Introduction to Term Rewriting

lecture 6

Aart Middeldorp and Femke van Raamsdonk

Institute of Computer Science University of Innsbruck

Department of Computer Science VU Amsterdam

Sunday

introduction, examples, abstract rewriting, equational reasoning, term rewriting

Monday

termination, completion

Tuesday
 completion, termination

Wednesday

confluence, modularity, strategies
Thursday
exam, advanced topics

Outline

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

Example

$\operatorname{TRS} \mathcal{R}=\{(1),(2),(3),(4),(5),(6)\}$
(1)

$$
\begin{align*}
x-0 & \rightarrow x \tag{2}\\
x-\mathrm{s}(y) & \rightarrow \mathrm{p}(x-y) \tag{4}\\
\mathrm{s}(\mathrm{p}(x)) & \rightarrow x \tag{6}
\end{align*}
$$

Example

TRS $\mathcal{R}=\{(1),(2),(3),(4),(5),(6)\}$

$\operatorname{TRS} \mathcal{S}=\{(1),(2),(3),(4),(5),(6),(7),(8),(9),(0)\}$
(2) $x-0 \rightarrow x$
(4) $\quad x-\mathrm{s}(y) \rightarrow \mathrm{p}(x-y)$
(6) $\mathrm{s}(\mathrm{p}(x)) \rightarrow x$
(8) $\mathrm{p}(x-\mathrm{p}(y)) \rightarrow x-y$
(10) $\quad x-\mathrm{p}(y) \rightarrow \mathrm{s}(x-y)$

Example

$\operatorname{TRS} \mathcal{R}=\{(1),(2),(3),(4),(5),(6)\}$

$\operatorname{TRS} \mathcal{S}=\{(1),(2),(3),(4),(5),(6),(7), ~(8), ~(9),(10\}$
(2) $x-0 \rightarrow x$
(4) $\quad x-\mathrm{s}(y) \rightarrow \mathrm{p}(x-y)$
(6) $\mathrm{s}(\mathrm{p}(x)) \rightarrow x$
(8) $\mathrm{p}(x-\mathrm{p}(y)) \rightarrow x-y$
(10) $\quad x-\mathrm{p}(y) \rightarrow \mathrm{s}(x-y)$
rewrite rules (7) and (8) are redundant:

$$
\mathrm{s}(x+\mathrm{p}(y)) \xrightarrow{\text { (1) }} x+y
$$

$\mathrm{p}(x-\mathrm{p}(y)) \xrightarrow{\text { (8) }} x-y$ $\mathrm{p}(\mathrm{s}(x-y))$

Example

$\operatorname{TRS} \mathcal{R}=\{(1),(2),(3),(4),(5),(6)\}$
$\begin{aligned} \text { (1) } & x+0 & \rightarrow x \\ \text { (3) } & x+\mathrm{s}(y) & \rightarrow \mathrm{s}(x+y) \\ \text { (5) } & \mathrm{p}(\mathrm{s}(x)) & \rightarrow x\end{aligned}$
(9) $\quad \mathrm{x}+\mathrm{p}(y) \rightarrow \mathrm{p}(x+y)$

TRS $\mathcal{S}=\{(1),(2),(3),(4),(5),(6),(7),(8),(9),(0)\}$

$$
\begin{align*}
x-0 & \rightarrow x \tag{2}\\
x-\mathrm{s}(y) & \rightarrow \mathrm{p}(x-y) \tag{4}\\
\mathrm{s}(\mathrm{p}(x)) & \rightarrow x \tag{6}
\end{align*}
$$

rewrite rules (7) and (8) are redundant:

$$
\mathrm{s}(x+\mathrm{p}(y))
$$

$\mathrm{p}(x-\mathrm{p}(y))$

$$
\mathrm{p}(\mathrm{~s}(x-y))
$$

Observation

- less rewrite rules
\Longrightarrow less critical pairs
- TRS without redundancy $=$ reduced TRS

Observation

- less rewrite rules $\quad \Longrightarrow$ less critical pairs
- TRS without redundancy $=$ reduced TRS

Definition

TRS \mathcal{R} is reduced if for all $\ell \rightarrow r \in \mathcal{R}$
$11 \quad r$ is normal form with respect to \mathcal{R}

Observation

- less rewrite rules $\quad \Longrightarrow$ less critical pairs
- TRS without redundancy $=$ reduced TRS

Definition

TRS \mathcal{R} is reduced if for all $\ell \rightarrow r \in \mathcal{R}$
$1 \quad r$ is normal form with respect to \mathcal{R}
2ℓ is normal form with respect to $\mathcal{R} \backslash\{\ell \rightarrow r\}$

Example

TRS $\mathcal{R}=\{(1),(2),(3), 4),(5),(6)\}$
(1)

$$
\begin{aligned}
x+0 & \rightarrow x \\
x+\mathrm{s}(y) & \rightarrow \mathrm{s}(x+y)
\end{aligned}
$$

$$
\text { (5) } \quad \mathrm{p}(\mathrm{~s}(x)) \rightarrow x
$$

(7) $\mathrm{s}(x+\mathrm{p}(y)) \rightarrow x+y$
(9) $\quad x+\mathrm{p}(y) \rightarrow \mathrm{p}(x+y)$
$\operatorname{TRS} \mathcal{S}=\{(1),(2),(3),(4),(5),(6),(7),(8),(9),(0)\}$

$$
\begin{equation*}
x-0 \rightarrow x \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
x-\mathrm{s}(y) \rightarrow \mathrm{p}(x-y) \tag{4}
\end{equation*}
$$

(6) $\mathrm{s}(\mathrm{p}(x)) \rightarrow x$
(8) $\mathrm{p}(x-\mathrm{p}(y)) \rightarrow x-y$
(10) $\quad x-p(y) \rightarrow \mathrm{s}(x-y)$

- \mathcal{R} is reduced

Example

TRS $\mathcal{R}=\{(1),(2),(3), 4),(5),(6)\}$
(1)

$$
\begin{aligned}
x+0 & \rightarrow x \\
x+\mathrm{s}(y) & \rightarrow \mathrm{s}(x+y)
\end{aligned}
$$

$$
\mathrm{p}(\mathrm{~s}(x)) \rightarrow x
$$

(7) $\mathrm{s}(x+\mathrm{p}(y)) \rightarrow x+y$
(9) $\quad x+\mathrm{p}(y) \rightarrow \mathrm{p}(x+y)$
$\operatorname{TRS} \mathcal{S}=\{(1),(2),(3),(4), ~(5), ~(6), ~(7), ~ ®), ~(9, ~(10\}$

$$
\begin{equation*}
x-0 \rightarrow x \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
x-\mathrm{s}(y) \rightarrow \mathrm{p}(x-y) \tag{4}
\end{equation*}
$$

(6) $\mathrm{s}(\mathrm{p}(x)) \rightarrow x$
(8) $\mathrm{p}(x-\mathrm{p}(y)) \rightarrow x-y$
(10) $x-\mathrm{p}(y) \rightarrow \mathrm{s}(x-y)$

- \mathcal{R} is reduced
- \mathcal{S} is not reduced

simplification after completion

Theorem

\forall complete TRS $\mathcal{R} \quad \exists$ complete reduced TRS \mathcal{S} such that $\underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{S}}{\stackrel{*}{4}}$

simplification after completion

Theorem

\forall complete TRS $\mathcal{R} \quad \exists$ complete reduced $\operatorname{TRS} \mathcal{S}$ such that $\underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{S}}{\stackrel{*}{\longrightarrow}}$

Proof Sketch (construction)

$1 \mathcal{R}^{\prime}=\left\{\ell \rightarrow r \downarrow_{\mathcal{R}} \mid \ell \rightarrow r \in \mathcal{R}\right\}$

simplification after completion

Theorem

\forall complete TRS $\mathcal{R} \quad \exists$ complete reduced TRS \mathcal{S} such that $\underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{S}}{\stackrel{*}{4}}$

Proof Sketch (construction)

$1 \mathcal{R}^{\prime}=\left\{\ell \rightarrow r \downarrow_{\mathcal{R}} \mid \ell \rightarrow r \in \mathcal{R}\right\}$
$2 \mathcal{S}=\left\{\ell \rightarrow r \in \mathcal{R}^{\prime} \mid \ell \in \operatorname{NF}\left(\mathcal{R}^{\prime} \backslash\{\ell \rightarrow r\}\right)\right\}$

simplification after completion

Theorem

\forall complete TRS $\mathcal{R} \quad \exists$ complete reduced TRS \mathcal{S} such that $\underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{S}}{\stackrel{*}{\longrightarrow}}$

Proof Sketch (construction)

$1 \mathcal{R}^{\prime}=\left\{\ell \rightarrow r \downarrow_{\mathcal{R}} \mid \ell \rightarrow r \in \mathcal{R}\right\}$
$2 \mathcal{S}=\left\{\ell \rightarrow r \in \mathcal{R}^{\prime} \mid \ell \in \operatorname{NF}\left(\mathcal{R}^{\prime} \backslash\{\ell \rightarrow r\}\right)\right\}$
more efficient: simplification during completion

Knuth-Bendix Completion Procedure (More Efficient Version)

input $\quad \mathrm{ES} \mathcal{E}$ and reduction order $>$
output complete reduced TRS \mathcal{R} such that $\underset{\mathcal{E}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}}$
$\mathcal{R}:=\varnothing \quad C:=\mathcal{E}$
while $C \neq \varnothing$ do

$$
\text { choose } s \approx t \in C \quad C:=C \backslash\{s \approx t\} \quad s^{\prime}:=s \downarrow_{\mathcal{R}} \quad t^{\prime}:=t \downarrow_{\mathcal{R}}
$$

if $s^{\prime} \neq t^{\prime}$ then

$$
\begin{array}{lll}
\text { if } s^{\prime}>t^{\prime} \text { then } & \alpha:=s^{\prime} & \beta:=t^{\prime} \\
\text { else if } t^{\prime}>s^{\prime} \text { then } & \alpha:=t^{\prime} & \beta:=s^{\prime}
\end{array}
$$

else
failure

$$
\mathcal{R}^{\prime}:=\mathcal{R} \cup\{\alpha \rightarrow \beta\}
$$

Knuth-Bendix Completion Procedure (More Efficient Version)

input $\quad \mathrm{ES} \mathcal{E}$ and reduction order $>$
output complete reduced TRS \mathcal{R} such that $\underset{\mathcal{E}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}}$
$\mathcal{R}:=\varnothing \quad C:=\mathcal{E}$
while $C \neq \varnothing$ do
choose $s \approx t \in \mathcal{C} \quad C:=C \backslash\{s \approx t\} \quad s^{\prime}:=s \downarrow_{\mathcal{R}} \quad t^{\prime}:=t \downarrow_{\mathcal{R}}$
if $s^{\prime} \neq t^{\prime}$ then
if $s^{\prime}>t^{\prime}$ then $\quad \alpha:=s^{\prime} \quad \beta:=t^{\prime}$
else if $t^{\prime}>s^{\prime}$ then $\quad \alpha:=t^{\prime} \quad \beta:=s^{\prime}$
else
failure
$\mathcal{R}^{\prime}:=\mathcal{R} \cup\{\alpha \rightarrow \beta\}$
for all $\ell \rightarrow r \in \mathcal{R}$ do

$$
\mathcal{R}^{\prime}:=\mathcal{R}^{\prime} \backslash\{\ell \rightarrow r\} \quad \ell^{\prime}:=\ell \downarrow_{\mathcal{R}^{\prime}} \quad r^{\prime}:=r \downarrow_{\mathcal{R}^{\prime}}
$$

Knuth-Bendix Completion Procedure (More Efficient Version)

input $\quad \mathrm{ES} \mathcal{E}$ and reduction order $>$
output complete reduced TRS \mathcal{R} such that $\underset{\mathcal{E}}{\stackrel{*}{\leftrightarrows}}=\underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}}$
$\mathcal{R}:=\varnothing \quad C:=\mathcal{E}$
while $C \neq \varnothing$ do choose $s \approx t \in \mathcal{C} \quad C:=C \backslash\{s \approx t\} \quad s^{\prime}:=s \downarrow_{\mathcal{R}} \quad t^{\prime}:=t \downarrow_{\mathcal{R}}$ if $s^{\prime} \neq t^{\prime}$ then
if $s^{\prime}>t^{\prime}$ then $\quad \alpha:=s^{\prime} \quad \beta:=t^{\prime}$
else if $t^{\prime}>s^{\prime}$ then $\alpha:=t^{\prime} \quad \beta:=s^{\prime}$
else
failure
$\mathcal{R}^{\prime}:=\mathcal{R} \cup\{\alpha \rightarrow \beta\}$
for all $\ell \rightarrow r \in \mathcal{R}$ do

$$
\begin{aligned}
& \mathcal{R}^{\prime}:=\mathcal{R}^{\prime} \backslash\{\ell \rightarrow r\} \quad \ell^{\prime}:=\ell \downarrow_{\mathcal{R}^{\prime}} \quad r^{\prime}:=r \downarrow_{\mathcal{R}^{\prime}} \\
& \text { if } \ell=\ell^{\prime} \text { then } \mathcal{R}^{\prime}:=\mathcal{R}^{\prime} \cup\left\{\ell^{\prime} \rightarrow r^{\prime}\right\} \text { else } C:=C \cup\left\{\ell^{\prime} \approx r^{\prime}\right\}
\end{aligned}
$$

Knuth-Bendix Completion Procedure (More Efficient Version)

input $\quad \mathrm{ES} \mathcal{E}$ and reduction order $>$
output complete reduced TRS \mathcal{R} such that $\underset{\mathcal{E}}{\stackrel{*}{\longrightarrow}}=\stackrel{*}{\underset{\mathcal{R}}{\longrightarrow}}$
$\mathcal{R}:=\varnothing \quad C:=\mathcal{E}$
while $C \neq \varnothing$ do
choose $s \approx t \in \mathcal{C} \quad C:=C \backslash\{s \approx t\} \quad s^{\prime}:=s \downarrow_{\mathcal{R}} \quad t^{\prime}:=t \downarrow_{\mathcal{R}}$
if $s^{\prime} \neq t^{\prime}$ then
if $s^{\prime}>t^{\prime}$ then $\quad \alpha:=s^{\prime} \quad \beta:=t^{\prime}$
else if $t^{\prime}>s^{\prime}$ then $\quad \alpha:=t^{\prime} \quad \beta:=s^{\prime}$
else
failure
$\mathcal{R}^{\prime}:=\mathcal{R} \cup\{\alpha \rightarrow \beta\}$
for all $\ell \rightarrow r \in \mathcal{R}$ do

$$
\mathcal{R}^{\prime}:=\mathcal{R}^{\prime} \backslash\{\ell \rightarrow r\} \quad \ell^{\prime}:=\ell \downarrow_{\mathcal{R}^{\prime}} \quad r^{\prime}:=r \downarrow_{\mathcal{R}^{\prime}}
$$

$$
\text { if } \ell=\ell^{\prime} \text { then } \mathcal{R}^{\prime}:=\mathcal{R}^{\prime} \cup\left\{\ell^{\prime} \rightarrow r^{\prime}\right\} \text { else } C:=C \cup\left\{\ell^{\prime} \approx r^{\prime}\right\}
$$

$\mathcal{R}:=\mathcal{R}^{\prime}$
$C:=C \cup\{e \in \operatorname{CP}(\mathcal{R}) \mid \alpha \rightarrow \beta$ was used to generate $e\}$

Example

$$
\begin{gathered}
f(f(x))=g(x) \\
g(a) \approx b
\end{gathered}
$$

Example

$$
\begin{gathered}
f(f(x))=g(x) \\
g(a) \approx b
\end{gathered}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$

Example

$$
\begin{gathered}
f(f(x)) \approx g(x) \\
g(a) \approx b
\end{gathered}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- orient: $f(f(x))>_{\text {Ipo }} g(x)$

Example

$$
g(a) \approx b \quad f(f(x)) \rightarrow g(x)
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- orient: $f(f(x))>_{\text {Ipo }} g(x)$

Example

$$
g(a) \approx b \quad f(f(x)) \rightarrow g(x)
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- orient: $g(a)>{ }_{\text {lpo }} b$

Example

$$
\begin{aligned}
\mathrm{f}(\mathrm{f}(x)) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- orient: $g(a)>{ }_{\text {lpo }} b$

Example

$$
\begin{aligned}
\mathrm{f}(\mathrm{f}(x)) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- deduce: $\mathrm{f}(\mathrm{g}(x)) \leftarrow \mathrm{f}(\mathrm{f}(\mathrm{f}(x))) \rightarrow \mathrm{g}(\mathrm{f}(x)) \quad$ critical pair

Example

$$
\mathrm{f}(\mathrm{~g}(x)) \approx \mathrm{g}(\mathrm{f}(x))
$$

$$
\begin{aligned}
\mathrm{f}(\mathrm{f}(\mathrm{x})) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- deduce: $\mathrm{f}(\mathrm{g}(x)) \leftarrow \mathrm{f}(\mathrm{f}(\mathrm{f}(x))) \rightarrow \mathrm{g}(\mathrm{f}(x)) \quad$ critical pair

Example

$$
\begin{aligned}
f(g(x)) \approx g(f(x)) \quad f(f(x)) & \rightarrow g(x) \\
g(a) & \rightarrow b
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- orient: $\quad \mathrm{f}(\mathrm{g}(x))>_{\text {lpo }} \mathrm{g}(\mathrm{f}(x))$

Example

$$
\begin{aligned}
\mathrm{f}(\mathrm{f}(\mathrm{x})) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b} \\
\mathrm{f}(\mathrm{~g}(x)) & \rightarrow \mathrm{g}(\mathrm{f}(x))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- orient: $\quad \mathrm{f}(\mathrm{g}(x))>_{\text {lpo }} \mathrm{g}(\mathrm{f}(x))$

Example

$$
\begin{aligned}
\mathrm{f}(\mathrm{f}(x)) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b} \\
\mathrm{f}(\mathrm{~g}(x)) & \rightarrow \mathrm{g}(\mathrm{f}(x))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- deduce: $\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{x}))) \leftarrow \mathrm{f}(\mathrm{f}(\mathrm{g}(x))) \rightarrow \mathrm{g}(\mathrm{g}(x)) \quad$ critical pair

Example

$$
\begin{aligned}
\mathrm{f}(\mathrm{~g}(\mathrm{f}(x))) \approx \mathrm{g}(\mathrm{~g}(x)) \quad \mathrm{f}(\mathrm{f}(x)) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b} \\
\mathrm{f}(\mathrm{~g}(x)) & \rightarrow \mathrm{g}(\mathrm{f}(x))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- deduce: $\mathrm{f}(\mathrm{b}) \leftarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{a}))$
critical pair

Example

$$
\begin{aligned}
& \mathrm{f}(\mathrm{~g}(\mathrm{f}(x))) \approx \mathrm{g}(\mathrm{~g}(x)) \\
& f(b) \approx g(f(a)) \\
& \mathrm{f}(\mathrm{f}(\mathrm{x})) \rightarrow \mathrm{g}(\mathrm{x}) \\
& g(a) \rightarrow b \\
& \mathrm{f}(\mathrm{~g}(\mathrm{x})) \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{x}))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$

Example

$$
\begin{aligned}
& \mathrm{f}(\mathrm{~g}(\mathrm{f}(x))) \approx \mathrm{g}(\mathrm{~g}(x)) \\
& f(b) \approx g(f(a)) \\
& \mathrm{f}(\mathrm{f}(\mathrm{x})) \rightarrow \mathrm{g}(x) \\
& \mathrm{g}(\mathrm{a}) \rightarrow \mathrm{b} \\
& \mathrm{f}(\mathrm{~g}(\mathrm{x})) \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{x}))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- simplify: $\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{x}))) \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{f}(x)))$

Example

$$
\begin{aligned}
& g(f(f(x))) \approx g(g(x)) \\
& f(b) \approx g(f(a)) \\
& \mathrm{f}(\mathrm{f}(\mathrm{x})) \rightarrow \mathrm{g}(x) \\
& g(a) \rightarrow b \\
& \mathrm{f}(\mathrm{~g}(\mathrm{x})) \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{x}))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- simplify: $\mathrm{g}(\mathrm{f}(\mathrm{f}(x))) \rightarrow \mathrm{g}(\mathrm{g}(x))$

Example

$$
\left.\begin{array}{rl}
\mathrm{g}(\mathrm{~g}(x)) & \approx \mathrm{g}(\mathrm{~g}(x)) \\
\mathrm{f}(\mathrm{~b}) & \approx \mathrm{g}(\mathrm{f}(\mathrm{a})) \\
& \mathrm{f}(\mathrm{f}(x))
\end{array}\right) \mathrm{g}(x),
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- delete: $\mathrm{g}(\mathrm{g}(x))=\mathrm{g}(\mathrm{g}(x))$

Example

$$
\begin{aligned}
\mathrm{f}(\mathrm{~b}) \approx \mathrm{g}(\mathrm{f}(\mathrm{a})) \quad & \rightarrow \mathrm{f}(x)) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b} \\
\mathrm{f}(\mathrm{~g}(x)) & \rightarrow \mathrm{g}(\mathrm{f}(x))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- orient: $\quad \mathrm{f}(\mathrm{b})>_{\text {lpo }} \mathrm{f}(\mathrm{g}(\mathrm{a}))$

Example

$$
\begin{aligned}
\mathrm{f}(\mathrm{f}(x)) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b} \\
\mathrm{f}(\mathrm{~g}(x)) & \rightarrow \mathrm{g}(\mathrm{f}(x)) \\
\mathrm{f}(\mathrm{~b}) & \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{a}))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- orient: $\quad \mathrm{f}(\mathrm{b})>_{\text {lpo }} \mathrm{f}(\mathrm{g}(\mathrm{a}))$

Example

$$
\begin{aligned}
\mathrm{f}(\mathrm{f}(\mathrm{x})) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b} \\
\mathrm{f}(\mathrm{~g}(x)) & \rightarrow \mathrm{g}(\mathrm{f}(x)) \\
\mathrm{f}(\mathrm{~b}) & \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{a}))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- deduce: $\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{a}))) \leftarrow \mathrm{f}(\mathrm{f}(\mathrm{b})) \rightarrow \mathrm{g}(\mathrm{b})$
critical pair

Example

$$
\begin{aligned}
\mathrm{f}(\mathrm{~g}(\mathrm{f}(\mathrm{a}))) \approx \mathrm{g}(\mathrm{~b}) \quad \mathrm{f}(\mathrm{f}(x)) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b} \\
\mathrm{f}(\mathrm{~g}(x)) & \rightarrow \mathrm{g}(\mathrm{f}(x)) \\
\mathrm{f}(\mathrm{~b}) & \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{a}))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- deduce: $\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{a}))) \leftarrow \mathrm{f}(\mathrm{f}(\mathrm{b})) \rightarrow \mathrm{g}(\mathrm{b})$
critical pair

Example

$$
\begin{aligned}
\mathrm{f}(\mathrm{~g}(\mathrm{f}(\mathrm{a}))) \approx \mathrm{g}(\mathrm{~b}) \quad \mathrm{f}(\mathrm{f}(x)) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b} \\
\mathrm{f}(\mathrm{~g}(x)) & \rightarrow \mathrm{g}(\mathrm{f}(x)) \\
\mathrm{f}(\mathrm{~b}) & \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{a}))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- simplify: $\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{a}))) \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{f}(\mathrm{a})))$

Example

$$
g(f(f(a))) \approx g(b) \quad \begin{aligned}
f(f(x)) & \rightarrow g(x) \\
g(a) & \rightarrow b \\
f(g(x)) & \rightarrow g(f(x)) \\
f(b) & \rightarrow g(f(a))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- simplify: $\mathrm{g}(\mathrm{f}(\mathrm{f}(\mathrm{a}))) \rightarrow \mathrm{g}(\mathrm{g}(\mathrm{a}))$

Example

$$
\begin{aligned}
& g(g(a)) \approx g(b) \\
& \mathrm{f}(\mathrm{f}(\mathrm{x})) \rightarrow \mathrm{g}(\mathrm{x}) \\
& g(a) \rightarrow b \\
& f(g(x)) \rightarrow g(f(x)) \\
& f(b) \rightarrow g(f(a))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- simplify: $\mathrm{g}(\mathrm{g}(\mathrm{a})) \rightarrow \mathrm{g}(\mathrm{b})$

Example

$$
\begin{aligned}
\mathrm{g}(\mathrm{~b}) \approx \mathrm{g}(\mathrm{~b}) \quad \mathrm{f}(\mathrm{f}(x)) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b} \\
\mathrm{f}(\mathrm{~g}(x)) & \rightarrow \mathrm{g}(\mathrm{f}(x)) \\
\mathrm{f}(\mathrm{~b}) & \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{a}))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- delete: $\mathrm{g}(\mathrm{b})=\mathrm{g}(\mathrm{b})$

Example

$$
\begin{aligned}
\mathrm{f}(\mathrm{f}(x)) & \rightarrow \mathrm{g}(x) \\
\mathrm{g}(\mathrm{a}) & \rightarrow \mathrm{b} \\
\mathrm{f}(\mathrm{~g}(x)) & \rightarrow \mathrm{g}(\mathrm{f}(x)) \\
\mathrm{f}(\mathrm{~b}) & \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{a}))
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$
- complete and reduced TRS

Example

$$
\begin{gathered}
f(f(x))=g(x) \\
g(a) \approx b
\end{gathered}
$$

- LPO with precedence $\mathrm{f}>\mathrm{g}>\mathrm{b}>\mathrm{a}$

Example

$$
\begin{gathered}
f(f(x)) \approx g(x) \\
g(a) \approx b
\end{gathered}
$$

- LPO with precedence $b>g>f>a$

Example

$$
\begin{gathered}
f(f(x)) \approx g(x) \\
g(a) \approx b
\end{gathered}
$$

- LPO with precedence $b>g>f>a$
- orient: $\quad \mathrm{g}(x)>_{\text {Ipo }} \mathrm{f}(\mathrm{f}(x))$

Example

$$
\mathrm{g}(x) \rightarrow \mathrm{f}(\mathrm{f}(x))
$$

$$
g(a) \approx b
$$

- LPO with precedence $b>g>f>a$
- orient: $\quad \mathrm{g}(x)>_{\text {Ipo }} \mathrm{f}(\mathrm{f}(x))$

Example

$$
\mathrm{g}(x) \rightarrow \mathrm{f}(\mathrm{f}(x))
$$

$$
g(a) \approx b
$$

- LPO with precedence $b>g>f>a$
- orient: b > $>_{\text {po }} g(a)$

Example

$$
\begin{aligned}
\mathrm{g}(x) & \rightarrow \mathrm{f}(\mathrm{f}(x)) \\
\mathrm{b} & \rightarrow \mathrm{~g}(\mathrm{a})
\end{aligned}
$$

- LPO with precedence $b>g>f>a$
- orient: b > lpo $g(a)$

Example

$$
\begin{aligned}
\mathrm{g}(x) & \rightarrow \mathrm{f}(\mathrm{f}(x)) \\
\mathrm{b} & \rightarrow \mathrm{~g}(\mathrm{a})
\end{aligned}
$$

- LPO with precedence $b>g>f>a$
- complete TRS

Example

$$
\begin{aligned}
\mathrm{g}(x) & \rightarrow \mathrm{f}(\mathrm{f}(x)) \\
\mathrm{b} & \rightarrow \mathrm{~g}(\mathrm{a})
\end{aligned}
$$

- LPO with precedence $b>g>f>a$
- complete TRS but not reduced

Example

$$
\begin{aligned}
\mathrm{g}(x) & \rightarrow \mathrm{f}(\mathrm{f}(x)) \\
\mathrm{b} & \rightarrow \mathrm{~g}(\mathrm{a})
\end{aligned}
$$

- LPO with precedence $b>g>f>a$
- compose: $\mathrm{g}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{f}(\mathrm{a}))$

Example

$$
\begin{aligned}
\mathrm{g}(x) & \rightarrow \mathrm{f}(\mathrm{f}(x)) \\
\mathrm{b} & \rightarrow \mathrm{f}(\mathrm{f}(\mathrm{a}))
\end{aligned}
$$

- LPO with precedence $b>g>f>a$
- compose: $\mathrm{g}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{f}(\mathrm{a}))$

Example

$$
\begin{aligned}
\mathrm{g}(x) & \rightarrow \mathrm{f}(\mathrm{f}(x)) \\
\mathrm{b} & \rightarrow \mathrm{f}(\mathrm{f}(\mathrm{a}))
\end{aligned}
$$

- LPO with precedence $b>g>f>a$
- complete and reduced TRS

Example

$$
\begin{gathered}
f(f(x)) \approx g(x) \\
g(a) \approx b
\end{gathered}
$$

- LPO with precedence $b>g>f>a$

Example

$$
\begin{gathered}
f(f(x))=g(x) \\
g(a) \approx b
\end{gathered}
$$

- LPO with precedence $g>f>b>a$

Example

$$
\begin{gathered}
f(f(x)) \approx g(x) \\
g(a) \approx b
\end{gathered}
$$

- LPO with precedence $g>f>b>a$
- orient: $\quad \mathrm{g}(x)>_{\mathrm{Ipo}} \mathrm{f}(\mathrm{f}(x))$

Example

$$
\mathrm{g}(x) \rightarrow \mathrm{f}(\mathrm{f}(x))
$$

$$
g(a) \approx b
$$

- LPO with precedence $g>f>b>a$
- orient: $\quad \mathrm{g}(x)>_{\text {Ipo }} \mathrm{f}(\mathrm{f}(x))$

Example

$$
\mathrm{g}(x) \rightarrow \mathrm{f}(\mathrm{f}(x))
$$

$$
g(a) \approx b
$$

- LPO with precedence $g>f>b>a$
- orient: $g(a)>_{\text {lpo }} b$

Example

$$
\begin{aligned}
& \mathrm{g}(x) \rightarrow \mathrm{f}(\mathrm{f}(x)) \\
& \mathrm{g}(\mathrm{a}) \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $g>f>b>a$
- orient: $g(a)>{ }_{\text {lpo }} b$

Example

$$
\begin{aligned}
& g(x) \rightarrow f(f(x)) \\
& g(a) \rightarrow b
\end{aligned}
$$

- LPO with precedence $g>f>b>a$
- collapse: $g(a) \rightarrow f(f(a))$

Example

$$
f(f(a)) \approx b \quad g(x) \rightarrow f(f(x))
$$

- LPO with precedence $\mathrm{g}>\mathrm{f}>\mathrm{b}>\mathrm{a}$
- collapse: $g(a) \rightarrow f(f(a))$

Example

$$
f(f(a)) \approx b \quad g(x) \rightarrow f(f(x))
$$

- LPO with precedence $\mathrm{g}>\mathrm{f}>\mathrm{b}>\mathrm{a}$
- orient: $f(f(a))) \gg_{\text {lpo }} b$

Example

$$
\begin{aligned}
\mathrm{g}(\mathrm{x}) & \rightarrow \mathrm{f}(\mathrm{f}(x)) \\
\mathrm{f}(\mathrm{f}(\mathrm{a})) & \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $g>f>b>a$
- orient: $\quad f(f(a))) \gg_{\text {po }} b$

Example

$$
\begin{aligned}
\mathrm{g}(\mathrm{x}) & \rightarrow \mathrm{f}(\mathrm{f}(x)) \\
\mathrm{f}(\mathrm{f}(\mathrm{a})) & \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $g>f>b>a$
- complete and reduced TRS

Theorem

if complete reduced TRSs \mathcal{R} and \mathcal{S} satisfy
$\boldsymbol{\|} \underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}}=\stackrel{*}{\stackrel{\mathcal{S}}{ }}$
$2 \mathcal{R}$ and \mathcal{S} are compatible with same reduction order then $\mathcal{R}=\mathcal{S}$ (modulo variable renaming)

Outline

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

A team of genetic engineers decides to create cows that produce cola instead of milk. To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT

Techniques exist to perform the following DNA substitutions

$$
\text { TCAT } \leftrightarrow T \quad \text { GAG } \leftrightarrow A G \quad \text { CTC } \leftrightarrow T C \quad \text { AGTA } \leftrightarrow A \quad \text { TAT } \leftrightarrow \text { CT }
$$

Recently it has been discovered that the mad cow disease is caused by a retrovirus with the following DNA sequence

CTGCTACTGACT

What now, if unintendedly cows with this virus are created? According to the engineers there is little risk because this never happened in their experiments, but various action groups demand absolute assurances.

A team of genetic engineers decides to create cows that produce cola instead of milk. To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT

Techniques exist to perform the following DNA substitutions

$$
\text { TCAT } \leftrightarrow T \quad \text { GAG } \leftrightarrow A G \quad \text { CTC } \leftrightarrow T C \quad \text { AGTA } \leftrightarrow A \quad \text { TAT } \leftrightarrow \text { CT }
$$

Recently it has been discovered that the mad cow disease is caused by a retrovirus with the following DNA sequence

CTGCTACTGACT

What now, if unintendedly cows with this virus are created? According to the engineers there is little risk because this never happened in their experiments, but various action groups demand absolute assurances.

Example (Cola Gene Puzzle)

ES \mathcal{E}

$$
\mathrm{TCAT} \approx \mathrm{~T} \quad \mathrm{GAG} \approx \mathrm{AG} \quad \mathrm{CTC} \approx \mathrm{TC} \quad \mathrm{AGTA} \approx \mathrm{~A} \quad \mathrm{TAT} \approx \mathrm{CT}
$$

Example (Cola Gene Puzzle)

ES \mathcal{E}

$$
\mathrm{TCAT} \approx \mathrm{~T} \quad \mathrm{GAG} \approx \mathrm{AG} \quad \mathrm{CTC} \approx \mathrm{TC} \quad \mathrm{AGTA} \approx \mathrm{~A} \quad \mathrm{TAT} \approx \mathrm{CT}
$$

TRS \mathcal{R}

$$
\mathrm{GA} \rightarrow \mathrm{~A} \quad \mathrm{AGT} \rightarrow \mathrm{AT} \quad \mathrm{ATA} \rightarrow \mathrm{~A} \quad \mathrm{CT} \rightarrow \mathrm{~T} \quad \mathrm{TAT} \rightarrow \mathrm{~T} \quad \mathrm{TCA} \rightarrow \mathrm{TA}
$$

Example (Cola Gene Puzzle)

ES \mathcal{E}

$$
\mathrm{TCAT} \approx \mathrm{~T} \quad \mathrm{GAG} \approx \mathrm{AG} \quad \mathrm{CTC} \approx \mathrm{TC} \quad \mathrm{AGTA} \approx \mathrm{~A} \quad \mathrm{TAT} \approx \mathrm{CT}
$$

TRS \mathcal{R}

$$
\mathrm{GA} \rightarrow \mathrm{~A} \quad \mathrm{AGT} \rightarrow \mathrm{AT} \quad \mathrm{ATA} \rightarrow \mathrm{~A} \quad \mathrm{CT} \rightarrow \mathrm{~T} \quad \mathrm{TAT} \rightarrow \mathrm{~T} \quad \mathrm{TCA} \rightarrow \mathrm{TA}
$$

- \mathcal{R} is reduced and complete

Example (Cola Gene Puzzle)

ES \mathcal{E}

$$
\mathrm{TCAT} \approx \mathrm{~T} \quad \mathrm{GAG} \approx \mathrm{AG} \quad \mathrm{CTC} \approx \mathrm{TC} \quad \mathrm{AGTA} \approx \mathrm{~A} \quad \mathrm{TAT} \approx \mathrm{CT}
$$

TRS \mathcal{R}

$$
\mathrm{GA} \rightarrow \mathrm{~A} \quad \mathrm{AGT} \rightarrow \mathrm{AT} \quad \mathrm{ATA} \rightarrow \mathrm{~A} \quad \mathrm{CT} \rightarrow \mathrm{~T} \quad \mathrm{TAT} \rightarrow \mathrm{~T} \quad \mathrm{TCA} \rightarrow \mathrm{TA}
$$

- \mathcal{R} is reduced and complete
- $\underset{\mathcal{E}}{\stackrel{*}{\longrightarrow}}=\stackrel{*}{\stackrel{*}{\longrightarrow}}$

Example (Cola Gene Puzzle)
ES \mathcal{E}
$T C A T \approx T \quad G A G \approx A G \quad C T C \approx T C \quad A G T A \approx A \quad T A T \approx C T$
TRS \mathcal{R}
$\mathrm{GA} \rightarrow \mathrm{A} \quad \mathrm{AGT} \rightarrow \mathrm{AT} \quad \mathrm{ATA} \rightarrow \mathrm{A} \quad \mathrm{CT} \rightarrow \mathrm{T} \quad \mathrm{TAT} \rightarrow \mathrm{T} \quad \mathrm{TCA} \rightarrow \mathrm{TA}$

- \mathcal{R} is reduced and complete
- $\stackrel{*}{\stackrel{*}{\mathcal{E}}}=\stackrel{*}{\stackrel{R}{\longrightarrow}}$
- (milk gene) TAGCTAGCTAGCT $\underset{\mathcal{E}}{\stackrel{*}{\leftrightarrows}}$ CTGACTGACT (cola gene)

TAGCTAGCTAGCT $\underset{\mathcal{R}}{\stackrel{!}{\longrightarrow}} \mathrm{T} \underset{\mathcal{R}}{\stackrel{!}{2}}$ CTGACTGACT

Example (Cola Gene Puzzle)
ES \mathcal{E}
$T C A T \approx T \quad G A G \approx A G \quad C T C \approx T C \quad A G T A \approx A \quad T A T \approx C T$
TRS \mathcal{R}
$\mathrm{GA} \rightarrow \mathrm{A} \quad \mathrm{AGT} \rightarrow \mathrm{AT} \quad \mathrm{ATA} \rightarrow \mathrm{A} \quad \mathrm{CT} \rightarrow \mathrm{T} \quad \mathrm{TAT} \rightarrow \mathrm{T} \quad$ TCA \rightarrow TA

- \mathcal{R} is reduced and complete
- $\stackrel{*}{\stackrel{*}{\mathcal{E}}}=\stackrel{*}{\stackrel{R}{\longrightarrow}}$
- (milk gene) TAGCTAGCTAGCT $\underset{\mathcal{E}}{\stackrel{*}{\leftrightarrows}}$ CTGACTGACT (cola gene) TAGCTAGCTAGCT $\underset{\mathcal{R}}{\stackrel{!}{\longrightarrow}} \mathrm{T} \underset{\mathcal{R}}{\stackrel{!}{(}}$ CTGACTGACT
- (milk gene) TAGCTAGCTAGCT $\underset{\mathcal{E}}{\stackrel{*}{4}}$ CTGCTACTGACT (mad cow retrovirus) TAGCTAGCTAGCT $\underset{\mathcal{R}}{\stackrel{!}{\longrightarrow}} \mathrm{T} \neq \mathrm{TGT} \underset{\mathcal{R}}{\stackrel{!}{\prime}}$ CTGCTACTGACT

Outline

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

Definition

inference system $\mathcal{S C}$ (standard completion) consists of six rules

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules \mathcal{R}
inference system $\mathcal{S C}$ (standard completion) consists of six rules
delete $\quad \underline{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules \mathcal{R}
inference system $\mathcal{S C}$ (standard completion) consists of six rules

$$
\text { delete } \quad \frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}
$$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules \mathcal{R}
inference system $\mathcal{S C}$ (standard completion) consists of six rules

$$
\begin{array}{ll}
\text { delete } & \frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}} \\
\text { compose } & \underline{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} \quad \text { if } t \rightarrow_{\mathcal{R}} u
\end{array}
$$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules \mathcal{R}
inference system $\mathcal{S C}$ (standard completion) consists of six rules

$$
\begin{array}{ll}
\text { delete } & \frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}} \\
\text { compose } & \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} \quad \text { if } t \rightarrow \mathcal{R} u
\end{array}
$$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules \mathcal{R}
inference system $\mathcal{S C}$ (standard completion) consists of six rules

$$
\begin{array}{lll}
\text { delete } & \frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}} & \\
\text { compose } & \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} & \text { if } t \rightarrow_{\mathcal{R}} u \\
\text { simplify } & \underline{\mathcal{E} \cup\{s \dot{\sim} t\}, \mathcal{R}} & \text { if } t \rightarrow_{\mathcal{R}} u
\end{array}
$$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules \mathcal{R}
inference system $\mathcal{S C}$ (standard completion) consists of six rules

$$
\begin{array}{lll}
\text { delete } & \frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}} & \\
\text { compose } & \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} & \text { if } t \rightarrow_{\mathcal{R}} u \\
\text { simplify } & \frac{\mathcal{E} \cup\{s \dot{\sim} t\}, \mathcal{R}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}} & \text { if } t \rightarrow_{\mathcal{R}} u
\end{array}
$$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules $\mathcal{R} \quad$ reduction order $>$ inference system $\mathcal{S C}$ (standard completion) consists of six rules

$$
\begin{array}{lll}
\text { delete } & \frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}} & \\
& \text { compose } & \mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\} \\
& \text { ㅌ, } \cup\{s \rightarrow u\} & \text { if } t \rightarrow \mathcal{R} u \\
\text { simplify } & \frac{\mathcal{E} \cup\{s \dot{\sim} \cup t\}, \mathcal{R}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}} & \text { if } t \rightarrow \mathcal{R} u \\
& \underline{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}} & \text { if } s>t
\end{array}
$$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules $\mathcal{R} \quad$ reduction order $>$ inference system $\mathcal{S C}$ (standard completion) consists of six rules

$$
\begin{array}{lll}
\text { delete } & \frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}} & \\
& \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} & \text { if } t \rightarrow \mathcal{R} u \\
\text { compose } & \\
\text { simplify } & \frac{\mathcal{E} \cup\{s \dot{\approx} \cup t\}, \mathcal{R}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}} & \text { if } t \rightarrow \mathcal{R} u \\
& \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} & \text { if } s>t
\end{array}
$$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules $\mathcal{R} \quad$ reduction order $>$ inference system $\mathcal{S C}$ (standard completion) consists of six rules
delete $\frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$
compose

$$
\frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} \quad \text { if } t \rightarrow \mathcal{R} u
$$

simplify

$$
\frac{\mathcal{E} \cup\{s \dot{\approx} t\}, \mathcal{R}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}} \quad \text { if } t \rightarrow_{\mathcal{R}} u
$$

orient

$$
\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} \quad \text { if } s>t
$$

collapse $\underline{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}$ if $t \rightarrow_{\mathcal{R}} u$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules $\mathcal{R} \quad$ reduction order $>$ inference system $\mathcal{S C}$ (standard completion) consists of six rules
delete $\frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$
compose

$$
\frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} \quad \text { if } t \rightarrow \mathcal{R} u
$$

simplify

$$
\frac{\mathcal{E} \cup\{s \dot{\approx} t\}, \mathcal{R}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}} \quad \text { if } t \rightarrow \mathcal{R} u
$$

orient

$$
\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} \quad \text { if } s>t
$$

collapse $\quad \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \quad$ if $t \rightarrow \mathcal{R} u$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules $\mathcal{R} \quad$ reduction order $>$ inference system $\mathcal{S C}$ (standard completion) consists of six rules
delete $\frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$
compose

$$
\frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} \quad \text { if } t \rightarrow \mathcal{R} u
$$

simplify

$$
\frac{\mathcal{E} \cup\{s \dot{\approx} t\}, \mathcal{R}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}} \quad \text { if } t \rightarrow_{\mathcal{R}} u
$$

orient

$$
\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} \quad \text { if } s>t
$$

collapse $\quad \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \quad$ if $t \rightarrow \mathcal{R} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Definitions

- ® encompassment
$s \unrhd t \quad \Longleftrightarrow \quad \exists$ position $p \exists$ substitution $\sigma:\left.s\right|_{p}=t \sigma$

Definitions

- ® encompassment
$s \unrhd t \quad \Longleftrightarrow \quad \exists$ position $p \exists$ substitution $\sigma:\left.s\right|_{p}=t \sigma$
- \triangleright strict encompassment $s \triangleright t \quad \Longleftrightarrow \quad s \unrhd t \wedge \neg(t \unrhd s)$

Definitions

- ® encompassment
$s \unrhd t \Longleftrightarrow \exists$ position $p \exists$ substitution $\sigma:\left.s\right|_{p}=t \sigma$
- ® strict encompassment

```
s®t
s\unrhdt\wedge\neg(t\unrhds)
```


Example

$\mathrm{s}(x)+\mathrm{s}(y+0) \bowtie \mathrm{s}(x)+y$

Definitions

- ® encompassment
$s \unrhd t \Longleftrightarrow \exists$ position $p \exists$ substitution $\sigma:\left.s\right|_{p}=t \sigma$
- \triangleright strict encompassment

```
s®t
s\unrhdt\wedge\neg(t\unrhds)
```


Example

$\mathrm{s}(x)+\mathrm{s}(y+0) \bowtie \mathrm{s}(x)+y \quad x+x \bowtie x+y$

Definitions

- ® encompassment
$s \unrhd t \Longleftrightarrow \exists$ position $p \exists$ substitution $\sigma:\left.s\right|_{p}=t \sigma$
- \triangleright strict encompassment

```
s®t
s\unrhdt\wedge\neg(t\unrhds)
```


Example

$s(x)+s(y+0) \bowtie s(x)+y$
$x+x \mapsto x+y$
$x+y \ngtr x+x$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules $\mathcal{R} \quad$ reduction order $>$ inference system $\mathcal{S C}$ (standard completion) consists of six rules
delete $\frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$
compose

$$
\frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} \quad \text { if } t \rightarrow \mathcal{R} u
$$

simplify

$$
\frac{\mathcal{E} \cup\{s \dot{\approx} t\}, \mathcal{R}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}} \quad \text { if } t \rightarrow_{\mathcal{R}} u
$$

orient

$$
\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} \quad \text { if } s>t
$$

collapse $\quad \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \quad$ if $t \rightarrow \mathcal{R} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$
deduce $\quad \mathcal{E}, \mathcal{R} \quad$ if $s \leftarrow_{\mathcal{R}} u \rightarrow_{\mathcal{R}} t$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules $\mathcal{R} \quad$ reduction order $>$ inference system $\mathcal{S C}$ (standard completion) consists of six rules
delete $\frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$
compose

$$
\frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} \quad \text { if } t \rightarrow \mathcal{R} u
$$

simplify

$$
\frac{\mathcal{E} \cup\{s \dot{\approx} t\}, \mathcal{R}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}} \quad \text { if } t \rightarrow_{\mathcal{R}} u
$$

orient

$$
\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} \quad \text { if } s>t
$$

collapse $\quad \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \quad$ if $t \rightarrow \mathcal{R} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$
deduce

$$
\frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}} \quad \text { if } s \leftarrow_{\mathcal{R}} u \rightarrow_{\mathcal{R}} t
$$

Definition

set of equations $\mathcal{E} \quad$ set of rewrite rules $\mathcal{R} \quad$ reduction order $>$ inference system $\mathcal{B C}$ (basic completion) consists of four rules
delete $\frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$
simplify

$$
\frac{\mathcal{E} \cup\{s \dot{\approx} t\}, \mathcal{R}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}} \quad \text { if } t \rightarrow_{\mathcal{R}} u
$$

orient

$$
\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} \quad \text { if } s>t
$$

deduce $\quad \frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}} \quad$ if $s \leftarrow_{\mathcal{R}} u \rightarrow_{\mathcal{R}} t$

Definitions

- completion procedure is program that takes as input set of equations \mathcal{E} and reduction order $>$ and generates (finite or infinite) sequence

$$
\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots
$$

with $\mathcal{E}_{0}=\mathcal{E}$ and $\mathcal{R}_{0}=\varnothing$

Definitions

- completion procedure is program that takes as input set of equations \mathcal{E} and reduction order $>$ and generates (finite or infinite) run

$$
\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots
$$

with $\mathcal{E}_{0}=\mathcal{E}$ and $\mathcal{R}_{0}=\varnothing$

Definitions

- completion procedure is program that takes as input set of equations \mathcal{E} and reduction order $>$ and generates (finite or infinite) run

$$
\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots
$$

with $\mathcal{E}_{0}=\mathcal{E}$ and $\mathcal{R}_{0}=\varnothing$

- \mathcal{E}_{ω} is set of persistent equations: $\mathcal{E}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$

Definitions

- completion procedure is program that takes as input set of equations \mathcal{E} and reduction order $>$ and generates (finite or infinite) run

$$
\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots
$$

with $\mathcal{E}_{0}=\mathcal{E}$ and $\mathcal{R}_{0}=\varnothing$

- \mathcal{E}_{ω} is set of persistent equations: $\mathcal{E}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$
- \mathcal{R}_{ω} is set of persistent rules $i \geqslant 0 j \geqslant i$

Definitions

- completion procedure is program that takes as input set of equations \mathcal{E} and reduction order $>$ and generates (finite or infinite) run

$$
\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots
$$

with $\mathcal{E}_{0}=\mathcal{E}$ and $\mathcal{R}_{0}=\varnothing$

- \mathcal{E}_{ω} is set of persistent equations: $\mathcal{E}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$
- \mathcal{R}_{ω} is set of persistent rules $i \geqslant 0 j \geqslant i$
- run succeeds if $\mathcal{E}_{\omega}=\varnothing$ and \mathcal{R}_{ω} is confluent and terminating

Definitions

- completion procedure is program that takes as input set of equations \mathcal{E} and reduction order $>$ and generates (finite or infinite) run

$$
\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots
$$

with $\mathcal{E}_{0}=\mathcal{E}$ and $\mathcal{R}_{0}=\varnothing$

- \mathcal{E}_{ω} is set of persistent equations: $\mathcal{E}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$
- run succeeds if $\mathcal{E}_{\omega}=\varnothing$ and \mathcal{R}_{ω} is confluent and terminating
- run fails if $\mathcal{E}_{\omega} \neq \varnothing$

Definitions

- completion procedure is program that takes as input set of equations \mathcal{E} and reduction order $>$ and generates (finite or infinite) run

$$
\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots
$$

with $\mathcal{E}_{0}=\mathcal{E}$ and $\mathcal{R}_{0}=\varnothing$

- \mathcal{E}_{ω} is set of persistent equations: $\mathcal{E}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$
- run succeeds if $\mathcal{E}_{\omega}=\varnothing$ and \mathcal{R}_{ω} is confluent and terminating
- run fails if $\mathcal{E}_{\omega} \neq \varnothing$
- completion procedure is correct if every run that does not fail succeeds

Definitions

- completion procedure is program that takes as input set of equations \mathcal{E} and reduction order $>$ and generates (finite or infinite) run

$$
\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots
$$

with $\mathcal{E}_{0}=\mathcal{E}$ and $\mathcal{R}_{0}=\varnothing$

- \mathcal{E}_{ω} is set of persistent equations: $\mathcal{E}_{\omega}=\bigcup \bigcap \mathcal{E}_{j}$
- \mathcal{R}_{ω} is set of persistent rules $i \geqslant 0 j \geqslant i$
- run succeeds if $\mathcal{E}_{\omega}=\varnothing$ and \mathcal{R}_{ω} is confluent and terminating
- run fails if $\mathcal{E}_{\omega} \neq \varnothing$
- completion procedure is correct if every run that does not fail succeeds

Question

how to guarantee correctness ?

Lemmata

- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{S C}}\left(\mathcal{E}^{\prime}, \mathcal{R}^{\prime}\right)$ and $\mathcal{R} \subseteq>$ then $\mathcal{R}^{\prime} \subseteq>$

Lemmata

- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{S C}}\left(\mathcal{E}^{\prime}, \mathcal{R}^{\prime}\right)$ and $\mathcal{R} \subseteq>$ then $\mathcal{R}^{\prime} \subseteq>$
- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{S C}}\left(\mathcal{E}^{\prime}, \mathcal{R}^{\prime}\right)$ then $\underset{\mathcal{E} \cup \mathcal{R}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{E}^{\prime} \cup \mathcal{R}^{\prime}}{\stackrel{*}{\longrightarrow}}$

$$
\operatorname{run}\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots
$$

Lemmata

- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{S C}}\left(\mathcal{E}^{\prime}, \mathcal{R}^{\prime}\right)$ and $\mathcal{R} \subseteq>$ then $\mathcal{R}^{\prime} \subseteq>$
- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{S C}}\left(\mathcal{E}^{\prime}, \mathcal{R}^{\prime}\right)$ then $\underset{\mathcal{E} \cup \mathcal{R}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{E}^{\prime} \cup \mathcal{R}^{\prime}}{\stackrel{*}{\longrightarrow}}$

Definition

$$
\mathcal{E}_{\infty}=\bigcup_{i \geqslant 0} \mathcal{E}_{i} \quad \text { and } \quad \mathcal{R}_{\infty}=\bigcup_{i \geqslant 0} \mathcal{R}_{i}
$$

Lemmata

- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{S C}}\left(\mathcal{E}^{\prime}, \mathcal{R}^{\prime}\right)$ and $\mathcal{R} \subseteq>$ then $\mathcal{R}^{\prime} \subseteq>$
- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{S C}}\left(\mathcal{E}^{\prime}, \mathcal{R}^{\prime}\right)$ then $\underset{\mathcal{E} \cup \mathcal{R}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{E}^{\prime} \cup \mathcal{R}^{\prime}}{\stackrel{*}{\longrightarrow}}$

Definition

$\mathcal{E}_{\infty}=\bigcup_{i \geqslant 0} \mathcal{E}_{i} \quad$ and $\quad \mathcal{R}_{\infty}=\bigcup_{i \geqslant 0} \mathcal{R}_{i}$

Lemmata

- $\mathcal{R}_{\omega} \subseteq \mathcal{R}_{\infty}$

Lemmata

- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{S C}}\left(\mathcal{E}^{\prime}, \mathcal{R}^{\prime}\right)$ and $\mathcal{R} \subseteq>$ then $\mathcal{R}^{\prime} \subseteq>$
- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{S C}}\left(\mathcal{E}^{\prime}, \mathcal{R}^{\prime}\right)$ then $\underset{\mathcal{E} \cup \mathcal{R}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{E}^{\prime} \cup \mathcal{R}^{\prime}}{\stackrel{*}{\longrightarrow}}$

Definition

$\mathcal{E}_{\infty}=\bigcup_{i \geqslant 0} \mathcal{E}_{i} \quad$ and $\quad \mathcal{R}_{\infty}=\bigcup_{i \geqslant 0} \mathcal{R}_{i}$

Lemmata

- $\mathcal{R}_{\omega} \subseteq \mathcal{R}_{\infty} \subseteq>$

Lemmata

- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{S C}}\left(\mathcal{E}^{\prime}, \mathcal{R}^{\prime}\right)$ and $\mathcal{R} \subseteq>$ then $\mathcal{R}^{\prime} \subseteq>$
- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{S C}}\left(\mathcal{E}^{\prime}, \mathcal{R}^{\prime}\right)$ then $\underset{\mathcal{E} \cup \mathcal{R}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{E}^{\prime} \cup \mathcal{R}^{\prime}}{\stackrel{*}{\longrightarrow}}$

Definition

$\mathcal{E}_{\infty}=\bigcup_{i \geqslant 0} \mathcal{E}_{i} \quad$ and $\quad \mathcal{R}_{\infty}=\bigcup_{i \geqslant 0} \mathcal{R}_{i}$

Lemmata

- $\mathcal{R}_{\omega} \subseteq \mathcal{R}_{\infty} \subseteq>$
- $\stackrel{\text { E }}{\stackrel{R}{R}}=\underset{\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}}{\stackrel{*}{\longrightarrow}}$

Two Questions

non-failing run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$
$\boldsymbol{1}$ is \mathcal{R}_{ω} confluent ?

Two Questions

non-failing run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$
1 is \mathcal{R}_{ω} confluent ?
$2 \underset{\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{R}_{\omega}}{\stackrel{*}{\longrightarrow}}$?

Two Questions

non-failing run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$
1 is \mathcal{R}_{ω} confluent ?
$2 \underset{\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{R}_{\omega}}{\stackrel{*}{\longrightarrow}}$?

Definitions

- run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$ is fair if

$$
\mathrm{CP}\left(\mathcal{R}_{\omega}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}
$$

Two Questions

non-failing run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$
1 is \mathcal{R}_{ω} confluent ?
$2 \underset{\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{R}_{\omega}}{\stackrel{*}{\longrightarrow}}$?

Definitions

- run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$ is fair if

$$
\mathrm{CP}\left(\mathcal{R}_{\omega}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}
$$

- completion procedure is fair if every run that does not fail is fair

Two Questions

non-failing run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$
1 is \mathcal{R}_{ω} confluent ?
$2 \underset{\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}}{\stackrel{*}{\longrightarrow}}=\underset{\mathcal{R}_{\omega}}{\stackrel{*}{\longrightarrow}}$?

Definitions

- run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$ is fair if

$$
\mathrm{CP}\left(\mathcal{R}_{\omega}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}
$$

- completion procedure is fair if every run that does not fail is fair

Theorem

every fair completion procedure is correct

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse

$$
\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}
$$

$$
\text { if } t \rightarrow_{\mathcal{R}} u \text { using } \ell \rightarrow r \in \mathcal{R} \text { with } t \triangleright \ell
$$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlr}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{a} \approx \mathrm{c} \\
\mathrm{~g}(x) & \rightarrow x & \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x & \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) & \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a} &
\end{array}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- deduce: $a \leftarrow f(c, c) \rightarrow c$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- deduce: $\quad a \leftarrow \mathrm{f}(\mathrm{c}, \mathrm{g}(\mathrm{y})) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{c}), y)$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- orient: $\quad a \quad>_{\text {Ipo }} C$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\quad \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \quad$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- orient: $\mathrm{f}(\mathrm{g}(\mathrm{c}), y)>_{\text {Ipo }}$ a

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- deduce: $\quad a \leftarrow \mathrm{f}(\mathrm{g}(\mathrm{c}), \mathrm{c}) \rightarrow \mathrm{g}(\mathrm{c})$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- deduce: $\quad \mathrm{a} \leftarrow \mathrm{f}(\mathrm{g}(\mathrm{c}), \mathrm{g}(\mathrm{y})) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{g}(\mathrm{c})), y)$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- orient: a $>_{\text {lpo }} g(c)$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- orient: $\mathrm{f}(\mathrm{g}(\mathrm{g}(\mathrm{c})), y)>_{\text {Ipo }}$ a

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- collapse: $\mathrm{a} \rightarrow \mathrm{g}(\mathrm{c})$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $f>a>g>c>b$
- simplify: $\mathrm{g}(\mathrm{c}) \rightarrow \mathrm{c}$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- delete

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlrl}
\mathrm{a} & \rightarrow \mathrm{~b} & \\
\mathrm{~g}(\mathrm{x}) & \rightarrow \mathrm{x} & \mathrm{f}(\mathrm{c}, y) & \approx \mathrm{a} \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x & \mathrm{a} & \rightarrow \mathrm{~g}(\\
\mathrm{f}(\mathrm{x}, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) & \mathrm{f}(\mathrm{~g}(\mathrm{~g}(\mathrm{c})), y) & \rightarrow \mathrm{a} \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a} &
\end{array}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- collapse: $\mathrm{f}(\mathrm{g}(\mathrm{c}), y) \rightarrow \mathrm{f}(\mathrm{c}, y)$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\quad \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \quad$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- simplify: $\mathrm{f}(\mathrm{c}, y) \rightarrow \mathrm{a}$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\left.\begin{array}{rlr}
\mathrm{a} & \rightarrow \mathrm{~b} & \\
\mathrm{~g}(\mathrm{x}) & \rightarrow x & \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x & \\
\mathrm{f}(\mathrm{x}, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) & \mathrm{f}(\mathrm{~g}(\mathrm{~g}(\mathrm{c})), y)
\end{array}\right) \rightarrow \mathrm{a},
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- delete

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlrl}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{a} & \approx \mathrm{~g}(\\
\mathrm{g}(\mathrm{x}) & \rightarrow x & \mathrm{a} & \rightarrow \mathrm{~g}(\\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x & \mathrm{f}(\mathrm{~g}(\mathrm{~g}(\mathrm{c})), y) & \rightarrow \mathrm{a} \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) &
\end{array}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- deduce: $\quad \mathrm{a} \leftarrow \mathrm{f}(\mathrm{g}(\mathrm{g}(\mathrm{c})), \mathrm{c}) \rightarrow \mathrm{g}(\mathrm{g}(\mathrm{c}))$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlrl}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{a} & \approx \mathrm{~g}(\mathrm{~g}(\mathrm{c})) \\
\mathrm{g}(x) & \rightarrow x & \mathrm{f}(\mathrm{~g}(\mathrm{~g}(\mathrm{~g}(\mathrm{c}))), y) & \approx \mathrm{a} \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x & a & \rightarrow \mathrm{~g}(\mathrm{c}) \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) & \mathrm{f}(\mathrm{~g}(\mathrm{~g}(\mathrm{c})), y) & \rightarrow \mathrm{a} \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a} &
\end{array}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- deduce: $\quad \mathrm{a} \leftarrow \mathrm{f}(\mathrm{g}(\mathrm{g}(\mathrm{c})), \mathrm{g}(y)) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{g}(\mathrm{g}(\mathrm{c}))), y)$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- orient: $\quad a \quad>_{\text {Ipo }} g(g(c))$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- orient: $\mathrm{f}(\mathrm{g}(\mathrm{g}(\mathrm{g}(\mathrm{c}))), y)>_{\text {Ipo }}$ a

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\quad \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \quad$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- collapse: $\quad \mathrm{a} \rightarrow \mathrm{g}(\mathrm{g}(\mathrm{c}))$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- simplify: $\mathrm{g}(\mathrm{g}(\mathrm{c})) \rightarrow \mathrm{g}(\mathrm{c})$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlrl}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{a} & \rightarrow \mathrm{~g}(\\
\mathrm{g}(\mathrm{x}) & \rightarrow x & \mathrm{f}(\mathrm{~g}(\mathrm{~g}(\mathrm{~g}(\mathrm{c}))), y) & \rightarrow \mathrm{a} \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x & \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) & \mathrm{f}(\mathrm{~g}(\mathrm{~g}(\mathrm{c})), y) & \rightarrow \mathrm{a} \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a} &
\end{array}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- delete

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlrl}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{a} & \rightarrow \mathrm{~g}(\\
\mathrm{g}(\mathrm{x}) & \rightarrow x & \mathrm{f}(\mathrm{~g}(\mathrm{~g}(\mathrm{~g}(\mathrm{c}))), y) & \rightarrow \mathrm{a} \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x & \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) & \mathrm{f}(\mathrm{~g}(\mathrm{c}), y) & \approx \mathrm{a} \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a} &
\end{array}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- collapse: $\mathrm{f}(\mathrm{g}(\mathrm{g}(\mathrm{c})), y) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{c}), y)$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlrl}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{a} & \rightarrow \mathrm{~g}(\\
\mathrm{g}(\mathrm{x}) & \rightarrow x & \mathrm{f}(\mathrm{~g}(\mathrm{~g}(\mathrm{~g}(\mathrm{c}))), y) & \rightarrow \mathrm{a} \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x & \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) & \mathrm{f}(\mathrm{c}, y) & \approx \mathrm{a} \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a} &
\end{array}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- simplify: $\mathrm{f}(\mathrm{g}(\mathrm{c}), y) \rightarrow \mathrm{f}(\mathrm{c}, y)$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlrl}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{a} & \rightarrow \mathrm{~g}(\\
\mathrm{g}(\mathrm{x}) & \rightarrow x & \mathrm{f}(\mathrm{~g}(\mathrm{~g}(\mathrm{~g}(\mathrm{c}))), y) & \rightarrow \mathrm{a} \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x & & \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) & & \approx \mathrm{a} \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a} &
\end{array}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- simplify: $\mathrm{f}(\mathrm{c}, y) \rightarrow \mathrm{a}$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- delete

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$

Remark

strict encompassment condition in collapse rule cannot be dropped collapse $\quad \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \quad$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
-...
fair but unsuccessful run

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{a}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- compose: $\mathrm{a} \rightarrow \mathrm{b}$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~g}(y)) & \rightarrow \mathrm{f}(x, y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $f>a>g>c>b$
- compose: $\mathrm{f}(\mathrm{g}(x), y) \rightarrow \mathrm{f}(x, y)$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(x, y) & \approx \mathrm{f}(x, y) \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $f>a>g>c>b$
- collapse: $\mathrm{f}(x, \mathrm{~g}(y)) \rightarrow \mathrm{f}(x, y)$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse

$$
\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}
$$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(\mathrm{c}, \mathrm{y}) & \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- delete

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse

$$
\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}
$$

$$
\text { if } t \rightarrow_{\mathcal{R}} u \text { using } \ell \rightarrow r \in \mathcal{R} \text { with } t \triangleright \ell
$$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(\mathrm{x}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $f>a>g>c>b$
- deduce: $\quad c \leftarrow f(c, c) \rightarrow b$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse

$$
\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}
$$

$$
\text { if } t \rightarrow_{\mathcal{R}} u \text { using } \ell \rightarrow r \in \mathcal{R} \text { with } t \triangleright \ell
$$

Example

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{~g}(\mathrm{x}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{c}) & \rightarrow x \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{b}
\end{aligned}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- orient:
$c>{ }_{\text {lpo }} b$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlr}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{c} \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~b}) & \approx x \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{b}
\end{array}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- collapse: $\mathrm{f}(x, \mathrm{c}) \rightarrow \mathrm{f}(x, \mathrm{~b})$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse

$$
\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}
$$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlr}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{c} \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~b}) & \rightarrow x \\
\mathrm{f}(\mathrm{c}, y) & \rightarrow \mathrm{b}
\end{array}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- orient: $\mathrm{f}(x, \mathrm{~b})>_{\text {Ipo }} x$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlr}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{c} \rightarrow \mathrm{~b} \\
\mathrm{~g}(x) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~b}) & \rightarrow x \\
\mathrm{f}(\mathrm{~b}, y) & \approx \mathrm{b}
\end{array}
$$

- LPO with precedence $f>a>g>c>b$
- collapse: $\mathrm{f}(\mathrm{c}, y) \rightarrow \mathrm{f}(\mathrm{b}, y)$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse

$$
\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}
$$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlr}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{c} \rightarrow \mathrm{~b} \\
\mathrm{~g}(\mathrm{x}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~b}) & \rightarrow x \\
\mathrm{f}(\mathrm{~b}, y) & \rightarrow \mathrm{b}
\end{array}
$$

- LPO with precedence $\mathrm{f}>\mathrm{a}>\mathrm{g}>\mathrm{c}>\mathrm{b}$
- orient: $\mathrm{f}(\mathrm{b}, y)>_{\mathrm{Ipo}} \mathrm{b}$

Remark

strict encompassment condition in collapse rule cannot be dropped
collapse $\frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}}$ if $t \rightarrow_{\mathcal{R}} u$ using $\ell \rightarrow r \in \mathcal{R}$ with $t \triangleright \ell$

Example

$$
\begin{array}{rlr}
\mathrm{a} & \rightarrow \mathrm{~b} & \mathrm{c} \rightarrow \mathrm{~b} \\
\mathrm{~g}(\mathrm{x}) & \rightarrow x \\
\mathrm{f}(x, \mathrm{~b}) & \rightarrow x \\
\mathrm{f}(\mathrm{~b}, y) & \rightarrow \mathrm{b}
\end{array}
$$

- LPO with precedence $f>a>g>c>b$
- complete and reduced TRS

Outline

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders

- Critical Pair Criteria

- Further Reading

Completion is Proof Normalization

$$
(\mathcal{E}, \mathcal{R})
$$

proof in $(\mathcal{E}, \mathcal{R})$

Completion is Proof Normalization

$(\mathcal{E}, \mathcal{R})$

\Downarrow

proof in $(\mathcal{E}, \mathcal{R})$

Completion is Proof Normalization

$(\mathcal{E}, \mathcal{R})$
proof in $(\mathcal{E}, \mathcal{R})$

Completion is Proof Normalization

proof in $(\mathcal{E}, \mathcal{R})$

Completion is Proof Normalization

proof in $(\mathcal{E}, \mathcal{R})$

Completion is Proof Normalization

fair derivation
proof in $(\mathcal{E}, \mathcal{R})$

rewrite proof

Definitions

- proof of $s \approx t$ is sequence $\left(u_{1}, \ldots, u_{n}\right)$ of terms such that
- $s=u_{1}$
- $t=u_{n}$
- for all $1 \leqslant i<n \quad u_{i} \rightarrow \mathcal{R} u_{i+1} \quad$ or $\quad u_{i} \leftarrow \mathcal{R} u_{i+1} \quad$ or $\quad u_{i} \leftrightarrow \mathcal{E} \quad u_{i+1}$

Definitions

- proof of $s \approx t$ is sequence $\left(u_{1}, \ldots, u_{n}\right)$ of terms such that
- $s=u_{1}$
- $t=u_{n}$
- for all $1 \leqslant i<n \quad u_{i} \rightarrow \mathcal{R} u_{i+1} \quad$ or $\quad u_{i} \leftarrow \mathcal{R} u_{i+1} \quad$ or $\quad u_{i} \leftrightarrow \mathcal{E} \quad u_{i+1}$
- rewrite proof is proof $\left(u_{1}, \ldots, u_{n}\right)$ such that
- $u_{i} \rightarrow_{\mathcal{R}} u_{i+1}$ for all $1 \leqslant i<j$
- $u_{i} \leftarrow_{\mathcal{R}} u_{i+1}$ for all $j \leqslant i<n$
for some $1 \leqslant j \leqslant n$

Definitions

- proof of $s \approx t$ is sequence $\left(u_{1}, \ldots, u_{n}\right)$ of terms such that
- $s=u_{1}$
- $t=u_{n}$
- for all $1 \leqslant i<n \quad u_{i} \rightarrow \mathcal{R} u_{i+1} \quad$ or $\quad u_{i} \leftarrow \mathcal{R} u_{i+1} \quad$ or $\quad u_{i} \leftrightarrow \mathcal{E} \quad u_{i+1}$
- rewrite proof is proof $\left(u_{1}, \ldots, u_{n}\right)$ such that
- $u_{i} \rightarrow_{\mathcal{R}} u_{i+1}$ for all $1 \leqslant i<j$
- $u_{i} \leftarrow_{\mathcal{R}} u_{i+1}$ for all $j \leqslant i<n$
for some $1 \leqslant j \leqslant n$
- two proofs $\left(s_{1}, \ldots, s_{n}\right)$ and $\left(t_{1}, \ldots, t_{n}\right)$ are equivalent if $s_{1}=t_{1}$ and $s_{n}=t_{n}$

Definitions

- complexity of proof $\left(u_{1}, \ldots, u_{n}\right)$ is multiset $\left\{c\left(u_{1}, u_{2}\right), \ldots, c\left(u_{n-1}, u_{n}\right)\right\}$

Definitions

- complexity of proof $\left(u_{1}, \ldots, u_{n}\right)$ is multiset $\left\{c\left(u_{1}, u_{2}\right), \ldots, c\left(u_{n-1}, u_{n}\right)\right\}$
- complexity of proof step $\left(u_{i}, u_{i+1}\right)$ is triple

$$
c\left(u_{i}, u_{i+1}\right)= \begin{cases}\left(\left\{u_{i}, u_{i+1}\right\},-,-\right) & \text { if } u_{i} \leftrightarrow \mathcal{E} u_{i+1} \\ & \text { if } u_{i} \rightarrow \mathcal{R} u_{i+1} \text { using rule } \ell \rightarrow r \\ & \text { if } u_{i} \leftarrow_{\mathcal{R}} u_{i+1} \text { using rule } \ell \rightarrow r\end{cases}
$$

Definitions

- complexity of proof $\left(u_{1}, \ldots, u_{n}\right)$ is multiset $\left\{c\left(u_{1}, u_{2}\right), \ldots, c\left(u_{n-1}, u_{n}\right)\right\}$
- complexity of proof step $\left(u_{i}, u_{i+1}\right)$ is triple

$$
c\left(u_{i}, u_{i+1}\right)= \begin{cases}\left(\left\{u_{i}, u_{i+1}\right\},-,-\right) & \text { if } u_{i} \leftrightarrow \mathcal{E} u_{i+1} \\ \left(\left\{u_{i}\right\}, \ell, r\right) & \text { if } u_{i} \rightarrow \mathcal{R} u_{i+1} \text { using rule } \ell \rightarrow r \\ & \text { if } u_{i} \leftarrow_{\mathcal{R}} u_{i+1} \text { using rule } \ell \rightarrow r\end{cases}
$$

Definitions

- complexity of proof $\left(u_{1}, \ldots, u_{n}\right)$ is multiset $\left\{c\left(u_{1}, u_{2}\right), \ldots, c\left(u_{n-1}, u_{n}\right)\right\}$
- complexity of proof step $\left(u_{i}, u_{i+1}\right)$ is triple

$$
c\left(u_{i}, u_{i+1}\right)= \begin{cases}\left(\left\{u_{i}, u_{i+1}\right\},-,-\right) & \text { if } u_{i} \leftrightarrow \mathcal{E} u_{i+1} \\ \left(\left\{u_{i}\right\}, \ell, r\right) & \text { if } u_{i} \rightarrow \mathcal{R} u_{i+1} \text { using rule } \ell \rightarrow r \\ \left(\left\{u_{i+1}\right\}, \ell, r\right) & \text { if } u_{i} \leftarrow_{\mathcal{R}} u_{i+1} \text { using rule } \ell \rightarrow r\end{cases}
$$

Definitions

- complexity of proof $\left(u_{1}, \ldots, u_{n}\right)$ is multiset $\left\{c\left(u_{1}, u_{2}\right), \ldots, c\left(u_{n-1}, u_{n}\right)\right\}$
- complexity of proof step $\left(u_{i}, u_{i+1}\right)$ is triple

$$
c\left(u_{i}, u_{i+1}\right)= \begin{cases}\left(\left\{u_{i}, u_{i+1}\right\},-,-\right) & \text { if } u_{i} \leftrightarrow \mathcal{E} u_{i+1} \\ \left(\left\{u_{i}\right\}, \ell, r\right) & \text { if } u_{i} \rightarrow \mathcal{R} u_{i+1} \text { using rule } \ell \rightarrow r \\ \left(\left\{u_{i+1}\right\}, \ell, r\right) & \text { if } u_{i} \leftarrow_{\mathcal{R}} u_{i+1} \text { using rule } \ell \rightarrow r\end{cases}
$$

- order \gg on proof steps: lexicographic combination of
- $>_{\text {mul }}$ multiset extension of $>$

Definitions

- complexity of proof $\left(u_{1}, \ldots, u_{n}\right)$ is multiset $\left\{c\left(u_{1}, u_{2}\right), \ldots, c\left(u_{n-1}, u_{n}\right)\right\}$
- complexity of proof step $\left(u_{i}, u_{i+1}\right)$ is triple

$$
c\left(u_{i}, u_{i+1}\right)= \begin{cases}\left(\left\{u_{i}, u_{i+1}\right\},-,-\right) & \text { if } u_{i} \leftrightarrow \mathcal{E} u_{i+1} \\ \left(\left\{u_{i}\right\}, \ell, r\right) & \text { if } u_{i} \rightarrow \mathcal{R} u_{i+1} \text { using rule } \ell \rightarrow r \\ \left(\left\{u_{i+1}\right\}, \ell, r\right) & \text { if } u_{i} \leftarrow_{\mathcal{R}} u_{i+1} \text { using rule } \ell \rightarrow r\end{cases}
$$

- order \gg on proof steps: lexicographic combination of
- $>_{\text {mul }}$ multiset extension of $>$
- \triangleright strict encompassment

Definitions

- complexity of proof $\left(u_{1}, \ldots, u_{n}\right)$ is multiset $\left\{c\left(u_{1}, u_{2}\right), \ldots, c\left(u_{n-1}, u_{n}\right)\right\}$
- complexity of proof step $\left(u_{i}, u_{i+1}\right)$ is triple

$$
c\left(u_{i}, u_{i+1}\right)= \begin{cases}\left(\left\{u_{i}, u_{i+1}\right\},-,-\right) & \text { if } u_{i} \leftrightarrow \mathcal{E} u_{i+1} \\ \left(\left\{u_{i}\right\}, \ell, r\right) & \text { if } u_{i} \rightarrow \mathcal{R} u_{i+1} \text { using rule } \ell \rightarrow r \\ \left(\left\{u_{i+1}\right\}, \ell, r\right) & \text { if } u_{i} \leftarrow_{\mathcal{R}} u_{i+1} \text { using rule } \ell \rightarrow r\end{cases}
$$

- order \gg on proof steps: lexicographic combination of
- $>_{\text {mul }}$ multiset extension of $>$
- \triangleright strict encompassment
- >

Definitions

- complexity of proof $\left(u_{1}, \ldots, u_{n}\right)$ is multiset $\left\{c\left(u_{1}, u_{2}\right), \ldots, c\left(u_{n-1}, u_{n}\right)\right\}$
- complexity of proof step $\left(u_{i}, u_{i+1}\right)$ is triple

$$
c\left(u_{i}, u_{i+1}\right)= \begin{cases}\left(\left\{u_{i}, u_{i+1}\right\},-,-\right) & \text { if } u_{i} \leftrightarrow_{\mathcal{E}} u_{i+1} \\ \left(\left\{u_{i}\right\}, \ell, r\right) & \text { if } u_{i} \rightarrow \mathcal{R} u_{i+1} \text { using rule } \ell \rightarrow r \\ \left(\left\{u_{i+1}\right\}, \ell, r\right) & \text { if } u_{i} \leftarrow_{\mathcal{R}} u_{i+1} \text { using rule } \ell \rightarrow r\end{cases}
$$

- order \gg on proof steps: lexicographic combination of
- $>_{\text {mul }}$ multiset extension of $>$
- \triangleright strict encompassment
- >

Lemma

mul is a well-founded order on proofs

Lemma

\forall proof P in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ that is no rewrite proof in \mathcal{R}_{ω} \exists equivalent proof Q in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ such that $P>_{\text {mul }} Q$

Lemma

\forall proof P in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ that is no rewrite proof in \mathcal{R}_{ω}
\exists equivalent proof Q in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ such that $P>_{\text {mul }} Q$

Proof Sketch

three cases:
$1 P$ contains step using equation $\ell \approx r \in \mathcal{E}_{\infty}$

Lemma

\forall proof P in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ that is no rewrite proof in \mathcal{R}_{ω}
\exists equivalent proof Q in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ such that $P>_{\text {mul }} Q$

Proof Sketch

three cases:
$1 P$ contains step using equation $\ell \approx r \in \mathcal{E}_{\infty}$
$\ell \approx r \notin \mathcal{E}_{\omega}$: consider how equation $\ell \approx r$ is removed in \mathcal{S}

Lemma

\forall proof P in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ that is no rewrite proof in \mathcal{R}_{ω}
\exists equivalent proof Q in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ such that $P>_{\text {mul }} Q$

Proof Sketch

three cases:
$1 P$ contains step using equation $\ell \approx r \in \mathcal{E}_{\infty}$
$\ell \approx r \notin \mathcal{E}_{\omega}$: consider how equation $\ell \approx r$ is removed in \mathcal{S}
$2 P$ contains step using rule $\ell \rightarrow r \in \mathcal{R}_{\infty} \backslash \mathcal{R}_{\omega}$

Lemma

\forall proof P in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ that is no rewrite proof in \mathcal{R}_{ω}
\exists equivalent proof Q in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ such that $P>_{\text {mul }} Q$

Proof Sketch

three cases:
$1 P$ contains step using equation $\ell \approx r \in \mathcal{E}_{\infty}$
$\ell \approx r \notin \mathcal{E}_{\omega}$: consider how equation $\ell \approx r$ is removed in \mathcal{S}
$2 P$ contains step using rule $\ell \rightarrow r \in \mathcal{R}_{\infty} \backslash \mathcal{R}_{\omega}$
$\ell \rightarrow r \notin \mathcal{R}_{\omega}$: consider how rule $\ell \rightarrow r$ is removed in \mathcal{S}

Lemma

\forall proof P in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ that is no rewrite proof in \mathcal{R}_{ω}
\exists equivalent proof Q in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ such that $P>_{\text {mul }} Q$

Proof Sketch

three cases:
$1 P$ contains step using equation $\ell \approx r \in \mathcal{E}_{\infty}$
$\ell \approx r \notin \mathcal{E}_{\omega}$: consider how equation $\ell \approx r$ is removed in \mathcal{S}
$2 P$ contains step using rule $\ell \rightarrow r \in \mathcal{R}_{\infty} \backslash \mathcal{R}_{\omega}$
$\ell \rightarrow r \notin \mathcal{R}_{\omega}$: consider how rule $\ell \rightarrow r$ is removed in \mathcal{S}
$3 P$ contains peak using rules from \mathcal{R}_{ω}

Lemma

\forall proof P in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ that is no rewrite proof in \mathcal{R}_{ω}
\exists equivalent proof Q in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ such that $P>_{\text {mul }} Q$

Proof Sketch

three cases:
$1 P$ contains step using equation $\ell \approx r \in \mathcal{E}_{\infty}$
$\ell \approx r \notin \mathcal{E}_{\omega}$: consider how equation $\ell \approx r$ is removed in \mathcal{S}
$2 P$ contains step using rule $\ell \rightarrow r \in \mathcal{R}_{\infty} \backslash \mathcal{R}_{\omega}$
$\ell \rightarrow r \notin \mathcal{R}_{\omega}$: consider how rule $\ell \rightarrow r$ is removed in \mathcal{S}
$3 P$ contains peak using rules from \mathcal{R}_{ω} use critical pair lemma

Theorem

\forall non-failing and fair run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$

- $\underset{\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}}{*}=\underset{\mathcal{R}_{\omega}}{\stackrel{*}{\longrightarrow}}$

Theorem

\forall non-failing and fair run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$

- $\underset{\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}}{*}=\underset{\mathcal{R}_{\omega}}{\stackrel{*}{\longrightarrow}}$
- \mathcal{R}_{ω} is complete

Theorem

\forall non-failing and fair run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$

- $\underset{\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}}{*}=\underset{\mathcal{R}_{\omega}}{\stackrel{*}{\longrightarrow}}$
- \mathcal{R}_{ω} is complete

Corollary

every fair completion procedure is correct

Outline

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

```
Fact
CP}(\mp@subsup{\mathcal{R}}{\omega}{})\subseteq\mp@subsup{\mathcal{E}}{\infty}{}\mathrm{ ensures correcteness
```

Fact$\mathrm{CP}\left(\mathcal{R}_{\omega}\right) \subseteq \mathcal{E}_{\infty}$ ensures correcteness
Question
are all critical pairs in $\mathrm{CP}\left(\mathcal{R}_{\omega}\right)$ needed ?
Fact$\mathrm{CP}\left(\mathcal{R}_{\omega}\right) \subseteq \mathcal{E}_{\infty}$ ensures correcteness
Question
are all critical pairs in $\mathrm{CP}\left(\mathcal{R}_{\omega}\right)$ needed ?

Definitions

- critical pair criterion is mapping CPC on sets of equations such that $\mathrm{CPC}(\mathcal{E}) \subseteq \mathrm{CP}(\mathcal{E})$

Fact

$\mathrm{CP}\left(\mathcal{R}_{\omega}\right) \subseteq \mathcal{E}_{\infty}$ ensures correcteness

Question

are all critical pairs in $\operatorname{CP}\left(\mathcal{R}_{\omega}\right)$ needed ?

Definitions

- critical pair criterion is mapping CPC on sets of equations such that $\mathrm{CPC}(\mathcal{E}) \subseteq \mathrm{CP}(\mathcal{E})$
- $\operatorname{run}\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$ is fair with respect to critical pair criterion CPC if $\mathrm{CP}\left(\mathcal{R}_{\omega}\right) \backslash \mathrm{CPC}\left(\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}\right) \subseteq \mathcal{E}_{\infty}$

Fact

$\mathrm{CP}\left(\mathcal{R}_{\omega}\right) \subseteq \mathcal{E}_{\infty}$ ensures correcteness

Question

are all critical pairs in $\mathrm{CP}\left(\mathcal{R}_{\omega}\right)$ needed ?

Definitions

- critical pair criterion is mapping CPC on sets of equations such that $\mathrm{CPC}(\mathcal{E}) \subseteq \operatorname{CP}(\mathcal{E})$
- run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$ is fair with respect to critical pair criterion CPC if $\mathrm{CP}\left(\mathcal{R}_{\omega}\right) \backslash \mathrm{CPC}\left(\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}\right) \subseteq \mathcal{E}_{\infty}$
- critical pair criterion CPC is correct if \mathcal{R}_{ω} is confluent and terminating for every non-failing run $\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash_{\mathcal{S C}}\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash_{\mathcal{S C}} \cdots$ that is fair with respect to critical pair criterion CPC

Definitions

- peak $P: s \leftarrow_{\mathcal{R}} u \rightarrow_{\mathcal{R}} t$ is composite if there exist proofs

$$
Q_{1}: u_{1} \stackrel{*}{\longleftrightarrow} u_{2} \quad \cdots \quad Q_{n-1}: u_{n-1} \stackrel{*}{\longleftrightarrow} u_{n}
$$

such that

- $s=u_{1}$
- $t=u_{n}$
- $\forall 1 \leqslant i \leqslant n \quad u>u_{i}$
- $\forall 1 \leqslant i<n \quad P \gg_{\text {mul }} Q_{i}$

Definitions

- peak $P: s \leftarrow_{\mathcal{R}} u \rightarrow_{\mathcal{R}} t$ is composite if there exist proofs

$$
Q_{1}: u_{1} \stackrel{*}{\longleftrightarrow} u_{2} \quad \cdots \quad Q_{n-1}: u_{n-1} \stackrel{*}{\longleftrightarrow} u_{n}
$$

such that

- $s=u_{1}$
- $t=u_{n}$
- $\forall 1 \leqslant i \leqslant n \quad u>u_{i}$
- $\forall 1 \leqslant i<n \quad P \gg_{\mathrm{mul}} Q_{i}$
- critical pair $s \leftarrow \rtimes \rightarrow t$ is composite if corresponding peak $s \leftarrow \cdot \rightarrow t$ is composite

Definitions

- peak $P: s \leftarrow_{\mathcal{R}} u \rightarrow_{\mathcal{R}} t$ is composite if there exist proofs

$$
Q_{1}: u_{1} \stackrel{*}{\longleftrightarrow} u_{2} \quad \cdots \quad Q_{n-1}: u_{n-1} \stackrel{*}{\longleftrightarrow} u_{n}
$$

such that

- $s=u_{1}$
- $t=u_{n}$
- $\forall 1 \leqslant i \leqslant n \quad u>u_{i}$
- $\forall 1 \leqslant i<n \quad P \gg_{\mathrm{mul}} Q_{i}$
- critical pair $s \leftarrow \rtimes \rightarrow t$ is composite if corresponding peak $s \leftarrow \cdot \rightarrow t$ is composite

Definition

 composite critical pair criterion: $\operatorname{CCP}(\mathcal{E})=\{s \approx t \in \operatorname{CP}(\mathcal{E}) \mid s \approx t$ is composite $\}$
Lemma

critical pair criterion CCP is correct

Lemma

critical pair criterion CCP is correct

Question

how to check compositeness ?

Lemma

critical pair criterion CCP is correct

Question

how to check compositeness ?

Definition

- critical pair $s \leftarrow \rtimes \rightarrow t$ originating from overlap $\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ with $\mathrm{mgu} \sigma$ is unblocked if $x \sigma$ is reducible for some $x \in \mathcal{V a r}\left(\ell_{1}\right) \cup \mathcal{V} \operatorname{ar}\left(\ell_{2}\right)$

Lemma

 critical pair criterion CCP is correct
Question

how to check compositeness ?

Definition

- critical pair $s \leftarrow \rtimes \rightarrow t$ originating from overlap $\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ with $\mathrm{mgu} \sigma$ is unblocked if $x \sigma$ is reducible for some $x \in \mathcal{V} \operatorname{ar}\left(\ell_{1}\right) \cup \mathcal{V} \operatorname{ar}\left(\ell_{2}\right)$

Lemma

- every unblocked critical pair is composite

Lemma

 critical pair criterion CCP is correct
Question

how to check compositeness ?

Definition

- critical pair $s \leftarrow \rtimes \rightarrow t$ originating from overlap $\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ with $\mathrm{mgu} \sigma$ is unblocked if $x \sigma$ is reducible for some $x \in \mathcal{V} \operatorname{ar}\left(\ell_{1}\right) \cup \mathcal{V} \operatorname{ar}\left(\ell_{2}\right)$
- critical pair $s \leftarrow \rtimes \rightarrow t$ originating from overlap $\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ with mgu σ is reducible if proper subterm of $\ell_{1} \sigma$ is reducible

Lemma

- every unblocked critical pair is composite

Lemma

 critical pair criterion CCP is correct
Question

how to check compositeness ?

Definition

- critical pair $s \leftarrow \rtimes \rightarrow t$ originating from overlap $\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ with $\mathrm{mgu} \sigma$ is unblocked if $x \sigma$ is reducible for some $x \in \mathcal{V} \operatorname{ar}\left(\ell_{1}\right) \cup \mathcal{V} \operatorname{ar}\left(\ell_{2}\right)$
- critical pair $s \leftarrow \rtimes \rightarrow t$ originating from overlap $\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ with mgu σ is reducible if proper subterm of $\ell_{1} \sigma$ is reducible

Lemma

- every unblocked critical pair is composite
- every reducible critical pair is composite

Example

TRS

$$
\begin{aligned}
& e^{-} \rightarrow e \\
& x^{--} \rightarrow x \\
& x \cdot\left(x^{-} \cdot y\right) \rightarrow y \\
& x^{-} \rightarrow e / x \\
& x / e \rightarrow x \\
& e / x \rightarrow x \\
& \left(x / y^{-}\right) / y \rightarrow x \\
& z /\left(z^{-} / y\right)^{-} \rightarrow y^{-}
\end{aligned}
$$

Example

TRS

$$
\begin{aligned}
& \mathrm{e}^{-} \rightarrow \mathrm{e} \\
& x / e \rightarrow x \\
& x^{--} \rightarrow x \\
& e / x \rightarrow x \\
& x \cdot\left(x^{-} \cdot y\right) \rightarrow y \\
& \left(x / y^{-}\right) / y \rightarrow x \\
& x^{-} \rightarrow \mathrm{e} / x \\
& z /\left(z^{-} / y\right)^{-} \rightarrow y^{-}
\end{aligned}
$$

critical pair

$$
y / \mathrm{e}^{-} \leftarrow \rtimes \rightarrow y
$$

originating from overlap

$$
\left\langle x / e \rightarrow x, \epsilon,\left(y / z^{-}\right) / z \rightarrow y\right\rangle
$$

Example

TRS

$$
\begin{aligned}
& \mathrm{e}^{-} \rightarrow \mathrm{e} \\
& x / e \rightarrow x \\
& x^{--} \rightarrow x \\
& e / x \rightarrow x \\
& x \cdot\left(x^{-} \cdot y\right) \rightarrow y \\
& \left(x / y^{-}\right) / y \rightarrow x \\
& x^{-} \rightarrow \mathrm{e} / x \\
& z /\left(z^{-} / y\right)^{-} \rightarrow y^{-}
\end{aligned}
$$

critical pair

$$
y / \mathrm{e}^{-} \leftarrow \rtimes \rightarrow y
$$

originating from overlap

$$
\left\langle x / e \rightarrow x, \epsilon,\left(y / z^{-}\right) / z \rightarrow y\right\rangle
$$

is reducible because $\left(y / e^{-}\right) / e$ is reducible at position 12

Outline

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

圊 Canonical Equational Proofs
Leo Bachmair
Progress in Theoretical Computer Science, Birkhäuser, 1991
Equational Inference, Canonical Proofs, and Proof Orderings
Leo Bachmair and Nachum Dershowitz
J.ACM 41(2), pp. 236-276, 1994

Completion Tools

- Waldmeister
- Slothrop
- mkbTT
- KBCV

