ISR 2010

Introduction to Term Rewriting lecture 2

Aart Middeldorp and Femke van Raamsdonk

Institute of Computer Science University of Innsbruck

> Department of Computer Science VU Amsterdam

Sunday

introduction, examples, abstract rewriting, equational reasoning, term rewriting

Monday

termination, completion

Tuesday

completion, termination

Wednesday

confluence, modularity, strategies

Thursday

exam, advanced topics

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

Motivation

concrete rewrite formalisms

- string rewriting
- term rewriting
- graph rewriting
- λ-calculus
- interaction nets
- . . .

abstract rewriting

- no structure on objects that are rewritten
- uniform presentation of properties and proofs

ostract Rewrite Systems Definitions

- Abstract Rewrite Systems
 - Definitions
 - Properties
 - Relationships
- Newman's Lemma
- Multiset Orders
- Further Reading

Definitions

• abstract rewrite system (ARS) is set A equipped with binary relation \rightarrow

- rewrite sequence
 - finite $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$
 - empty a
 - infinite $a \rightarrow e \rightarrow b \rightarrow a \rightarrow e \rightarrow b \rightarrow \cdots$

hstract Rewrite Systems Definitions

Definition (Derived Relations of \rightarrow)

- ← inverse of →
- →* transitive and reflexive closure of →
- * \leftarrow inverse of \rightarrow^* (transitive and reflexive closure of \leftarrow)
- \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$
- $\bullet \hspace{0.1in} \longleftrightarrow \hspace{0.1in} \text{symmetric closure of} \hspace{0.1in} \to \hspace{0.1in}$
- \leftrightarrow^* conversion (equivalence relation generated by \rightarrow)
- \rightarrow ⁺ transitive closure of \rightarrow
- →= reflexive closure of →
- \uparrow meetability $\uparrow = * \leftarrow \cdot \rightarrow *$

Terminology

- if $x \to^* y$ then x rewrites to y and y is reduct of x
- if $x \to^* z *\leftarrow y$ then z is common reduct of x and y
- if $x \leftrightarrow^* y$ then x and y are convertible

Example

- a →* f
- $e \downarrow f$ $f \downarrow d$ not $g \downarrow d$
- g ↔* d

Definition (Normal Forms)

- normal form is element x such that $x \not\rightarrow y$ for all y
- NF(A) denotes set of normal forms of ARS A
- $x \to y$ if $x \to y$ for normal form y (x has normal form y)

Example

ostract Rewrite Systems Properties

- Abstract Rewrite Systems
 - Definitions
 - Properties
 - Relationships
- Newman's Lemma
- Multiset Orders
- Further Reading

Definitions

- SN strong normalization termination
 - no infinite rewrite sequences
- WN weak normalization
 - every element has at least one normal form
 - $\forall a \exists b \ a \rightarrow^! b$
- UN unique normal forms
 - no element has more than one normal form
 - $\forall a, b, c$ if $a \rightarrow b$ and $a \rightarrow c$ then b = c
 - $\bullet \ ^{!} \leftarrow \cdot \rightarrow ^{!} \ \subseteq \ =$

Definitions

- CR confluence Church-Rosser property
 - \bullet $\uparrow \subseteq \downarrow$
 - ∀*a*, *b*, *c*

 $\exists d$

Wikimedi

- WCR local confluence weak Church-Rosser property
 - \bullet $\leftarrow \cdot \rightarrow \subseteq \downarrow$
 - $\forall a, b, c$

in diagrams: \longrightarrow for \rightarrow^*

 $\exists d$

ostract Rewrite Systems Relationships

- Abstract Rewrite Systems
 - Definitions
 - Properties
 - Relationships
- Newman's Lemma
- Multiset Orders
- Further Reading

Lemmata

- 1 SN \Longrightarrow WN
- 3 CR $\iff \leftrightarrow^* \subseteq \downarrow \iff \leftrightarrow^* = \downarrow$
- 4 $CR \implies UN$
- 6 WN & UN \implies CR
- 7 CR \Longrightarrow WCR
- 8 CR \iff WCR $\qquad \qquad a \longleftarrow b \bigcirc c \longrightarrow d$
- 9 SN & WCR \implies CR Newman's Lemma

bstract Rewrite Systems Relationships

Summary

Definitions

- semi-completeness
 - CR & WN
 - every element has unique normal form
- completeness
 - CR & SN

Definition

- diamond property
 - \bullet $\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$
 - $\forall a, b, c$

 $\exists d$

Lemma

ARS $\mathcal{A}=\langle A,
ightarrow \rangle$ is confluent if $ightarrow \subseteq
ightharpoonup _{\diamond} \subseteq
ightharpoonup ^*$ for some relation $ightharpoonup_{\diamond}$ on A with diamond property

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

Well-Founded Induction

given

- property P of ARSs that satisfies $P(A) \iff \forall a : P(a)$
- strongly normalizing ARS $\mathcal{A} = \langle A,
 ightarrow
 angle$

to conclude

P(A)

it is sufficient to prove

• if P(b) for every b with $a \rightarrow b$ then P(a) induction hypothesis

for arbitrary element a

$$\left(\forall a\colon \left(\forall b\colon a\to b\implies \mathsf{P}(b)\right)\implies \mathsf{P}(a)\right)\quad \Longrightarrow\quad \forall a\colon \mathsf{P}(a)$$

Newman's Lemma

$$SN(A) \& WCR(A) \implies CR(A)$$

First Proof

induction hypothesis $CR(b_1) \& CR(c_1)$

 $\forall a'$: if $a \rightarrow a'$ then CR(a')

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

Definitions (Multiset)

- finite multiset M over A is function from A to \mathbb{N} such that M(a) = 0 for all but finitely many $a \in A$
- M(a) is multiplicity of a
- set of all finite multisets over A is denoted by $\mathcal{M}(A)$

Example

$${a,a,a,b,d,d,d} \in \mathcal{M}({a,b,c,d})$$
:

$$a \mapsto 3$$
 $b \mapsto 1$ $c \mapsto 0$ $d \mapsto 3$

$$c\mapsto 0$$

$$d \mapsto 3$$

AM & FvR ISR 2010 - lecture 2

Definitions (Operations on Multisets)

- sum $\forall a: (M_1 \uplus M_2)(a) = M_1(a) + M_2(a)$
- difference $\forall a: (M_1 M_2)(a) = \max\{M_1(a) M_2(a), 0\}$
- • •

Example

- $\{a, a, a, b, d, d, d\} \uplus \{a, c, c\} = \{a, a, a, a, b, c, c, d, d, d\}$
- ${a, a, a, b, d, d, d} {a, c, c} = {a, a, b, d, d, d}$

Definition

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X \colon x > y$

Example

$$\begin{split} \{2,3\}>_{\text{mul}} \{0,1,3\}>_{\text{mul}} \{0,1,1,2,2,2\}>_{\text{mul}} \{0,1,1,0,1,1,2,2\} \\ >_{\text{mul}} \{0,1,0,1,1,2,2\}>_{\text{mul}} \{0,1,0,1,0,0,2\}>_{\text{mul}} \{1,1,1,1,1,1,1\} \\ >_{\text{mul}} \{1,1,1,1\}>_{\text{mul}} \{0,0,0,0,1,1,1\}>_{\text{mul}} \cdot \cdot \cdot \end{split}$$

Theorem

- multiset extension of proper order is proper order
- multiset extension of well-founded order is well-founded

Newman's Lemma

$$SN(A) \& WCR(A) \implies CR(A)$$

Second Proof

- given $b^* \leftarrow a \rightarrow^* c$
- construct sequence of conversions $(C_i)_{i\geqslant 0}$ between b and c
 - C_0 is initial conversion $b^* \leftarrow a \rightarrow^* c$
 - C_{i+1} is obtained from C_i by replacing peak $e \leftarrow d \rightarrow f$ in C_i by valley $e \rightarrow^* \cdot * \leftarrow f$
- $|C_i|$ is multiset of elements appearing in C_i
- $|C_i| (\to^+)_{\text{mul}} |C_{i+1}|$
- $(\rightarrow^+)_{mul}$ is well-founded
- hence $\exists n$ such that C_n has no peaks $\implies C_n : b \to^* \cdot {}^* \leftarrow c$

Example

ARS

conversion

multiset

$$\mathsf{a} \leftarrow \mathsf{b} \to \mathsf{c} \to \mathsf{d}$$

$$\{\mathsf{a},\mathsf{b},\mathsf{c},\mathsf{d}\}$$

$$a \rightarrow e \leftarrow f \leftarrow c \rightarrow d$$
 {a, e, f, c, d}

$$\{a, e, f, c, d\}$$

$$a \to e \leftarrow f \to g \leftarrow d \qquad \{a, e, f, g, d\}$$

$$\{a, e, f, g, d\}$$

$$a \to e \to g \leftarrow d$$

$$\{a, e, g, d\}$$

rewrite proof

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems

Gérard Huet

JACM 27(4), pp. 797 - 821, 1980

Proving Termination with Multiset Orderings

Nachum Dershowitz and Zohar Manna CACM 22(8), pp. 465 – 476, 1979

Confluence by Decreasing Diagrams

Vincent van Oostrom

TCS 126(2), pp. 259 – 280, 1994