that C_n has no peaks \implies $C_n: b \to^* \cdot * \leftarrow c$

ARS

ARS

conversion

multiset

$$a \leftarrow b \rightarrow c \rightarrow d$$

 $\{\mathsf{a},\mathsf{b},\mathsf{c},\mathsf{d}\}$

ARS

conversion

multiset

$$a \leftarrow b \rightarrow c \rightarrow d$$

$$\{\mathsf{a},\mathsf{b},\mathsf{c},\mathsf{d}\}$$

$$\mathsf{a} \to \mathsf{e} \leftarrow \mathsf{f} \leftarrow \mathsf{c} \to \mathsf{d} \qquad \{\mathsf{a},\mathsf{e},\mathsf{f},\mathsf{c},\mathsf{d}\}$$

$$\{a, e, f, c, d\}$$

ARS

conversion

multiset

$$a \leftarrow b \rightarrow c \rightarrow d$$

$$\{\mathsf{a},\mathsf{b},\mathsf{c},\mathsf{d}\}$$

$$a \rightarrow e \leftarrow f \leftarrow c \rightarrow d$$
 {a, e, f, c, d}

$$\{a, e, f, c, d\}$$

$$a \to e \leftarrow f \to g \leftarrow d \qquad \{a, e, f, g, d\}$$

$$\{a, e, f, g, d\}$$

ARS

conversion

multiset

$$\mathsf{a} \leftarrow \mathsf{b} \rightarrow \mathsf{c} \rightarrow \mathsf{d}$$

$$\{\mathsf{a},\mathsf{b},\mathsf{c},\mathsf{d}\}$$

$$a \rightarrow e \leftarrow f \leftarrow c \rightarrow d$$
 {a, e, f, c, d}

$$\{a, e, f, c, d\}$$

$$a \to e \leftarrow f \to g \leftarrow d \qquad \{a, e, f, g, d\}$$

$$\{a, e, f, g, d\}$$

$$a \to e \to g \leftarrow d$$

$$\{a, e, g, d\}$$

rewrite proof

Outline

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems

Gérard Huet

JACM 27(4), pp. 797 - 821, 1980

Proving Termination with Multiset Orderings

Nachum Dershowitz and Zohar Manna CACM 22(8), pp. 465 – 476, 1979

Confluence by Decreasing Diagrams

Vincent van Oostrom

TCS 126(2), pp. 259 – 280, 1994