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TRS R = {®,®,0,®,®, ®}

@ x+0 — x @ x—=0 — x
®  x+s(y) = sx+y) @  x—s(y) = p(x—y)
® p(s(x)) — x ® s(p(x)) — x
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TRS R = {®,®,®,®,®, ®} TRS S = {9,2,0,®,®,®,0,®,®, ®}
©) x+0 — x @ x—0 — x
® x+s(y) — s(x+y) @ x—s(y) — p(x—y)
® p(s(x)) — x ® s(p(x)) — x
@ (X+p(y)) — x+y p(x—p(y)) — x—y
© +p(y) — p(x+y) x=ply) = s(x—y)
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TRS R = {®,®,®,®,®, ®} TRS S = {9,2,0,®,®,®,0,®,®, ®}
©) x+0 — x @ x—0 — x
® x+s(y) — s(x+y) @ x—s(y) — p(x—y)
® p(s(x)) — x ® s(p(x)) — x
@ (X+p(y)) — x+y p(x—p(y)) — x—y
© +p(y) — p(x+y) x=ply) = s(x—y)

rewrite rules @ and ® are redundant:

s(x +p(y)) x+y p(x — p(y —>x—
s(p(x +y)) p(s(x —y))
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TRS R = {®,®,®,®,®, ®} TRS S = {9,2,0,®,®,®,0,®,®, ®}
@ x+0 — x @ x—0 — x
® x+s(y) — s(x+y) @ x—=s(y) — p(x—y)
® p(s(x)) — x ® s(p(x)) — x
®  x+ply) = px+y) © x=p(y) — s(x—y)

rewrite rules @ and ® are redundant:

s(x + p(y)) X+y p(x — p(y
s(p(x +y)) p(s(x —y))
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Efficient Completion

Observation

® |ess rewrite rules —> less critical pairs

e TRS without redundancy =  reduced TRS
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Observation

® |ess rewrite rules —> less critical pairs

e TRS without redundancy =  reduced TRS

Definition
TRS R is reduced if for all ¢ — re R

r is normal form with respect to R
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Observation

® |ess rewrite rules —> less critical pairs

e TRS without redundancy =  reduced TRS

Definition
TRS R is reduced if for all ¢ — re R

r is normal form with respect to R

¢ is normal form with respect to R \ {¢ — r}
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TRSR ={®,0,0,®,0,0} TRS § ={9,0,0,®,6,0,0,®,®, 0}

@
®
®
6]
©)

x+0— x ®
X+S(y)—>S(X+y) )
p(s(x)) — ®
(X+p(y))—>><+y
x+p(y) — p(x+y)

e R is reduced

x—0— x
x—s(y) — p(X— y)
s(p(x)) —
p(x —p(y)) — x —
x—=p(y) — s(><— y)
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TRSR ={®,0,0,®,0,0} TRS § ={9,0,0,®,6,0,0,®,®, 0}

@
®
®
6]
©)

x+0— x ®
x+s(y) — S(X+y) )
p(s(x)) — ®
s(x + p(y ))—>X+y
x+p(y) — p(x+y)

e R is reduced

e S is not reduced

x—0— x
x—s(y) — p(X— y)
s(p(x)) —
p(x —p(y)) — x —
x—=p(y) — s(><— y)
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Efficient Completion

simplification after completion J

YV complete TRS R 3 complete reduced TRS S such that % = %
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simplification after completion J

YV complete TRS R 3 complete reduced TRS S such that % = %

Proof Sketch (construction)

R ={{l—rlg|l—reR}
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simplification after completion J

YV complete TRS R 3 complete reduced TRS S such that % = %

Proof Sketch (construction)

R ={{l—rlg|l—reR}
S ={{—-reR|LeNF(R'\{{ —-r})}
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simplification after completion }

YV complete TRS R 3 complete reduced TRS S such that % = %

Proof Sketch (construction)

R ={{l—rlg|l—reR}
S ={l—-reR|LeNF(R'\{{ —r})}

more efficient: simplification during completion J
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Knuth-Bendix Completion Procedure (More Efficient Version)

input ES £ and reduction order >
output  complete reduced TRS R such that % = %
R=8 C:=¢
while C # @ do
choose s~te C C:=C\{s=t} §:=s|lg t :=tlg
if s’ # t' then

if s >t/ then a:=s p=t
elseif t' > s then «a:=t [:=5¢
else failure

R :=RU{a — B}
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Knuth-Bendix Completion Procedure (More Efficient Version)

input ES £ and reduction order >
output  complete reduced TRS R such that % = %
R=8 C:=¢
while C # @ do
choose s~te C C:=C\{s=t} §:=s|lg t :=tlg
if s’ # t' then

if s >t/ then a:=s p=t
elseif t' > s then «a:=t [:=5¢
else failure

R :=RU{a— g}
forall £ — re R do
R =R\{{—r} 0 :=lr r=rlg
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Knuth-Bendix Completion Procedure (More Efficient Version)

input ES £ and reduction order >
output  complete reduced TRS R such that % = %
R=8 C:=¢
while C # @ do
choose s~te C C:=C\{s=t} §:=s|lg t :=tlg
if s’ # t' then

if s >t/ then a:=s p=t
elseif t' > s then «a:=t [:=5¢
else failure

R :=RU{a — g}
forall £ — r € R do
R =R'\{l—r} O :=0lr 1 =rlg
if =20 then R\ :=R'U{l' > r'}else C:=CU{' ="'}
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Knuth-Bendix Completion Procedure (More Efficient Version)

input ES £ and reduction order >
output  complete reduced TRS R such that % = %
R=8 C:=¢
while C # @ do
choose s~te C C:=C\{s=t} §:=s|lg t :=tlg
if s’ # t' then

if s >t/ then a:=s p=t
elseif t' > s then «a:=t [:=5¢
else failure

R :=RU{a — g}
forall £ — r € R do
R =R'\{l—r} O :=0lr 1 =rlg
if =20 then R\ :=R'U{l' > r'}else C:=CU{' ="'}
R:=TR
C:=CU{e e CP(R) | a— [ was used to generate e}
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f(f(x)) ~ g(x)
gla) = b

Q

Q
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f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence f > g >b > a
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f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence f > g >b > a

e orient: f(f(x)) >ipo 8(x)
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f(f(x)) — &(x)

gla) = b

e L PO with precedence f > g >b > a

e orient: f(f(x)) >ipo 8(x)
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f(f(x)) — &(x)

gla) = b

e L PO with precedence f > g >b > a

e orient: g(a) >ipo b
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f(f(x)) — &(x)
gla) — b

e L PO with precedence f > g >b > a

e orient: g(a) >ipo b
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f(f(x)) — &(x)
gla) — b

e L PO with precedence f > g >b > a
o deduce: f(g(x)) « f(f(f(x))) — g(f(x)) critical pair
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fg(x)) ~ g(f(x)) f(f(x)) — &(x)
gla) — b

e L PO with precedence f > g >b > a
o deduce: f(g(x)) < f(f(f(x))) — g(f(x)) critical pair
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flg(x)) = g(f(x)) f(f(x)) — &(x)
gla) — b

e L PO with precedence f > g >b > a
e orient: f(g(x)) >ipo &(f(x))
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f(f(x)) — &(x)
gla) — b
flg(x)) — &(f(x))

e L PO with precedence f > g >b > a
e orient: f(g(x)) >ipo &(f(x))
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f(f(x)) — &(x)
gla) — b
flg(x)) — &(f(x))

e L PO with precedence f > g >b > a
o deduce: f(g(f(x))) < f(f(g(x))) — g(g(x)) critical pair
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flg(f(x))) = gle(x)) f(f(x)) — &(x)
gla) — b
flg(x)) — &(f(x))

e L PO with precedence f > g >b > a
o deduce: f(b) — f(g(a)) — g(f(a)) critical pair
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fg(f(x))) ~ &(g(x)) f(f(x)) — &(x)
f(b) =~ g(f(a)) gla) = b
fg(x)) — s(f(x))

~
~
~
~

e L PO with precedence f > g >b > a
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fg(f(x))) ~ &(g(x)) f(f(x)) — &(x)
f(b) =~ g(f(a)) gla) = b
fg(x)) — s(f(x))

~
~
~
~

e L PO with precedence f > g >b > a
o simplify:  f(g(f(x))) — 8(f(f(x)))
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g(f(f(x))) ~ &(&(x)) f(f(x)) — &(x)
f(b) ~ g(f(a)) gla) — b
fg(x)) — s(f(x))

~
~
~
~

e L PO with precedence f > g >b > a
o simplify:  g(f(f(x))) — &(g(x))
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g(g(x)) f(f(x)) — &(x)
g(f(a)) gla) — b
fg(x)) — s(f(x))

e L PO with precedence f > g >b > a

o delete:  g(g(x)) = glg(x))
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f(f(x)) — &(x)
f(b) ~ g(f(a)) gla) — b
fg(x)) — s(f(x))

e L PO with precedence f > g >b > a

e orient: f(b) >1po f(g(a))
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f(f(x)) — &(x)
gla) — b
flg(x)) — s(f(x

f(b) — g(f(a))

e L PO with precedence f > g >b > a

e orient: f(b) >1po f(g(a))
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f(f(x)) — &(x)
ga) — b
fle(x) — s(f(x))
f(b) — &(f(a))
e L PO with precedence f > g >b > a
e deduce: f(g(f(a))) < f(f(b)) — g(b) critical pair )
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f(e(f(a))) ~ &(b) f(f(x)) — &(x)
ga) — b
fle(x) — s(f(x))
f(b) — &(f(a))
e L PO with precedence f > g >b > a
o deduce: f(g(f(a))) < f(f(b)) — g(b) critical pair )
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f(g(f(a))) ~ g(b) f(f(x)) — &(x)
gla) = b
flg(x)) — &(f(x))
f(b) — g(f(a))

e L PO with precedence f > g >b > a
e simplify:  f(g(f(a))) — g(f(f(a)))
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g(f(f(a))) =~ g(b) f(f(x)) — g&(x)
gla) = b
flg(x)) — &(f(x))
f(b) — g(f(a))

e L PO with precedence f > g >b > a
e simplify:  g(f(f(a))) — g(s(a))
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g(g(a)) ~ g(b) f(f(x)) — &(x)
gla) — b
flg(x)) — &(f(x))
f(b) — g(f(a))

e L PO with precedence f > g >b > a

o simplify: g(g(a)) — g(b)
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g(b) ~ g(b) f(f(x)) — &(x)
gla) = b
flg(x)) — &(f(x))
f(b) — g(f(a))

e L PO with precedence f > g >b > a
o delete:  g(b) = g(b)
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f(f(x)) — &(x)
gla) — b
flg(x)) — s(f(x

f(b) — g(f(a))

e L PO with precedence f > g >b > a

e complete and reduced TRS
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f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence f > g >b > a

AM & FvR ISR 2010 — lecture 6 10/36



f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence b > g >f>a
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f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence b > g >f>a
e orient: g(x) >1po f(f(x))
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g(x) — f(f(x))

gla) = b

e L PO with precedence b > g >f>a

e orient: g(x) >1po f(f(x))
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g(x) — f(f(x))

gla) = b

e L PO with precedence b > g >f>a

e orient: b >0 g(a)
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g(x) — f(f(x))
b — g(a)

e L PO with precedence b > g >f>a

e orient: b >0 g(a)
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g(x) — f(f(x))
b — g(a)

e L PO with precedence b > g >f>a

e complete TRS
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g(x) — f(f(x))
b — g(a)

e L PO with precedence b > g >f>a

e complete TRS but not reduced
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g(x) — f(f(x))
b — g(a)

e L PO with precedence b > g >f>a

e compose: g(a) — f(f(a))
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e L PO with precedence b > g >f>a

e compose: g(a) — f(f(a))
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e L PO with precedence b > g >f>a

e complete and reduced TRS
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f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence b > g >f>a
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f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence g >f>b > a
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f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence g >f>b > a
e orient: g(x) >1po f(f(x))
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g(x) — f(f(x))

gla) = b

e L PO with precedence g >f>b > a

e orient: g(x) >1po f(f(x))
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g(x) — f(f(x))

gla) = b

e L PO with precedence g >f>b > a

e orient: g(a) >ipo b
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e L PO with precedence g >f>b > a

e orient: g(a) >ipo b
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e L PO with precedence g >f>b > a

e collapse: g(a) — f(f(a))
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f(f(a)) ~ b g(x) — f(f(x))

e L PO with precedence g >f>b > a

e collapse: g(a) — f(f(a))
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f(f(a)) ~ b g(x) — f(f(x))

e L PO with precedence g >f>b > a
e orient: f(f(a))) >ipo b
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g(x) — f(f(x))
f(fa)) — b

e L PO with precedence g >f>b > a
e orient: f(f(a))) >ipo b
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g(x) — f(f(x))
f(fa)) — b

e L PO with precedence g >f>b > a

e complete and reduced TRS
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if complete reduced TRSs R and S satisfy
® =5

R and S are compatible with same reduction order

then R = S (modulo variable renaming)
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Outline

@ Cola Gene Puzzle
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A team of genetic engineers decides to create cows that produce cola instead of
milk. To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT
Techniques exist to perform the following DNA substitutions
TCAT « T GAG— AG CTC+— TC AGTA— A TAT < CT

Recently it has been discovered that the mad cow disease is caused by a retrovirus
with the following DNA sequence

CTGCTACTGACT

What now, if unintendedly cows with this virus are created? According to the
engineers there is little risk because this never happened in their experiments, but
various action groups demand absolute assurances.
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A team of genetic engineers decides to create cows that produce cola instead of
milk. To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT
Techniques exist to perform the following DNA substitutions
TCAT « T GAG— AG CTC— TC AGTA— A TAT < CT

Recently it has been discovered that the mad cow disease is caused by a retrovirus
with the following DNA sequence

CTGCTACTGACT

What now, if unintendedly cows with this virus are created? According to the
engineers there is little risk because this never happened in their experiments, but
various action groups demand absolute assurances.
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Example (Cola Gene Puzzle)

ES &
TCAT ~ T GAG =~ AG CTC~=TC AGTA =~ A TAT =~ CT
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Example (Cola Gene Puzzle)
ES &
TCAT ~ T GAG =~ AG CTC~=TC AGTA =~ A TAT ~ CT

TRS R
GA—-A AGT —-AT ATA—-A CT—-T TAT—-T TCA—-TA
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Example (Cola Gene Puzzle)

ES &
TCAT ~ T GAG =~ AG CTC~TC AGTA =~ A TAT =~ CT

TRS R
GA—-A AGT —-AT ATA—-A CT—-T TAT—-T TCA—-TA

® R is reduced and complete
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Example (Cola Gene Puzzle)
ES &
TCAT ~ T GAG =~ AG CTC~TC AGTA =~ A TAT ~ CT

TRS R
GA—-A AGT —-AT ATA—-A CT—-T TAT—-T TCA—-TA

® R is reduced and complete

* *
0 — = —>
E R
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Example (Cola Gene Puzzle)
ES &
TCAT ~ T GAG =~ AG CTC~TC AGTA =~ A TAT ~ CT

TRS R
GA—-A AGT —-AT ATA—-A CT—-T TAT—-T TCA—-TA

® R is reduced and complete

* *
0 — = —>
E R

e (milk gene) TAGCTAGCTAGCT %» CTGACTGACT (cola gene)

TAGCTAGCTAGCT 7': T % CTGACTGACT
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Example (Cola Gene Puzzle)

ES &
TCAT ~ T GAG =~ AG CTC~TC AGTA =~ A TAT =~ CT

TRS R
GA—-A AGT —-AT ATA—-A CT—-T TAT—-T TCA—-TA

® R is reduced and complete
[} (i) = <L>
£ R
e (milk gene) TAGCTAGCTAGCT %» CTGACTGACT (cola gene)
TAGCTAGCTAGCT 7': T % CTGACTGACT
e (milk gene) TAGCTAGCTAGCT <7;4> CTGCTACTGACT (mad cow retrovirus)

TAGCTAGCTAGCT % T#TGT <_7I2 CTGCTACTGACT
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Outline

@ Abstract Completion
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inference system SC (standard completion) consists of six rules

v
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set of equations £ set of rewrite rules R

inference system SC (standard completion) consists of six rules

delete Eufs~shR

v
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set of equations £ set of rewrite rules R

inference system SC (standard completion) consists of six rules

EU{s~s}R

delet
elete TR

v
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set of equations £ set of rewrite rules R

inference system SC (standard completion) consists of six rules

EU{s~st R
delete #
E,R
E,RU{s—t .
compose G RUE— 1) if t =» u
v
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set of equations £ set of rewrite rules R

inference system SC (standard completion) consists of six rules

EU{s~st R
delete #
E,R
compose SR — 8 if t u
_ —
P E,RU{s — u} R
AM & FvR ISR 2010 — lecture 6 17/36



set of equations £

set of rewrite rules R

inference system SC (standard completion) consists of six rules

delete

compose

simplify

EU{s~s}R
E,R
E,RU{s — t}

E,RU{s — u}

EU{s&t},R

ift >r u

if t >» u

v
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set of equations £ set of rewrite rules R

inference system SC (standard completion) consists of six rules

EU{s~s}R
delet _—
elete R
P E,RU{s — u} R
simplify % if t >» u

v
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set of equations £

set of rewrite rules R reduction order >

inference system SC (standard completion) consists of six rules

EU{s~s}R
delet B
elete R
P E,RU{s — u} R
~t
simplify % if t >» u
~t
orient M if s >t
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set of equations £ set of rewrite rules R reduction order >

inference system SC (standard completion) consists of six rules

EU{s~s}R
delet _—
elete E,R
P E,RU{s — u} R
simplify % if t >» u
. EU{s~t},R .
orient mu—{s—)t} if s>t

v
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set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s}R
delete —
E,R
compose £, RU{s = t} if t u
22 E A N
P E,RU{s — u} R
A EU{s~t},R .
simplif — ft
implity EUls~ul,R Tt —Rr U
. EU{s~t},R .
orient — fs>t
ren SERU[{s—1t}]
E,RU{t .
collapse EyIRUNE = o) if t >» u
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set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s}R
delet —_—
elete R
P E,RU{s — u} R
. EU{s~t},R .
lif — ft
simplify U~ ulLR if t g u
. EU{s~t},R .
orient ERUG =1 G- if s>t
t
collapse —i’f{ji s_}:g ift >g u
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set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s}R
delet _—
elete R
compose MU—M if t >g u
P E,RU{s — u} R
~thR .
S|mp||fy % if t —R U
. EU{s~t},R .
orient MU—M if s>t
t
collapse %ﬁ—is_}ﬁi if t >» u using { — r € R with t >/
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Definitions

° [> encompassment

st <= 3 position p 3 substitution o: s|, = to
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Definitions

o > encompassment
st <= 3 position p 3 substitution o: s|, = to
° > strict encompassment

st < skt A (tks)
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Definitions

° > encompassment
st <= 3 position p 3 substitution o: s|, = to
° > strict encompassment

st <= skt A (tk5s)

s(x) +s(y +0) &> s(x) +y
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Definitions

° > encompassment
st <= 3 position p 3 substitution o: s|, = to
° > strict encompassment

st <= skt A (tk5s)

s(x) +s(y +0) &> s(x) +y X+xP>x+y
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Definitions

° > encompassment
st <= 3 position p 3 substitution o: s|, = to
° > strict encompassment

st <= skt A (tk5s)

s(x) +s(y +0) > s(x) +y X+xB>x+y X+y¥x+x
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set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s}R
delet _—
elete R
compose MU—M if t >g u
P E,RU{s — u} R
At
simplify % if t >» u
. EU{s~t},R .
orient MU—M if s>t
t
collapse (;’Lzz{":—is_}:;i if t >% u using / — r € R with t > ¢
deduce Gtk if s—pu—pgt
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set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s}R
delet _—
elete R
compose MU—M if t >g u
P E,RU{s — u} R
At
simplify % if t >» u
. EU{s~t},R .
orient MU—M if s>t
t
collapse (;’Lzz{":—is_}:;i if t >% u using / — r € R with t > ¢
deduce 5‘U{f,—;€t}77€ if s —R U—R Tt
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set of equations £ set of rewrite rules R reduction order >

inference system 5C (basic completion) consists of four rules

EU{s~s}R
delet _—
elete g’R
~t
simplify % if t >» u
. EU{s~t},R .
orient MU—M if s>t
deduce 5‘U{f,—;€t}77€ if s —R U—R Tt
AM & FvR ISR 2010 — lecture 6 17/36



e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) sequence

(&0, Ro) Fsc (€1,R1) Fse (£2,R2) Fsc -
with & = € and Rg = &
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e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(&0, Ro) Fsc (€1,R1) Fse (£2,R2) Fsc -
with & = € and Rg = &
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e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(&0, Ro) Fsc (€1,R1) Fse (£2,R2) Fsc -
with & = € and Rg = &

o &, is set of persistent equations: &, = U ﬂ £
i>0 jzi
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e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run
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with & = € and Rg = &
o &, is set of persistent equations: &, = U ﬂ £

e TR, is set of persistent rules i20 jzi
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e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(€0, Ro) Fsc (&1,R1) Fse (£2,R2) Fsc -+
with & =& and Rp = @
o &, is set of persistent equations: &, = U ﬂ £
e R, is set of persistent rules i20 j=i

e run succeeds if &, = @ and R, is confluent and terminating
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e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(€0, Ro) Fsc (&1,R1) Fse (£2,R2) Fsc -+
with & =& and Rp = @
o &, is set of persistent equations: &, = U ﬂ £
e R, is set of persistent rules i20 j=i

e run succeeds if £, = @ and R, is confluent and terminating
run fails if £, # @
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e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(€0, Ro) Fsc (&1,R1) Fse (£2,R2) Fsc -+
with & =& and Rp = @
o &, is set of persistent equations: &, = U ﬂ £
e R, is set of persistent rules i20 j=i

e run succeeds if £, = @ and R, is confluent and terminating
run fails if £, # @

e completion procedure is correct if every run that does not fail succeeds
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e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(€0, Ro) Fsc (&1,R1) Fse (£2,R2) Fsc -+
with & =& and Rp = @
o &, is set of persistent equations: &, = U ﬂ £
e R, is set of persistent rules i20 j=i

e run succeeds if £, = @ and R, is confluent and terminating
run fails if £, # @

e completion procedure is correct if every run that does not fail succeeds

how to guarantee correctness ?
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set of equations £ set of rewrite rules R reduction order >

v

e if(E,R) Fsc (§',R') and R C > then R’ C >
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set of equations £ set of rewrite rules R reduction order >

v

e if(E,R) Fsc (§',R') and R C > then R’ C >

2 / / i _ &
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set of equations £ set of rewrite rules R reduction order >

run (£, Ro) Fsc (€1,R1) Fse (£2,R2) Fse

Lemmata

e if(E,R) Fsc (§',R') and R C > then R’ C >

| N\

f '— / 12 h * — *
o f(E,R) Fsc (5,R)tenm> ST ]

x=J& and Ro=|JRi

i>0 i>0
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set of equations £ set of rewrite rules R reduction order >

run (£, Ro) Fsc (&1,R1) Fse (£2,R2) Fse -+

4
Lemmata

e if(E,R) Fsc (§',R') and R C > then R’ C >

f '— / 12 h * — *
o f(E,R) Fsc (5,R)tenm> ST

Ex=J& and Ro=JRi

i>0 i>0

Lemmata
* Ry, C R
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set of equations £ set of rewrite rules R reduction order >

run (£, Ro) Fsc (&1,R1) Fse (£2,R2) Fse -+

4
Lemmata

e if(E,R) Fsc (§',R') and R C > then R’ C >

f '— / 12 h * — *
o f(E,R) Fsc (5,R)tenm> ST

Ex=J& and Ro=JRi

i>0 i>0

Lemmata
® Ry, SR C>
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set of equations £ set of rewrite rules R reduction order >

run (£, Ro) Fsc (&1,R1) Fse (£2,R2) Fse -+

4
Lemmata

e if(E,R) Fsc (§',R') and R C > then R’ C >

f '— / 12 h * — *
o f(E,R) Fsc (5,R)tenm> ST

Ex=J& and Ro=JRi

i>0 i>0
v
Lemmata
® Ry, SR C>
* *
[ ) =
£ EesURss
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Two Questions
non-failing run (&, Ro) Fsc (€1, R1) Fse (£2,R2) Fsc -+

is R, confluent ?
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Two Questions
non-failing run (&, Ro) Fsc (€1, R1) Fse (£2,R2) Fsc -+
is R, confluent ?

* _ * 7
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Two Questions
non-failing run (&, Ro) Fsc (€1, R1) Fse (£2,R2) Fsc -+
is R, confluent ?

* _ * 7

e run (&, Ro) Fse (€1,R1) Fsc (£2,R2) Fsc --- is fairif

CP(R.) S &

i=0
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Two Questions
non-failing run (&, Ro) Fsc (€1, R1) Fse (£2,R2) Fsc -+

is R, confluent ?

e run (&, Ro) Fse (£1,R1) Fse (€2,R2) Fsc --- is fair if

CP(R,)C &

i>0

e completion procedure is fair if every run that does not fail is fair
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Two Questions
non-failing run (&, Ro) Fsc (€1, R1) Fse (£2,R2) Fsc -+

is R, confluent ?

[
*
Il
*
~

e run (&, Ro) Fse (£1,R1) Fse (€2,R2) Fsc --- is fair if

CP(R,)C &

i=0

e completion procedure is fair if every run that does not fail is fair

every fair completion procedure is correct
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t — s}

collapse -
P EU{u~s}R

if t >% v using £ — r € R with ¢t > /
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t — s}

Zulunsl, R TtoRUuSNELor ER with el

collapse

(()

e PO with precedence f>a>g>c>b

v
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a~c
g(x) — x
f(x,c) — x
f(x,8(y)) — f(a(x),y)
flc,y) —a
e | PO with precedence f >a>g>c>b
e deduce: a < f(c,c)—c
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a~rcC
g(x) — x f(g(c),y) ~ a
f(x,c) — x
f(x,8(y)) — f(a(x),y)

flc,y) — a
e | PO with precedence f >a>g>c>b
® deduce: a —f(c,g(y)) — f(g(c),y)
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a—c
g(x) — x f(g(c).y) ~ a
f(x,c) — x
f(x,8(y)) — f(g(x),¥)

flc,y) —a
e | PO with precedence f >a>g>c>b
e orient: a>po C
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a—c
g(x) — x f(g(c),y) —a
f(x,c) — x
f(x,8(y)) — f(g(x),¥)

flc,y) —a
e | PO with precedence f >a>g>c>b
e orient: f(g(c),y) >ipo @
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strict encompassment condition in collapse rule cannot be dropped
E,RU{t— s}
EU{u~s}R

collapse if t >% uusing £ — r € R with ¢t > ¢

a —b a—c
g(x) — x f(g(c),y) —a
f(x,c) — x a =~ g(c)
f(x,g(y)) — f(g(x),y)
f(c,y) — a

e PO with precedence f >a>g>c>b
o deduce: a < f(g(c),c) — g(c)

v
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}

collapse -
P EU{u~s}R

if t =g v using £ — r € R with t > ¢

a —b a—c
g(x) — x f(g(c),y) —a
f(x,c) — x a ~ g(c)
f(x,g(y)) — f(e(x),y) f(g(g(c)),y) ~ a
flc,y) — a

e PO with precedence f >a>g>c>b

o deduce: a«— f(g(c),g(y)) — f(g(g(c)),y)

v
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a—c
g(x) — x f(g(c),y) —a
f(x,c) — x a — g(c)
f(x,8(y)) — f(g(x),y) f(a(s(c)),y) = a
flc,y) —a
e PO with precedence f >a>g>c>b
e orient: a >po 8(C)
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a—c
g(x) — x f(g(c),y) —a
f(x,c) — x a — g(c)
f(x,8(y)) — f(g(x),y) f(a(g(c)),y) — a
flc,y) —a
e PO with precedence f >a>g>c>b
e orient: f(g(g(c)). ¥) >ipo @
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% v using £ — r € R with ¢t > /
a —b glc) = ¢
g(x) — x f(g(c),y) —a
f(x,c) — x a — g(c)
f(x,8(y)) — f(a(x),y) f(s(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
e collapse: a — g(c)
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b cRcC
g(x) — x f(g(c),y) —a
f(x,c) — x a — g(c)
f(x,8(y)) — f(a(x),y) f(s(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
e simplify: g(c) — ¢
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b
g(x) — x f(g(c),y) —a
f(x,c) — x a — g(c)
f(x,8(y)) — f(g(x),y) f(a(g(c)),y) — a
flc,y) —a
e PO with precedence f >a>g>c>b
o delete

AM & FvR ISR 2010 — lecture 6 22/36



strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b
g(x) — x flc,y) =~
f(x,c) — x a — g(c)
f(x,8(y)) — f(g(x),y) f(a(g(c)),y) — a

flc,y) —a
e | PO with precedence f >a>g>c>b
e collapse: f(g(c),y) — f(c,y)
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b
g(x) — x a~
f(x,c) — x a — g(c)
f(x,8(y)) — f(g(x),y) f(a(g(c)),y) — a

flc,y) —a
e | PO with precedence f >a>g>c>b
e simplify: f(c,y) —a
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b
g(x) — x
f(x,c) — x a — g(c)
f(x,8(y)) — f(a(x),y) f(s(g(c)),y) — a

flc,y) —a
e | PO with precedence f >a>g>c>b
o delete
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}
EU{u~s}R

collapse if t >% uusing £ — r € R with ¢t > ¢

a —b a ~ g(g(c))
g(x) — x
f(x,c) — x a — g(c)
f(x,g(y)) — f(e(x),y) f(g(g(c)),y) —a
f(c,y) —a

e | PO with precedence f >a>g>c>b

o deduce: a <« f(g(g(c)),c) — g(g(c))

v
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a ~ g(g(c))
g(x) — x f(s(g(g(c))),y) ~ a
f(x,c) — x a — g(c)
f(x,8(y)) — f(a(x).y) f(a(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
® deduce: a — f(g(g(c)), a(y)) — fla(a(g(c)))y) )
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) ~ a
f(x,c) — x a — g(c)
f(x,8(y)) — f(a(x),y) f(s(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
e orient: a >ipo 8(g(c))
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s} : : .
collapse m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x a —g(c)
f(x,8(y)) — f(a(x),y) f(s(g(c)),y) — a
flc,y) — a
e | PO with precedence f >a>g>c>b
e orient:  f(g(g(g(c))). ¥) >ipo 2 )

AM & FvR ISR 2010 — lecture 6 22/36



strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s} : : .
collapse m if t >% v using £ — r € R with ¢t > /
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x g(g(c)) ~ &l(c)
f(x,8(y)) — f(a(x),y) f(a(g(c)),y) — a
flc,y) — a
e | PO with precedence f >a>g>c>b
e collapse: a — g(g(c))
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s} : . .
collapse m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x g(c) =~ gl(c)
f(x,8(y)) — f(a(x),y) f(a(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
o simplify:  g(g(c)) — g(c) )
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x
f(x,8(y)) — f(a(x),y) f(a(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
o delete
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x
f(x,8(y)) — f(a(x),y) f(g(c),y) =~ a
flc,y) —a
e | PO with precedence f >a>g>c>b
 collapse: (g(&(0)). ) — f(e(c).y) |
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}

collapse -
P EU{u~s}R

if t =g v using £ — r € R with t > ¢

a —b a — g(g())
g(x) — x f(g(g(g(c))).y) — a
f(x,c) — x
f(x,g(y)) — f(e(x),y) f(c,y) =~ a
flc,y) — a

e | PO with precedence f >a>g>c>b
e simplify:  f(g(c),y) — f(c,y)

v
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}

collapse -
P EU{u~s}R

if t =g v using £ — r € R with t > ¢

a —b a — g(g())
g(x) — x f(g(g(g(c))).y) — a
f(x,c) — x
f(x,g(y)) — f(e(x),y) a~a
flc,y) — a

e | PO with precedence f >a>g>c>b

e simplify: f(c,y) —a

v
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x
f(x,8(y)) — f(a(x),y)

flc,y) — a
e | PO with precedence f >a>g>c>b
o delete
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x
f(x,8(y)) — f(a(x),y)

flc,y) — a
e | PO with precedence f >a>g>c>b
O ooo
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a—b a — g(g(c))
g(x) — x f(e(e(e(c))),y) — a
f(x,c) — x
f(x.g(y)) — f(g(x),y)

flc,y) — a
e | PO with precedence f >a>g>c>b
° ... fair but unsuccessful run
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t — s}

EU{u=~s}R if t > u using £ — r € R with t > £

collapse

a —b
— X

— X

— f(g(x),y)

— a

e PO with precedencef>a>g>c>b

v
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}
EU{u~s}R

collapse if t >% uusing £ — r € R with ¢t > ¢

e PO with precedence f >a>g>c>b

e compose: a — b
v
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}
EU{u~s}R

collapse if t >% uusing £ — r € R with ¢t > ¢

e | PO with precedence f >a>g>c>b

e compose: f(g(x),y) — f(x,y)
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢

a —b
g(x) — x
f(x,c) — x
fix,y) = f(x,y)
f(c,y) — b

e | PO with precedence f >a>g>c>b

e collapse: f(x,g(y)) — f(x,y) )
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢
a —b
g(x) — x

f(x,c) — x
fc,y) — b

e | PO with precedence f >a>g>c>b

o delete

v
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢
a —b cxb
g(x) — x

f(x,c) — x
flc,y) — b

e | PO with precedence f >a>g>c>b

o deduce: c«f(c,c)—b

v
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢
a —b c—b
g(x) — x

f(x,c) — x
fc,y) — b

e | PO with precedence f >a>g>c>b

e orient: C>ppo b

v
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strict encompassment condition in collapse rule cannot be dropped
E,RU{t— s}
EU{u~s}R

collapse if t >% uusing £ — r € R with ¢t > ¢

a —b c—b
g(x) — x
f(x,b) = x

f(c,y) — b

e | PO with precedence f >a>g>c>b
e collapse: f(x,c) — f(x,b)

v
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢
a —b c—b
g(x) — x

f(x,b) — x

flc,y) — b
e | PO with precedence f >a>g>c>b
e orient:  f(x,b) >ipo X
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}
EU{u~s}R

a —b c—b
g(x) — x
f(x,b) — x

collapse if t >% uusing £ — r € R with ¢t > ¢

f(b,y) ~ b

e | PO with precedence f >a>g>c>b

e collapse: f(c,y) — f(b, y)

v
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strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b c—b
g(x) — x
f(x,b) — x
f(b,y) — b
e | PO with precedence f >a>g>c>b
e orient: f(b,y) >ipo b
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢
a —b c—b
g(x) — x
f(x,b) — x
f(b,y) — b
e | PO with precedence f >a>g>c>b
e complete and reduced TRS
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Outline

@ Proof Orders

AM & FvR ISR 2010 — lecture 6



Completion is Proof Normalization

(E,R) proof in (£, R)

v
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Completion is Proof Normalization

(E,R) proof in (£, R)

—

v
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Completion is Proof Normalization

(E,R) proof in (£,R)
(8
C——— mm Y~
U

—— B

v
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Completion is Proof Normalization

(£, R)

proof in (£, R)

O\a_w_)o/o
W

v
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Completion is Proof Normalization

(E,R) proof in (£, R)
(8
C——— mm Y~
U
[— S~
(8

—

—— e

v
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Completion is Proof Normalization

(£, R)

4

4

4

¥
*

fair derivation

proof in (£, R)

W
W
0\0(—)0/0

T
O\O\O/Q

rewrite proof

v
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set of equations £ set of rewrite rules R reduction order > J

e proof of s ~ t is sequence (uy, ..., u,) of terms such that
e S=1Uu
e t = un

o forall 1<i<n wu—R U1 OF U <R Uyl OF Uj<g Ul
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set of equations £ set of rewrite rules R reduction order > J

e proof of s ~ t is sequence (uy, ..., u,) of terms such that
e S=1Uu
e t = up

o forall 1<i<n wu—R U1 OF U <R Uyl OF Uj<g Ul

e rewrite proof is proof (us, ..., u,) such that
o u —p Uiy forall 1 <i<j
o ui g Uiy forallj<i<n

forsome 1 <j<n
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set of equations £ set of rewrite rules R reduction order > J

e proof of s ~ t is sequence (uy, ..., u,) of terms such that
e S=1Uu
e t = up

o forall 1<i<n wu—R U1 OF U <R Uyl OF Uj<g Ul

e rewrite proof is proof (us, ..., u,) such that
o u —p Uiy forall 1 <i<j
o ui g Uiy forallj<i<n
forsome 1 <j<n
® two proofs (si,...,s,) and (ti,...,t,) are equivalent if s; = t; and s, = t,

v
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e complexity of proof (uy, ..., u,) is multiset {c(u1, u2), ..., c(Un—1, ts)}
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e complexity of proof (uy, ..., u,) is multiset {c(u1, u2), ..., c(uy—1,u,)}

e complexity of proof step (uj, uj+1) is triple

({ui, vz}, — =) if uj e v
c(uj, uip1) = if uj >R ujr1 using rule £ — r
if uj «<x uj41 using rule £ — r
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e complexity of proof (uy, ..., u,) is multiset {c(u1, u2), ..., c(uy—1,u,)}

e complexity of proof step (uj, uj+1) is triple

({ui, vz}, — =) if uj e v
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r
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e complexity of proof (uy, ..., u,) is multiset {c(u1, u2), ..., c(uy—1,u,)}

e complexity of proof step (uj, uj+1) is triple

({ui, vz}, — =) if uj e v
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r
({uiz1}, 4, r) if uj <R ujr1 using rule £ — r
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e complexity of proof (us, ..., u,) is multiset {c(u1, u2), ..., c(tn—_1, Us)}

e complexity of proof step (uj, uj+1) is triple

({uis viy1}, =, =) if ui =g Uit
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r

({uisa}, 4, r) if uj —x uj11 using rule £ — r

e order > on proof steps: lexicographic combination of

e > .. multiset extension of >
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e complexity of proof (us, ..., u,) is multiset {c(u1, u2), ..., c(tn—_1, Us)}

e complexity of proof step (uj, uj+1) is triple

({uis viy1}, — =) if ui =g Ui
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r

({uiz1}, 4, r) if uj <R ujr1 using rule £ — r

e order > on proof steps: lexicographic combination of
e > multiset extension of >

° > strict encompassment
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e complexity of proof (us, ..., u,) is multiset {c(u1, u2), ..., c(tn—_1, Us)}

e complexity of proof step (uj, uj+1) is triple

({uis viy1}, — =) if ui =g Ui
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r

({uiz1},4,r) if uj <R ujr1 using rule £ — r

e order > on proof steps: lexicographic combination of
e > multiset extension of >

° > strict encompassment
° >
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e complexity of proof (us, ..., u,) is multiset {c(u1, u2), ..., c(tn—_1, Us)}

e complexity of proof step (uj, uj+1) is triple

({uis viy1}, = =) if ui =g Ui
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r

({uiz1}, 4, r) if uj <R ujr1 using rule £ — r

e order > on proof steps: lexicographic combination of
e > multiset extension of >

° > strict encompassment
° >

> mul is @ well-founded order on proofs
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non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+ J

V proof P in £, U R that is no rewrite proof in R,
3 equivalent proof @ in oo U Reo such that P >, Q
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non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

—

P contains step using equation £~ r € £
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non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

—

P contains step using equation £~ r € £

l~r¢&,: consider how equation ¢ = r is removed in S
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non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

P contains step using equation £~ r € £
l~r¢&,: consider how equation ¢ = r is removed in S

P contains step using rule £ — r € Roo \ Ru
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non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

P contains step using equation £ = r € £
l~r¢&,: consider how equation ¢ = r is removed in S
P contains step using rule £ — r € Roo \ Ru

¢ —r¢R,: consider how rule £ — r is removed in S
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non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

P contains step using equation £ = r € £

l~r¢&,: consider how equation ¢ = r is removed in S
P contains step using rule £ — r € Roo \ Ru

¢ —r¢R,: consider how rule £ — r is removed in S

P contains peak using rules from R,
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non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

P contains step using equation £ = r € £

l~r¢&,: consider how equation ¢ = r is removed in S
P contains step using rule £ — r € Roo \ Ru

¢ —r¢R,: consider how rule £ — r is removed in S
P contains peak using rules from R,

use critical pair lemma
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Y non-failing and fair run (£, Ro) Fsc (€1, R1) Fsc (&2, R2) Fsc -+

* *
[ ] =

ExoUR o R
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Y non-failing and fair run (£, Ro) Fsc (€1, R1) Fsc (&2, R2) Fsc -+

* *
[ ] =

ExoUR o R

o R, is complete
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Y non-failing and fair run (£, Ro) Fsc (€1, R1) Fsc (&2, R2) Fsc -+

* *
[ ] =

ExoUR o R

o R, is complete

every fair completion procedure is correct
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Critical Pair Criteria

Outline

@ Critical Pair Criteria
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Critical Pair Criteria

CP(R,) C £ ensures correcteness
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CP(R,) C £ ensures correcteness

are all critical pairs in CP(R,,) needed ?
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CP(R,) C £ ensures correcteness

are all critical pairs in CP(R,,) needed ?

v

e critical pair criterion is mapping CPC on sets of equations such that
CPC(&) C CP(E)
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CP(R,) C £ ensures correcteness

are all critical pairs in CP(R,,) needed ?

v

Definitions

e critical pair criterion is mapping CPC on sets of equations such that
CPC(&) C CP(E)

o run (&, Ro) Fsc (£1,R1) Fse (€2,R2) Fsc -+ is fair with respect to
critical pair criterion CPC if CP(R,,) \ CPC(€xo U R ) C Eo
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CP(R,) C £ ensures correcteness

are all critical pairs in CP(R,,) needed ?

v

Definitions

e critical pair criterion is mapping CPC on sets of equations such that
CPC(&) C CP(E)

e run (&, Ro) Fsc (&1,R1) Fse (E2,R2) Fse -+ is fair with respect to
critical pair criterion CPC if CP(R,,) \ CPC(Ex U R o) C Exo

e critical pair criterion CPC is correct if R, is confluent and terminating for
every non-failing run (o, Ro) Fsc (€1, R1) Fsc (€2, R2) Fsc -+ thatis
fair with respect to critical pair criterion CPC
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e peak P: s g u —g tis composite if there exist proofs

Quiun<—u -+ QniiUp_1—— up
such that
e 5=
o t=u,
e V1<i<n u>u
e Vi<i<n P> Qi
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® peak P: s «—x u —p t is composite if there exist proofs

. * . *
Quiug et - Quo1iUp_1 < Uy
such that
e S—=1Up
.t:un

e V1<i<n u>u
eV1i<i<n P> Qi

® critical pair s < X — t is composite if corresponding peak s «— - — t is
composite
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® peak P: s «—x u —p t is composite if there exist proofs

. * . *
Quiug et - Quo1iUp_1 < Uy
such that
e S—=1Up
.t:un

e V1<i<n u>u
eV1i<i<n P> Qi

® critical pair s < X — t is composite if corresponding peak s «— - — t is
composite

composite critical pair criterion: CCP(E) = {s~ t € CP(€) | s = t is composite}
v
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Critical Pair Criteria

critical pair criterion CCP is correct
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critical pair criterion CCP is correct

how to check compositeness ?
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critical pair criterion CCP is correct

how to check compositeness ?

v

e critical pair s < x — t originating from overlap ({1 — r, p, {2 — r2) with
mgu o is unblocked if xo is reducible for some x € Var(¢1) U Var(¢)
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critical pair criterion CCP is correct

how to check compositeness ?

Definition

o critical pair s «+ X — t originating from overlap (¢; — r, p,¢> — r») with
mgu o is unblocked if xo is reducible for some x € Var(¢1) U Var(¥,)

e every unblocked critical pair is composite
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critical pair criterion CCP is correct

how to check compositeness ?

Definition

o critical pair s «+ X — t originating from overlap (¢; — r, p,¢> — r») with
mgu o is unblocked if xo is reducible for some x € Var(¢1) U Var(¥,)
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critical pair criterion CCP is correct

how to check compositeness ?

Definition

o critical pair s «+ X — t originating from overlap (¢; — r, p,¢> — r») with
mgu o is unblocked if xo is reducible for some x € Var(¢1) U Var(¥,)

e critical pair s < x — t originating from overlap (¢; — r, p,{, — r2) with
mgu o is reducible if proper subterm of /10 is reducible

e every unblocked critical pair is composite

e every reducible critical pair is composite
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TRS
e” —e x/e — x
X T — X e/x — x
x-(x"-y)—y (x/y7)]y — x
X~ —e/x z/(z7/y)” =y~

AM & FvR ISR 2010 — lecture 6 34/36



TRS
e” —e x/e — x
X T — X e/x — x
x-(x"y)—y (x/y" )y — x
X~ —e/x z/(z7/y)” =y~
critical pair
y/em —x—y

originating from overlap

(x/le=x,6 (v/z7)/z—y)
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TRS
e” —e x/e — x
X T — X e/x — x
x-(x"y)—y (x/y" )y — x
X~ —e/x z/(z7/y)” =y~
critical pair
y/em —x—y

originating from overlap

(x/le=x,6 (v/z7)/z—y)

is reducible because (y/e~)/e is reducible at position 12
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Outline

@ Further Reading
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@ Canonical Equational Proofs
Leo Bachmair
Progress in Theoretical Computer Science, Birkhauser, 1991

@ Equational Inference, Canonical Proofs, and Proof Orderings
Leo Bachmair and Nachum Dershowitz
J.ACM 41(2), pp. 236-276, 1994

Completion Tools

o \Waldmeister

® Slothrop

mkbTT
KBCV

AM & FvR ISR 2010 — lecture 6 36/36


http://doi.acm.org/10.1145/174652.174655
http://www.mpi-inf.mpg.de/~hillen/waldmeister/
http://userweb.cs.utexas.edu/~iwehrman/slothrop.html
http://cl-informatik.uibk.ac.at/software/mkbtt/
http://cl-informatik.uibk.ac.at/software/kbcv/
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