

Introduction to Term Rewriting lecture 2

Institute of Computer Science University of Innsbruck

Department of Computer Science VU Amsterdam

Overview YEATINA'S

Sunday

introduction, examples, abstract rewriting, equational reasoning, term rewriting

Monday

termination, completion

Tuesday

completion, termination

Wednesday

confluence, modularity, strategies

Thursday

exam, advanced topics

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

AM & FvR

ISR 2010 – lecture 2

3/27

Abstract Rewrite System

Motivation

concrete rewrite formalisms

- string rewriting
- term rewriting
- graph rewriting
- λ -calculus
- interaction nets
- ...

abstract rewriting

- no structure on objects that are rewritten
- uniform presentation of properties and proofs

- Abstract Rewrite Systems
 - Definitions
 - Properties
 - Relationships
- Newman's Lemma
- Multiset Orders
- Further Reading

AM & FvR

ISR 2010 - lecture 2

Definitions

• abstract rewrite system (ARS) is set A equipped with binary relation \rightarrow

ARS
$$A = \langle A, \rightarrow \rangle$$

•
$$A = \{a, b, c, d, e, f, g\}$$

ARS
$$\mathcal{A} = \langle A, \rightarrow \rangle$$

• $A = \{a, b, c, d, e, f, g\}$

• $\rightarrow = \{(a, e), (b, a), (b, c), (c, d), (c, f)\}$

(e, b), (e, g), (f, e), (f, g)

- rewrite sequence
 - finite $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$
 - empty a
 - infinite $a \rightarrow e \rightarrow b \rightarrow a \rightarrow e \rightarrow b \rightarrow \cdots$

Definition (Derived Relations of \rightarrow)

- \leftarrow inverse of \rightarrow
- →* transitive and reflexive closure of →
- * \leftarrow inverse of \rightarrow * (transitive and reflexive closure of \leftarrow)
- \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$
- ullet symmetric closure of o
- \leftrightarrow^* conversion (equivalence relation generated by \rightarrow)
- \rightarrow ⁺ transitive closure of \rightarrow
- \rightarrow = reflexive closure of \rightarrow
- \uparrow meetability $\uparrow = * \leftarrow \cdot \rightarrow *$

AM & FvR

ISR 2010 – lecture 2

7/27

Abstract Rewrite System

Definitions

Terminology

- if $x \to^* y$ then x rewrites to y and y is reduct of x
- if $x \to^* z *\leftarrow y$ then z is common reduct of x and y
- if $x \leftrightarrow^* y$ then x and y are convertible

Example

- a →* f
- $e \downarrow f f \downarrow d not g \downarrow d$
- g ↔* d

AM & FvR ISR 2010 – lecture 2 8/27

Definition (Normal Forms)

- normal form is element x such that $x \not\rightarrow y$ for all y
- NF(A) denotes set of normal forms of ARS A
- $x \rightarrow y$ if $x \rightarrow y$ for normal form y (x has normal form y)

Example

ARS $\mathcal{A} = \langle A,
ightarrow
angle$

- d is normal form
- $\bullet \quad \mathsf{NF}(\mathcal{A}) = \{\mathsf{d},\mathsf{g}\}$
- $b \rightarrow g$

AM & FvR

ISR 2010 - lecture 2

9/27

Abstract Rewrite Systems

roperties

Outline

- Abstract Rewrite Systems
 - Definitions
 - Properties
 - Relationships
- Newman's Lemma
- Multiset Orders
- Further Reading

Definitions

- SN strong normalization termination
 - no infinite rewrite sequences
- WN weak normalization
 - every element has at least one normal form
 - $\forall a \exists b \ a \rightarrow b$
- UN unique normal forms
 - no element has more than one normal form
 - $\forall a, b, c$ if $a \rightarrow^! b$ and $a \rightarrow^! c$ then b = c
 - \bullet ! $\leftarrow \cdot \rightarrow$! \subseteq =

AM & FvR

ISR 2010 – lecture 2

11/27

Abstract Rewrite Systems

Properties

Definitions

- CR confluence Church-Rosser property
 - \bullet $\uparrow \subseteq \downarrow$
 - ∀*a*, *b*, *c*

 $\exists d$

Wikimedia

- WCR local confluence weak Church-Rosser property
 - \bullet $\leftarrow \cdot \rightarrow \subseteq \downarrow$
 - ∀*a*, *b*, *c*

in diagrams: \rightarrow for \rightarrow *

 $\exists d$

- Abstract Rewrite Systems
 - Definitions
 - Properties
 - Relationships
- Newman's Lemma
- Multiset Orders
- Further Reading

AM & FvR

ISR 2010 - lecture 2

13/27

Abstract Rewrite Systems

Lemmata

- 1 SN \Longrightarrow WN
- SN \iff WN \bigcirc a \longrightarrow b

$$\bigcirc$$
 a \longrightarrow b

- $\mathsf{CR} \quad \Longleftrightarrow \quad \leftrightarrow^* \subseteq \; \downarrow \quad \Longleftrightarrow \quad \leftrightarrow^* \; = \; \downarrow$
- $\mathsf{CR} \implies \mathsf{UN}$

$$\mathsf{CR} \iff \mathsf{UN} \qquad \qquad \bigcirc \mathsf{a} \longleftarrow \mathsf{b} \longrightarrow \mathsf{c}$$

- 6 WN & UN \implies CR
- $\mathsf{CR} \implies \mathsf{WCR}$

$$\mathsf{a} \longleftarrow \mathsf{b} \ \ \, \overset{\mathsf{d}}{\longrightarrow} \mathsf{c} \longrightarrow \mathsf{d}$$

- 9 SN & WCR \implies CR
- Newman's Lemma

Summary

Definitions

- semi-completeness
 - CR & WN
 - every element has unique normal form
- completeness
 - CR & SN

AM & FvR

ISR 2010 - lecture 2

15/27

Abstract Rewrite Systems

Relationships

Definition

- diamond property
 - $\bullet \; \leftarrow \cdot \rightarrow \; \subseteq \; \rightarrow \cdot \leftarrow$
 - ∀*a*, *b*, *c*

 $\exists d$

Lemma

ARS $A = \langle A, \rightarrow \rangle$ is confluent if $\rightarrow \subseteq \rightarrow_{\diamond} \subseteq \rightarrow^*$ for some relation \rightarrow_{\diamond} on A with diamond property

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

AM & FvR

ISR 2010 - lecture 2

17/27

Newman's Lemma

Well-Founded Induction

given

- property P of ARSs that satisfies $P(A) \iff \forall a : P(a)$
- strongly normalizing ARS $\mathcal{A} = \langle A, \rightarrow \rangle$

to conclude

P(A)

it is sufficient to prove

• if P(b) for every b with $a \rightarrow b$ then P(a)

induction hypothesis

for arbitrary element a

$$\Big(\forall a \colon \Big(\forall b \colon a \to b \implies \mathsf{P}(b) \Big) \implies \mathsf{P}(a) \Big) \implies \forall a \colon \mathsf{P}(a)$$

Newman's Lemma

 $SN(A) \& WCR(A) \implies CR(A)$

AM & FvR ISR 2010 – lecture 2 19/27

Multiset Orders

Outline

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

AM & FvR ISR 2010 – lecture 2 20/27

Definitions (Multiset)

- finite multiset M over A is function from A to \mathbb{N} such that M(a) = 0 for all but finitely many $a \in A$
- M(a) is multiplicity of a
- set of all finite multisets over A is denoted by $\mathcal{M}(A)$

Example

 ${a, a, a, b, d, d, d} \in \mathcal{M}({a, b, c, d})$:

 $a \mapsto 3$ $b \mapsto 1$ $c \mapsto 0$ $d \mapsto 3$

AM & FvR

ISR 2010 - lecture 2

Definitions (Operations on Multisets)

- sum
- $\forall a: (M_1 \uplus M_2)(a) = M_1(a) + M_2(a)$
- difference $\forall a: (M_1 M_2)(a) = \max \{M_1(a) M_2(a), 0\}$

Example

- $\{a, a, a, b, d, d, d\} \uplus \{a, c, c\} = \{a, a, a, a, b, c, c, d, d, d\}$
- $\{a, a, a, b, d, d, d\} \{a, c, c\} = \{a, a, b, d, d, d\}$

ISR 2010 - lecture 2 AM & FvR

Definition

multiset extension of proper order > on A is relation $>_{\text{mul}}$ defined on $\mathcal{M}(A)$ as follows: $M_1 >_{\text{mul}} M_2$ if $\exists X, Y \in \mathcal{M}(A)$ such that

- $M_2 = (M_1 X) \uplus Y$
- $\varnothing \neq X \subseteq M_1$
- $\forall y \in Y \ \exists x \in X : x > y$

Example

$$\begin{split} \{2,3\}>_{\text{mul}} \{0,1,3\}>_{\text{mul}} \{0,1,1,2,2,2\}>_{\text{mul}} \{0,1,1,0,1,1,2,2\} \\ >_{\text{mul}} \{0,1,0,1,1,2,2\}>_{\text{mul}} \{0,1,0,1,0,0,2\}>_{\text{mul}} \{1,1,1,1,1,1,1\} \\ >_{\text{mul}} \{1,1,1,1\}>_{\text{mul}} \{0,0,0,0,1,1,1\}>_{\text{mul}} \cdots \end{split}$$

Theorem

- multiset extension of proper order is proper order
- multiset extension of well-founded order is well-founded

AM & FvR

ISR 2010 - lecture 2

23/27

Newman's Lemma

Newman's Lemma

$$SN(A) \& WCR(A) \implies CR(A)$$

Second Proof

- given $b^* \leftarrow a \rightarrow^* c$
- construct sequence of conversions $(C_i)_{i\geqslant 0}$ between b and c
 - C_0 is initial conversion $b^* \leftarrow a \rightarrow^* c$
 - C_{i+1} is obtained from C_i by replacing peak $e \leftarrow d \rightarrow f$ in C_i by valley $e \rightarrow^* \cdot^* \leftarrow f$
- $|C_i|$ is multiset of elements appearing in C_i
- $|C_i| (\rightarrow^+)_{\text{mul}} |C_{i+1}|$
- (→⁺)_{mul} is well-founded
- hence $\exists n$ such that C_n has no peaks $\implies C_n : b \to^* \cdot {}^* \leftarrow c$

AM & FvR ISR 2010 – lecture 2 24/27

Example

ARS

conversion

multiset

$$a \leftarrow b \rightarrow c \rightarrow d \qquad \qquad \{a,b,c,d\}$$

$$\mathsf{a} \to \mathsf{e} \leftarrow \mathsf{f} \leftarrow \mathsf{c} \to \mathsf{d} \qquad \{\mathsf{a},\mathsf{e},\mathsf{f},\mathsf{c},\mathsf{d}\}$$

$$\mathsf{a} \to \mathsf{e} \leftarrow \mathsf{f} \to \mathsf{g} \leftarrow \mathsf{d} \qquad \{\mathsf{a},\mathsf{e},\mathsf{f},\mathsf{g},\mathsf{d}\}$$

$$\mathsf{a} \to \mathsf{e} \to \mathsf{g} \leftarrow \mathsf{d} \qquad \qquad \{\mathsf{a},\mathsf{e},\mathsf{g},\mathsf{d}\}$$

rewrite proof

AM & FvR

ISR 2010 – lecture 2

25/27

Further Reading

Outline

- Abstract Rewrite Systems
- Newman's Lemma
- Multiset Orders
- Further Reading

AM & FvR ISR 2010 – lecture 2 26/27

Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems

Gérard Huet

JACM 27(4), pp. 797 - 821, 1980

Proving Termination with Multiset Orderings

Nachum Dershowitz and Zohar Manna CACM 22(8), pp. 465 - 476, 1979

Confluence by Decreasing Diagrams

Vincent van Oostrom

TCS 126(2), pp. 259 - 280, 1994