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@ Further Reading
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concrete rewrite formalisms
® string rewriting
e term rewriting
e graph rewriting
e )\-calculus
e interaction nets
° ...
abstract rewriting

® no structure on objects that are rewritten

e uniform presentation of properties and proofs
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@ Abstract Rewrite Systems
@ Definitions
@ Properties
@ Relationships
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e abstract rewrite system (ARS) is set A equipped with binary relation —

a b € d
\[ j ARS A = (A, —)
e+—f o A:{a,b,c,d,e,f,g}

\J . {(3,6)7(bva)7(bvc),(cvd),(caf)}

(e,b), (e, 8), (f ¢), (f,8)
® rewrite sequence

o finite a—se—b—c—f

e empty a

e infinite a—e—b—a—e—b—---
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Definition (Derived Relations of —)
o inverse of —

o ¥ transitive and reflexive closure of —

e “—  inverse of —* (transitive and reflexive closure of <)
o | joinability | = =%

* — symmetric closure of —

o conversion (equivalence relation generated by —)

e —T  transitive closure of —

o = reflexive closure of —
o | meetability T="%—. "
v
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Terminology

e if x =™ y then x rewrites to y and y is reduct of x
e if x —»* z*« y then z is common reduct of x and y

e if x —* y then x and y are convertible

a b C d
\T J e a—"f
e——f o elf fld notgld
\J ° g<—>*d
g
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Definition (Normal Forms)

e normal form is element x such that x /4 y for all y
e NF(A) denotes set of normal forms of ARS A

e x —'yif x —=* y for normal form y (x has normal form y)

c d
ARS A= (A,—)
\ T J e dis normal form
* NF(A)={d,g}
\ l e b-'g

AM & FvR ISR 2010 — lecture 2 9/27

@ Abstract Rewrite Systems

@ Properties
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e SN strong normalization  termination

e no infinite rewrite sequences

e WN  weak normalization

e every element has at least one normal form
eVadb a—'b

e UN unique normal forms

e no element has more than one normal form

e Ya,b,c ifa—'band a—'cthenb=c

o . ! Cc =
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e CR confluence  Church-Rosser property

e 1 C |
® Va,b,c a
N\
b c
3d a

e WCR local confluence  weak Church-Rosser property
o — . — C |

® Va, b, c a
b c in diagrams: — for —*

3d d
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@ Abstract Rewrite Systems

@ Relationships
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SN = WN

SN  <£ WN Ca——>b

CR = & C | = =]

CR = UN

CR << UN Ca+——b——c

@ WN & UN = CR

CR = WCR

B CR << WCR a——b_ “c——d
B SN & WCR = CR Newman's Lemma
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Summary

=

® semi-completeness

e CR & WN
e every element has unique normal form

S
WC

Definitions

e completeness

e CR & SN
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Definition

e diamond property ¢

o — . — C — .«

® Va, b, c a
VRN

Ad =

3d d

ARS A = (A, —) is confluent if — C —, C —* for some relation —, on A with
diamond property
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@ Newman's Lemma
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Well-Founded Induction

given
e property P of ARSs that satisfies P(A) <=  Va: P(a)
e strongly normalizing ARS A = (A, —)

to conclude

* P(A)

it is sufficient to prove

e if P(b) for every b with a — b then P(a)

induction hypothesis

for arbitrary element a

(Va: (Vb: a—b — P(b)) — P(a)) —  Va: P(a)
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Newman'’s Lemma

Newman's Lemma
SN(A) & WCR(A) = CR(A)

First Proof

by WCR a

/ \ / \ induction hypothesis CR(b1) & CR(c1)

o Va': if a— a’ then CR(&')
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Multiset Orders

ISR 2010 - lecture 2

Outline

@ Multiset Orders




Definitions (Multiset)

e finite multiset M over A is function from A to N such that M(a) = 0 for all
but finitely many a € A

e M(a) is multiplicity of a

e set of all finite multisets over A is denoted by M(A)

{a7 a7 a7 b, d7 d’ d} e M({a’ b7 C’ d})

ar—3 b—1 c—0 d—3
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Definitions (Operations on Multisets)

® sum Va: (My W Mp)(a) = Mi(a) + Ma(a)
o difference Va: (My — My)(a) = max {M;(a) — My(a),0}

{a7 a’ a’ b7 d7 d’ d} L-H {a’ C’ C} = {a7 a’ a? a’ b’ C? C’ d’ d? d}
{a,a,a,b,d,d,d} —{a,c,c} ={a,a,b,d,d,d}
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Definition

multiset extension of proper order > on A is relation >, defined on M(A)
as follows: My >, My if 3X, Y € M(A) such that

.MQZ(Ml—X)H'JY
e JA£XC M
e VycYdxeX: x>y

| A\

Example
12,3} >mut 0,1,3} >mut {0,1,1,2,2,2} >mu {0,1,1,0,1,1,2,2}
>mul {07 17 07 17 17 27 2} > mul {07 17 07 17 07 07 2} >mul {17 17 17 ]-7 17 1}
>mul {1; 17 17 1} > mul {07 07 07 07 17 17 1} >mul c e

Theorem

| A\

e multiset extension of proper order is proper order

e multiset extension of well-founded order is well-founded
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Newman's Lemma

SN(A) & WCR(A) => CR(A)

| \

Second Proof
e given b*—a—* ¢
e construct sequence of conversions (C;)i>o between b and ¢

e ( is initial conversion b *« a —* ¢

e (i, is obtained from C; by replacing peak e < d — f in C; by
valley e —=* - *«— f

e |G| is multiset of elements appearing in C;

o [Gl (= )mu [Cital

® (—1)mul is well-founded

e hence dn such that C, has no peaks — (C,: b—*-*—c¢

A,
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* ARS a b € d

g

e conversion multiset
a~—b—c—d {a,b,c,d}
a—e«—fec—d {a,e,f,c,d}

a—e«—f—oged {a,e,f,g,d}

a—e—g+—d {a,e, g,d} rewrite proof

AM & FvR ISR 2010 — lecture 2 25/27

@ Further Reading
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@ Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems

Gérard Huet
JACM 27(4), pp. 797 — 821, 1980

@ Proving Termination with Multiset Orderings
Nachum Dershowitz and Zohar Manna
CACM 22(8), pp. 465 — 476, 1979

@ Confluence by Decreasing Diagrams
Vincent van Oostrom
TCS 126(2), pp. 259 — 280, 1994
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