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Overview

Sunday

introduction, examples, abstract rewriting, equational reasoning, term rewriting

Monday

termination, completion

Tuesday

completion, termination

Wednesday

confluence, modularity, strategies

Thursday

exam, advanced topics
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Abstract Rewrite Systems

Motivation

concrete rewrite formalisms

• string rewriting

• term rewriting

• graph rewriting

• λ-calculus

• interaction nets

• · · ·

abstract rewriting

• no structure on objects that are rewritten

• uniform presentation of properties and proofs
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Abstract Rewrite Systems Definitions

Definitions

• abstract rewrite system (ARS) is set A equipped with binary relation →

a b c d

e f

g

ARS A = 〈A,→〉

• A = {a, b, c, d, e, f, g}

• → =

{
(a, e), (b, a), (b, c), (c, d), (c, f)

(e, b), (e, g), (f, e), (f, g)

}

• rewrite sequence

• finite a→ e→ b→ c→ f

• empty a

• infinite a→ e→ b→ a→ e→ b→ · · ·
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Abstract Rewrite Systems Definitions

Definition (Derived Relations of →)

• ← inverse of →

• →∗ transitive and reflexive closure of →

• ∗← inverse of →∗ (transitive and reflexive closure of ←)

• ↓ joinability ↓ =→∗ · ∗←

• ↔ symmetric closure of →

• ↔∗ conversion (equivalence relation generated by →)

• →+ transitive closure of →

• →= reflexive closure of →

• ↑ meetability ↑ = ∗← · →∗
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Abstract Rewrite Systems Definitions

Terminology

• if x →∗ y then x rewrites to y and y is reduct of x

• if x →∗ z ∗← y then z is common reduct of x and y

• if x ↔∗ y then x and y are convertible

Example

a b c d

e f

g

• a→∗ f

• e ↓ f

f ↓ d not g ↓ d

• g↔∗ d
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Abstract Rewrite Systems Definitions

Definition (Normal Forms)

• normal form is element x such that x 6→ y for all y

• NF(A) denotes set of normal forms of ARS A

• x →! y if x →∗ y for normal form y (x has normal form y)

Example

a b c d

e f

g

ARS A = 〈A,→〉

• d is normal form

• NF(A) = {d, g}

• b→! g
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Abstract Rewrite Systems Properties
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Properties
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Abstract Rewrite Systems Properties

Definitions

• SN strong normalization

termination

• no infinite rewrite sequences

• WN weak normalization

• every element has at least one normal form

• ∀a ∃b a→! b

• UN unique normal forms

• no element has more than one normal form

• ∀a, b, c if a→! b and a→! c then b = c

• !← · →! ⊆ =
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Abstract Rewrite Systems Relationships
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Abstract Rewrite Systems Relationships

Lemmata

1 SN =⇒ WN

2 SN ⇐=× WN

a b

3 CR ⇐⇒ ↔∗ ⊆ ↓ ⇐⇒ ↔∗ = ↓

4 CR =⇒ UN

5 CR ⇐=× UN a b c

6 WN & UN =⇒ CR

7 CR =⇒ WCR

8 CR ⇐=× WCR a b c d

9 SN & WCR =⇒ CR Newman’s Lemma
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Abstract Rewrite Systems Relationships

Definitions

• CR confluence

Church-Rosser property

• ↑ ⊆ ↓

• a

b c

d

∀a, b, c

∃d

∗ ∗

∗ ∗

Wikimedia

• WCR local confluence

weak Church-Rosser property

• ← · → ⊆ ↓

• a

b c

d

∀a, b, c

∃d
∗ ∗
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Newman’s Lemma

Well-Founded Induction

given

• property P of ARSs that satisfies P(A) ⇐⇒ ∀a : P(a)

• strongly normalizing ARS A = 〈A,→〉

to conclude

• P(A)

it is sufficient to prove

• if P(b) for every b with a→ b︸ ︷︷ ︸
induction hypothesis

then P(a)

for arbitrary element a(
∀a :

(
∀b : a→ b =⇒ P(b)

)
=⇒ P(a)

)
=⇒ ∀a : P(a)
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Newman’s Lemma

Newman’s Lemma

SN(A) & WCR(A) =⇒ CR(A)

First Proof

a

b1 c1

b c

WCR

d1IH

d2

d3

IH

induction hypothesis

∀a′ : if a→ a′ then CR(a′)
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Multiset Orders

Definitions (Multiset)

• finite multiset M over A is function from A to N such that M(a) = 0 for all
but finitely many a ∈ A

• M(a) is multiplicity of a

• set of all finite multisets over A is denoted by M(A)

Example

{a, a, a, b, d , d , d} ∈ M({a, b, c , d})

:

a 7→ 3 b 7→ 1 c 7→ 0 d 7→ 3
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Multiset Orders

Definitions (Operations on Multisets)

• sum ∀a : (M1 ]M2)(a) = M1(a) + M2(a)

• difference ∀a : (M1−M2)(a) = max {M1(a)−M2(a), 0}

• · · ·

Example

• {a, a, a, b, d , d , d} ] {a, c , c} = {a, a, a, a, b, c , c , d , d , d}

• {a, a, a, b, d , d , d} − {a, c , c} = {a, a, b, d , d , d}
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Multiset Orders

Definition

multiset extension of proper order > on A is relation >mul defined on M(A)

as follows: M1 >mul M2 if ∃X ,Y ∈M(A) such that

• M2 = (M1 − X ) ] Y

• ∅ 6= X ⊆ M1

• ∀y ∈ Y ∃x ∈ X : x > y

Example

{2, 3}

>mul {0, 1, 3} >mul {0, 1, 1, 2, 2, 2} >mul {0, 1, 1, 0, 1, 1, 2, 2}
>mul {0, 1, 0, 1, 1, 2, 2} >mul {0, 1, 0, 1, 0, 0, 2} >mul {1, 1, 1, 1, 1, 1}
>mul {1, 1, 1, 1} >mul {0, 0, 0, 0, 1, 1, 1} >mul · · ·

Theorem

• multiset extension of proper order is proper order

• multiset extension of well-founded order is well-founded
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Newman’s Lemma

Newman’s Lemma

SN(A) & WCR(A) =⇒ CR(A)

Second Proof

• given b ∗← a→∗ c

• construct sequence of conversions (Ci )i>0 between b and c

• C0 is initial conversion b ∗← a→∗ c

• Ci+1 is obtained from Ci by replacing peak e ← d → f in Ci by
valley e →∗ · ∗← f

• |Ci | is multiset of elements appearing in Ci

• |Ci | (→+)mul |Ci+1|

• (→+)mul is well-founded

• hence ∃n such that Cn has no peaks

=⇒ Cn : b →∗ · ∗← c
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Newman’s Lemma

Example

• ARS a b c d

e f

g

• conversion multiset

a← b→ c→ d {a, b, c, d}

a→ e← f← c→ d {a, e, f, c, d}

a→ e← f→ g← d {a, e, f, g, d}

a→ e→ g← d {a, e, g, d} rewrite proof
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Further Reading

Outline

Abstract Rewrite Systems

Newman’s Lemma

Multiset Orders

Further Reading
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Further Reading

Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems

Gérard Huet

JACM 27(4), pp. 797 – 821, 1980

Proving Termination with Multiset Orderings

Nachum Dershowitz and Zohar Manna

CACM 22(8), pp. 465 – 476, 1979

Confluence by Decreasing Diagrams

Vincent van Oostrom

TCS 126(2), pp. 259 – 280, 1994
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