Introduction to Term Rewriting

lecture 6

Aart Middeldorp and Femke van Raamsdonk

Institute of Computer Science
University of Innsbruck

Department of Computer Science
VU Amsterdam

http://www.utrechtsummerschool.nl/index.php?type=courses&code=H16
http://www.utrechtsummerschool.nl/index.php?type=courses&code=H16
http://cl-informatik.uibk.ac.at/~ami/10isr/
http://cl-informatik.uibk.ac.at/~ami
http://www.cs.vu.nl/~femke

introduction, examples, abstract rewriting, equational reasoning, term rewriting

termination, completion

completion, termination

Wednesday

confluence, modularity, strategies

exam, advanced topics

AM & FvR ISR 2010 — lecture 6 2/36

Efficient Completion

Cola Gene Puzzle

Abstract Completion

Proof Orders

Critical Pair Criteria

Further Reading

AM & FvR ISR 2010 — lecture 6 3/36

TRS R = {®,®,0,®,®, ®}

@ x+0 — x @ x—=0 — x
® x+s(y) = sx+y) @ x—s(y) = p(x—y)
® p(s(x)) — x ® s(p(x)) — x

AM & FvR ISR 2010 — lecture 6 4/36

TRS R = {®,®,®,®,®, ®} TRS S = {9,2,0,®,®,®,0,®,®, ®}
©) x+0 — x @ x—0 — x
® x+s(y) — s(x+y) @ x—s(y) — p(x—y)
® p(s(x)) — x ® s(p(x)) — x
@ (X+p(y)) — x+y p(x—p(y)) — x—y
© +p(y) — p(x+y) x=ply) = s(x—y)

AM & FvR ISR 2010 — lecture 6 4/36

TRS R = {®,®,®,®,®, ®} TRS S = {9,2,0,®,®,®,0,®,®, ®}
©) x+0 — x @ x—0 — x
® x+s(y) — s(x+y) @ x—s(y) — p(x—y)
® p(s(x)) — x ® s(p(x)) — x
@ (X+p(y)) — x+y p(x—p(y)) — x—y
© +p(y) — p(x+y) x=ply) = s(x—y)

rewrite rules @ and ® are redundant:

s(x +p(y)) x+y p(x — p(y —>x—
s(p(x +y)) p(s(x —y))

AM & FvR ISR 2010 — lecture 6 4/36

TRS R = {®,®,®,®,®, ®} TRS S = {9,2,0,®,®,®,0,®,®, ®}
@ x+0 — x @ x—0 — x
® x+s(y) — s(x+y) @ x—=s(y) — p(x—y)
® p(s(x)) — x ® s(p(x)) — x
® x+ply) = px+y) © x=p(y) — s(x—y)

rewrite rules @ and ® are redundant:

s(x + p(y)) X+y p(x — p(y
s(p(x +y)) p(s(x —y))

AM & FvR ISR 2010 — lecture 6 4/36

Efficient Completion

Observation

® |ess rewrite rules —> less critical pairs

e TRS without redundancy = reduced TRS

AM & FvR ISR 2010 — lecture 6 5/36

Observation

® |ess rewrite rules —> less critical pairs

e TRS without redundancy = reduced TRS

Definition
TRS R is reduced if for all ¢ — re R

r is normal form with respect to R

AM & FvR ISR 2010 — lecture 6 5/36

Observation

® |ess rewrite rules —> less critical pairs

e TRS without redundancy = reduced TRS

Definition
TRS R is reduced if for all ¢ — re R

r is normal form with respect to R

¢ is normal form with respect to R \ {¢ — r}

AM & FvR ISR 2010 — lecture 6 5/36

TRSR ={®,0,0,®,0,0} TRS § ={9,0,0,®,6,0,0,®,®, 0}

@
®
®
6]
©)

x+0— x ®
X+S(y)—>S(X+y))
p(s(x)) — ®
(X+p(y))—>><+y
x+p(y) — p(x+y)

e R is reduced

x—0— x
x—s(y) — p(X— y)
s(p(x)) —
p(x —p(y)) — x —
x—=p(y) — s(><— y)

AM & FvR

ISR 2010 — lecture 6

6/36

TRSR ={®,0,0,®,0,0} TRS § ={9,0,0,®,6,0,0,®,®, 0}

@
®
®
6]
©)

x+0— x ®
x+s(y) — S(X+y))
p(s(x)) — ®
s(x + p(y))—>X+y
x+p(y) — p(x+y)

e R is reduced

e S is not reduced

x—0— x
x—s(y) — p(X— y)
s(p(x)) —
p(x —p(y)) — x —
x—=p(y) — s(><— y)

AM & FvR

ISR 2010 — lecture 6

6/36

Efficient Completion

simplification after completion J

YV complete TRS R 3 complete reduced TRS S such that % = %

AM & FvR ISR 2010 — lecture 6 7/36

simplification after completion J

YV complete TRS R 3 complete reduced TRS S such that % = %

Proof Sketch (construction)

R ={{l—rlg|l—reR}

AM & FvR ISR 2010 — lecture 6 7/36

simplification after completion J

YV complete TRS R 3 complete reduced TRS S such that % = %

Proof Sketch (construction)

R ={{l—rlg|l—reR}
S ={{—-reR|LeNF(R'\{{ —-r})}

AM & FvR ISR 2010 — lecture 6 7/36

simplification after completion }

YV complete TRS R 3 complete reduced TRS S such that % = %

Proof Sketch (construction)

R ={{l—rlg|l—reR}
S ={l—-reR|LeNF(R'\{{ —r})}

more efficient: simplification during completion J

AM & FvR ISR 2010 — lecture 6 7/36

Knuth-Bendix Completion Procedure (More Efficient Version)

input ES £ and reduction order >
output complete reduced TRS R such that % = %
R=8 C:=¢
while C # @ do
choose s~te C C:=C\{s=t} §:=s|lg t :=tlg
if s’ # t' then

if s >t/ then a:=s p=t
elseif t' > s then «a:=t [:=5¢
else failure

R :=RU{a — B}

AM & FvR ISR 2010 — lecture 6 8/36

Knuth-Bendix Completion Procedure (More Efficient Version)

input ES £ and reduction order >
output complete reduced TRS R such that % = %
R=8 C:=¢
while C # @ do
choose s~te C C:=C\{s=t} §:=s|lg t :=tlg
if s’ # t' then

if s >t/ then a:=s p=t
elseif t' > s then «a:=t [:=5¢
else failure

R :=RU{a— g}
forall £ — re R do
R =R\{{—r} 0 :=lr r=rlg

AM & FvR ISR 2010 — lecture 6 8/36

Knuth-Bendix Completion Procedure (More Efficient Version)

input ES £ and reduction order >
output complete reduced TRS R such that % = %
R=8 C:=¢
while C # @ do
choose s~te C C:=C\{s=t} §:=s|lg t :=tlg
if s’ # t' then

if s >t/ then a:=s p=t
elseif t' > s then «a:=t [:=5¢
else failure

R :=RU{a — g}
forall £ — r € R do
R =R'\{l—r} O :=0lr 1 =rlg
if =20 then R\ :=R'U{l' > r'}else C:=CU{' ="'}

AM & FvR ISR 2010 — lecture 6 8/36

Knuth-Bendix Completion Procedure (More Efficient Version)

input ES £ and reduction order >
output complete reduced TRS R such that % = %
R=8 C:=¢
while C # @ do
choose s~te C C:=C\{s=t} §:=s|lg t :=tlg
if s’ # t' then

if s >t/ then a:=s p=t
elseif t' > s then «a:=t [:=5¢
else failure

R :=RU{a — g}
forall £ — r € R do
R =R'\{l—r} O :=0lr 1 =rlg
if =20 then R\ :=R'U{l' > r'}else C:=CU{' ="'}
R:=TR
C:=CU{e e CP(R) | a— [was used to generate e}

AM & FvR ISR 2010 — lecture 6 8/36

f(f(x)) ~ g(x)
gla) = b

Q

Q

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence f > g >b > a

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence f > g >b > a

e orient: f(f(x)) >ipo 8(x)

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) — &(x)

gla) = b

e L PO with precedence f > g >b > a

e orient: f(f(x)) >ipo 8(x)

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) — &(x)

gla) = b

e L PO with precedence f > g >b > a

e orient: g(a) >ipo b

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) — &(x)
gla) — b

e L PO with precedence f > g >b > a

e orient: g(a) >ipo b

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) — &(x)
gla) — b

e L PO with precedence f > g >b > a
o deduce: f(g(x)) « f(f(f(x))) — g(f(x)) critical pair

AM & FvR ISR 2010 — lecture 6 9/36

fg(x)) ~ g(f(x)) f(f(x)) — &(x)
gla) — b

e L PO with precedence f > g >b > a
o deduce: f(g(x)) < f(f(f(x))) — g(f(x)) critical pair

AM & FvR ISR 2010 — lecture 6 9/36

flg(x)) = g(f(x)) f(f(x)) — &(x)
gla) — b

e L PO with precedence f > g >b > a
e orient: f(g(x)) >ipo &(f(x))

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) — &(x)
gla) — b
flg(x)) — &(f(x))

e L PO with precedence f > g >b > a
e orient: f(g(x)) >ipo &(f(x))

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) — &(x)
gla) — b
flg(x)) — &(f(x))

e L PO with precedence f > g >b > a
o deduce: f(g(f(x))) < f(f(g(x))) — g(g(x)) critical pair

AM & FvR ISR 2010 — lecture 6 9/36

flg(f(x))) = gle(x)) f(f(x)) — &(x)
gla) — b
flg(x)) — &(f(x))

e L PO with precedence f > g >b > a
o deduce: f(b) — f(g(a)) — g(f(a)) critical pair

AM & FvR ISR 2010 — lecture 6 9/36

fg(f(x))) ~ &(g(x)) f(f(x)) — &(x)
f(b) =~ g(f(a)) gla) = b
fg(x)) — s(f(x))

~
~
~
~

e L PO with precedence f > g >b > a

AM & FvR ISR 2010 — lecture 6 9/36

fg(f(x))) ~ &(g(x)) f(f(x)) — &(x)
f(b) =~ g(f(a)) gla) = b
fg(x)) — s(f(x))

~
~
~
~

e L PO with precedence f > g >b > a
o simplify: f(g(f(x))) — 8(f(f(x)))

AM & FvR ISR 2010 — lecture 6 9/36

g(f(f(x))) ~ &(&(x)) f(f(x)) — &(x)
f(b) ~ g(f(a)) gla) — b
fg(x)) — s(f(x))

~
~
~
~

e L PO with precedence f > g >b > a
o simplify: g(f(f(x))) — &(g(x))

AM & FvR ISR 2010 — lecture 6 9/36

g(g(x)) f(f(x)) — &(x)
g(f(a)) gla) — b
fg(x)) — s(f(x))

e L PO with precedence f > g >b > a

o delete: g(g(x)) = glg(x))

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) — &(x)
f(b) ~ g(f(a)) gla) — b
fg(x)) — s(f(x))

e L PO with precedence f > g >b > a

e orient: f(b) >1po f(g(a))

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) — &(x)
gla) — b
flg(x)) — s(f(x

f(b) — g(f(a))

e L PO with precedence f > g >b > a

e orient: f(b) >1po f(g(a))

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) — &(x)
ga) — b
fle(x) — s(f(x))
f(b) — &(f(a))
e L PO with precedence f > g >b > a
e deduce: f(g(f(a))) < f(f(b)) — g(b) critical pair)

AM & FvR ISR 2010 — lecture 6 9/36

f(e(f(a))) ~ &(b) f(f(x)) — &(x)
ga) — b
fle(x) — s(f(x))
f(b) — &(f(a))
e L PO with precedence f > g >b > a
o deduce: f(g(f(a))) < f(f(b)) — g(b) critical pair)

AM & FvR ISR 2010 — lecture 6 9/36

f(g(f(a))) ~ g(b) f(f(x)) — &(x)
gla) = b
flg(x)) — &(f(x))
f(b) — g(f(a))

e L PO with precedence f > g >b > a
e simplify: f(g(f(a))) — g(f(f(a)))

AM & FvR ISR 2010 — lecture 6 9/36

g(f(f(a))) =~ g(b) f(f(x)) — g&(x)
gla) = b
flg(x)) — &(f(x))
f(b) — g(f(a))

e L PO with precedence f > g >b > a
e simplify: g(f(f(a))) — g(s(a))

AM & FvR ISR 2010 — lecture 6 9/36

g(g(a)) ~ g(b) f(f(x)) — &(x)
gla) — b
flg(x)) — &(f(x))
f(b) — g(f(a))

e L PO with precedence f > g >b > a

o simplify: g(g(a)) — g(b)

AM & FvR ISR 2010 — lecture 6 9/36

g(b) ~ g(b) f(f(x)) — &(x)
gla) = b
flg(x)) — &(f(x))
f(b) — g(f(a))

e L PO with precedence f > g >b > a
o delete: g(b) = g(b)

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) — &(x)
gla) — b
flg(x)) — s(f(x

f(b) — g(f(a))

e L PO with precedence f > g >b > a

e complete and reduced TRS

AM & FvR ISR 2010 — lecture 6 9/36

f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence f > g >b > a

AM & FvR ISR 2010 — lecture 6 10/36

f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence b > g >f>a

AM & FvR ISR 2010 — lecture 6 10/36

f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence b > g >f>a
e orient: g(x) >1po f(f(x))

AM & FvR ISR 2010 — lecture 6 10/36

g(x) — f(f(x))

gla) = b

e L PO with precedence b > g >f>a

e orient: g(x) >1po f(f(x))

AM & FvR ISR 2010 — lecture 6 10/36

g(x) — f(f(x))

gla) = b

e L PO with precedence b > g >f>a

e orient: b >0 g(a)

AM & FvR ISR 2010 — lecture 6 10/36

g(x) — f(f(x))
b — g(a)

e L PO with precedence b > g >f>a

e orient: b >0 g(a)

AM & FvR ISR 2010 — lecture 6 10/36

g(x) — f(f(x))
b — g(a)

e L PO with precedence b > g >f>a

e complete TRS

AM & FvR ISR 2010 — lecture 6 10/36

g(x) — f(f(x))
b — g(a)

e L PO with precedence b > g >f>a

e complete TRS but not reduced

AM & FvR ISR 2010 — lecture 6 10/36

g(x) — f(f(x))
b — g(a)

e L PO with precedence b > g >f>a

e compose: g(a) — f(f(a))

AM & FvR ISR 2010 — lecture 6 10/36

e L PO with precedence b > g >f>a

e compose: g(a) — f(f(a))

AM & FvR ISR 2010 — lecture 6 10/36

e L PO with precedence b > g >f>a

e complete and reduced TRS

AM & FvR ISR 2010 — lecture 6 10/36

f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence b > g >f>a

AM & FvR ISR 2010 — lecture 6 11/36

f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence g >f>b > a

AM & FvR ISR 2010 — lecture 6 11/36

f(f(x)) ~ g(x)
gla) = b

Q

Q

e L PO with precedence g >f>b > a
e orient: g(x) >1po f(f(x))

AM & FvR ISR 2010 — lecture 6 11/36

g(x) — f(f(x))

gla) = b

e L PO with precedence g >f>b > a

e orient: g(x) >1po f(f(x))

AM & FvR ISR 2010 — lecture 6 11/36

g(x) — f(f(x))

gla) = b

e L PO with precedence g >f>b > a

e orient: g(a) >ipo b

AM & FvR ISR 2010 — lecture 6 11/36

e L PO with precedence g >f>b > a

e orient: g(a) >ipo b

AM & FvR ISR 2010 — lecture 6 11/36

e L PO with precedence g >f>b > a

e collapse: g(a) — f(f(a))

AM & FvR ISR 2010 — lecture 6 11/36

f(f(a)) ~ b g(x) — f(f(x))

e L PO with precedence g >f>b > a

e collapse: g(a) — f(f(a))

AM & FvR ISR 2010 — lecture 6 11/36

f(f(a)) ~ b g(x) — f(f(x))

e L PO with precedence g >f>b > a
e orient: f(f(a))) >ipo b

AM & FvR ISR 2010 — lecture 6 11/36

g(x) — f(f(x))
f(fa)) — b

e L PO with precedence g >f>b > a
e orient: f(f(a))) >ipo b

AM & FvR ISR 2010 — lecture 6 11/36

g(x) — f(f(x))
f(fa)) — b

e L PO with precedence g >f>b > a

e complete and reduced TRS

AM & FvR ISR 2010 — lecture 6 11/36

if complete reduced TRSs R and S satisfy
® =5

R and S are compatible with same reduction order

then R = S (modulo variable renaming)

AM & FvR ISR 2010 — lecture 6 12/36

Outline

@ Cola Gene Puzzle

AM & FvR ISR 2010 — lecture 6 13/36

A team of genetic engineers decides to create cows that produce cola instead of
milk. To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT
Techniques exist to perform the following DNA substitutions
TCAT « T GAG— AG CTC+— TC AGTA— A TAT < CT

Recently it has been discovered that the mad cow disease is caused by a retrovirus
with the following DNA sequence

CTGCTACTGACT

What now, if unintendedly cows with this virus are created? According to the
engineers there is little risk because this never happened in their experiments, but
various action groups demand absolute assurances.

AM & FvR ISR 2010 — lecture 6 14/36

A team of genetic engineers decides to create cows that produce cola instead of
milk. To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT
Techniques exist to perform the following DNA substitutions
TCAT « T GAG— AG CTC— TC AGTA— A TAT < CT

Recently it has been discovered that the mad cow disease is caused by a retrovirus
with the following DNA sequence

CTGCTACTGACT

What now, if unintendedly cows with this virus are created? According to the
engineers there is little risk because this never happened in their experiments, but
various action groups demand absolute assurances.

AM & FvR ISR 2010 — lecture 6 14/36

Example (Cola Gene Puzzle)

ES &
TCAT ~ T GAG =~ AG CTC~=TC AGTA =~ A TAT =~ CT

AM & FvR ISR 2010 — lecture 6 15/36

Example (Cola Gene Puzzle)
ES &
TCAT ~ T GAG =~ AG CTC~=TC AGTA =~ A TAT ~ CT

TRS R
GA—-A AGT —-AT ATA—-A CT—-T TAT—-T TCA—-TA

AM & FvR ISR 2010 — lecture 6

15/36

Example (Cola Gene Puzzle)

ES &
TCAT ~ T GAG =~ AG CTC~TC AGTA =~ A TAT =~ CT

TRS R
GA—-A AGT —-AT ATA—-A CT—-T TAT—-T TCA—-TA

® R is reduced and complete

AM & FvR ISR 2010 — lecture 6

15/36

Example (Cola Gene Puzzle)
ES &
TCAT ~ T GAG =~ AG CTC~TC AGTA =~ A TAT ~ CT

TRS R
GA—-A AGT —-AT ATA—-A CT—-T TAT—-T TCA—-TA

® R is reduced and complete

* *
0 — = —>
E R

AM & FvR ISR 2010 — lecture 6

15/36

Example (Cola Gene Puzzle)
ES &
TCAT ~ T GAG =~ AG CTC~TC AGTA =~ A TAT ~ CT

TRS R
GA—-A AGT —-AT ATA—-A CT—-T TAT—-T TCA—-TA

® R is reduced and complete

* *
0 — = —>
E R

e (milk gene) TAGCTAGCTAGCT %» CTGACTGACT (cola gene)

TAGCTAGCTAGCT 7': T % CTGACTGACT

AM & FvR ISR 2010 — lecture 6 15/36

Example (Cola Gene Puzzle)

ES &
TCAT ~ T GAG =~ AG CTC~TC AGTA =~ A TAT =~ CT

TRS R
GA—-A AGT —-AT ATA—-A CT—-T TAT—-T TCA—-TA

® R is reduced and complete
[} (i) = <L>
£ R
e (milk gene) TAGCTAGCTAGCT %» CTGACTGACT (cola gene)
TAGCTAGCTAGCT 7': T % CTGACTGACT
e (milk gene) TAGCTAGCTAGCT <7;4> CTGCTACTGACT (mad cow retrovirus)

TAGCTAGCTAGCT % T#TGT <_7I2 CTGCTACTGACT

AM & FvR ISR 2010 — lecture 6 15/36

Outline

@ Abstract Completion

AM & FvR ISR 2010 — lecture 6 16/36

inference system SC (standard completion) consists of six rules

v

AM & FvR ISR 2010 — lecture 6 17/36

set of equations £ set of rewrite rules R

inference system SC (standard completion) consists of six rules

delete Eufs~shR

v

AM & FvR ISR 2010 — lecture 6 17/36

set of equations £ set of rewrite rules R

inference system SC (standard completion) consists of six rules

EU{s~s}R

delet
elete TR

v

AM & FvR ISR 2010 — lecture 6 17/36

set of equations £ set of rewrite rules R

inference system SC (standard completion) consists of six rules

EU{s~st R
delete #
E,R
E,RU{s—t .
compose G RUE— 1) if t =» u
v
AM & FvR ISR 2010 — lecture 6 17/36

set of equations £ set of rewrite rules R

inference system SC (standard completion) consists of six rules

EU{s~st R
delete #
E,R
compose SR — 8 if t u
_ —
P E,RU{s — u} R
AM & FvR ISR 2010 — lecture 6 17/36

set of equations £

set of rewrite rules R

inference system SC (standard completion) consists of six rules

delete

compose

simplify

EU{s~s}R
E,R
E,RU{s — t}

E,RU{s — u}

EU{s&t},R

ift >r u

if t >» u

v

AM & FvR

ISR 2010 — lecture 6

17/36

set of equations £ set of rewrite rules R

inference system SC (standard completion) consists of six rules

EU{s~s}R
delet _—
elete R
P E,RU{s — u} R
simplify % if t >» u

v

AM & FvR ISR 2010 — lecture 6 17/36

set of equations £

set of rewrite rules R reduction order >

inference system SC (standard completion) consists of six rules

EU{s~s}R
delet B
elete R
P E,RU{s — u} R
~t
simplify % if t >» u
~t
orient M if s >t
AM & FvR ISR 2010 — lecture 6 17/36

set of equations £ set of rewrite rules R reduction order >

inference system SC (standard completion) consists of six rules

EU{s~s}R
delet _—
elete E,R
P E,RU{s — u} R
simplify % if t >» u
. EU{s~t},R .
orient mu—{s—)t} if s>t

v

AM & FvR ISR 2010 — lecture 6 17/36

set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s}R
delete —
E,R
compose £, RU{s = t} if t u
22 E A N
P E,RU{s — u} R
A EU{s~t},R .
simplif — ft
implity EUls~ul,R Tt —Rr U
. EU{s~t},R .
orient — fs>t
ren SERU[{s—1t}]
E,RU{t .
collapse EyIRUNE = o) if t >» u

AM & FvR ISR 2010 — lecture 6 17/36

set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s}R
delet —_—
elete R
P E,RU{s — u} R
. EU{s~t},R .
lif — ft
simplify U~ ulLR if t g u
. EU{s~t},R .
orient ERUG =1 G- if s>t
t
collapse —i’f{ji s_}:g ift >g u

AM & FvR ISR 2010 — lecture 6 17/36

set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s}R
delet _—
elete R
compose MU—M if t >g u
P E,RU{s — u} R
~thR .
S|mp||fy % if t —R U
. EU{s~t},R .
orient MU—M if s>t
t
collapse %ﬁ—is_}ﬁi if t >» u using { — r € R with t >/

AM & FvR ISR 2010 — lecture 6 17/36

Definitions

° [> encompassment

st <= 3 position p 3 substitution o: s|, = to

AM & FvR ISR 2010 — lecture 6 18/36

Definitions

o > encompassment
st <= 3 position p 3 substitution o: s|, = to
° > strict encompassment

st < skt A (tks)

AM & FvR ISR 2010 — lecture 6 18/36

Definitions

° > encompassment
st <= 3 position p 3 substitution o: s|, = to
° > strict encompassment

st <= skt A (tk5s)

s(x) +s(y +0) &> s(x) +y

AM & FvR ISR 2010 — lecture 6 18/36

Definitions

° > encompassment
st <= 3 position p 3 substitution o: s|, = to
° > strict encompassment

st <= skt A (tk5s)

s(x) +s(y +0) &> s(x) +y X+xP>x+y

AM & FvR ISR 2010 — lecture 6 18/36

Definitions

° > encompassment
st <= 3 position p 3 substitution o: s|, = to
° > strict encompassment

st <= skt A (tk5s)

s(x) +s(y +0) > s(x) +y X+xB>x+y X+y¥x+x

AM & FvR ISR 2010 — lecture 6 18/36

set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s}R
delet _—
elete R
compose MU—M if t >g u
P E,RU{s — u} R
At
simplify % if t >» u
. EU{s~t},R .
orient MU—M if s>t
t
collapse (;’Lzz{":—is_}:;i if t >% u using / — r € R with t > ¢
deduce Gtk if s—pu—pgt

AM & FvR ISR 2010 — lecture 6 17/36

set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s}R
delet _—
elete R
compose MU—M if t >g u
P E,RU{s — u} R
At
simplify % if t >» u
. EU{s~t},R .
orient MU—M if s>t
t
collapse (;’Lzz{":—is_}:;i if t >% u using / — r € R with t > ¢
deduce 5‘U{f,—;€t}77€ if s —R U—R Tt

AM & FvR ISR 2010 — lecture 6 17/36

set of equations £ set of rewrite rules R reduction order >

inference system 5C (basic completion) consists of four rules

EU{s~s}R
delet _—
elete g’R
~t
simplify % if t >» u
. EU{s~t},R .
orient MU—M if s>t
deduce 5‘U{f,—;€t}77€ if s —R U—R Tt
AM & FvR ISR 2010 — lecture 6 17/36

e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) sequence

(&0, Ro) Fsc (€1,R1) Fse (£2,R2) Fsc -
with & = € and Rg = &

AM & FvR ISR 2010 — lecture 6 19/36

e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(&0, Ro) Fsc (€1,R1) Fse (£2,R2) Fsc -
with & = € and Rg = &

AM & FvR ISR 2010 — lecture 6 19/36

e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(&0, Ro) Fsc (€1,R1) Fse (£2,R2) Fsc -
with & = € and Rg = &

o &, is set of persistent equations: &, = U ﬂ £
i>0 jzi

AM & FvR ISR 2010 — lecture 6 19/36

e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(&0, Ro) Fsc (€1,R1) Fse (£2,R2) Fsc -
with & = € and Rg = &
o &, is set of persistent equations: &, = U ﬂ £

e TR, is set of persistent rules i20 jzi

AM & FvR ISR 2010 — lecture 6 19/36

e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(€0, Ro) Fsc (&1,R1) Fse (£2,R2) Fsc -+
with & =& and Rp = @
o &, is set of persistent equations: &, = U ﬂ £
e R, is set of persistent rules i20 j=i

e run succeeds if &, = @ and R, is confluent and terminating

AM & FvR ISR 2010 — lecture 6 19/36

e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(€0, Ro) Fsc (&1,R1) Fse (£2,R2) Fsc -+
with & =& and Rp = @
o &, is set of persistent equations: &, = U ﬂ £
e R, is set of persistent rules i20 j=i

e run succeeds if £, = @ and R, is confluent and terminating
run fails if £, # @

AM & FvR ISR 2010 — lecture 6 19/36

e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(€0, Ro) Fsc (&1,R1) Fse (£2,R2) Fsc -+
with & =& and Rp = @
o &, is set of persistent equations: &, = U ﬂ £
e R, is set of persistent rules i20 j=i

e run succeeds if £, = @ and R, is confluent and terminating
run fails if £, # @

e completion procedure is correct if every run that does not fail succeeds

AM & FvR ISR 2010 — lecture 6 19/36

e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(€0, Ro) Fsc (&1,R1) Fse (£2,R2) Fsc -+
with & =& and Rp = @
o &, is set of persistent equations: &, = U ﬂ £
e R, is set of persistent rules i20 j=i

e run succeeds if £, = @ and R, is confluent and terminating
run fails if £, # @

e completion procedure is correct if every run that does not fail succeeds

how to guarantee correctness ?

AM & FvR ISR 2010 — lecture 6 19/36

set of equations £ set of rewrite rules R reduction order >

v

e if(E,R) Fsc (§',R') and R C > then R’ C >

AM & FvR ISR 2010 — lecture 6 20/36

set of equations £ set of rewrite rules R reduction order >

v

e if(E,R) Fsc (§',R') and R C > then R’ C >

2 / / i _ &

AM & FvR ISR 2010 — lecture 6 20/36

set of equations £ set of rewrite rules R reduction order >

run (£, Ro) Fsc (€1,R1) Fse (£2,R2) Fse

Lemmata

e if(E,R) Fsc (§',R') and R C > then R’ C >

| N\

f '— / 12 h * — *
o f(E,R) Fsc (5,R)tenm> ST]

x=J& and Ro=|JRi

i>0 i>0

AM & FvR ISR 2010 — lecture 6 20/36

set of equations £ set of rewrite rules R reduction order >

run (£, Ro) Fsc (&1,R1) Fse (£2,R2) Fse -+

4
Lemmata

e if(E,R) Fsc (§',R') and R C > then R’ C >

f '— / 12 h * — *
o f(E,R) Fsc (5,R)tenm> ST

Ex=J& and Ro=JRi

i>0 i>0

Lemmata
* Ry, C R

AM & FvR ISR 2010 — lecture 6 20/36

set of equations £ set of rewrite rules R reduction order >

run (£, Ro) Fsc (&1,R1) Fse (£2,R2) Fse -+

4
Lemmata

e if(E,R) Fsc (§',R') and R C > then R’ C >

f '— / 12 h * — *
o f(E,R) Fsc (5,R)tenm> ST

Ex=J& and Ro=JRi

i>0 i>0

Lemmata
® Ry, SR C>

AM & FvR ISR 2010 — lecture 6 20/36

set of equations £ set of rewrite rules R reduction order >

run (£, Ro) Fsc (&1,R1) Fse (£2,R2) Fse -+

4
Lemmata

e if(E,R) Fsc (§',R') and R C > then R’ C >

f '— / 12 h * — *
o f(E,R) Fsc (5,R)tenm> ST

Ex=J& and Ro=JRi

i>0 i>0
v
Lemmata
® Ry, SR C>
* *
[) =
£ EesURss

AM & FvR ISR 2010 — lecture 6 20/36

Two Questions
non-failing run (&, Ro) Fsc (€1, R1) Fse (£2,R2) Fsc -+

is R, confluent ?

AM & FvR ISR 2010 — lecture 6 21/36

Two Questions
non-failing run (&, Ro) Fsc (€1, R1) Fse (£2,R2) Fsc -+
is R, confluent ?

* _ * 7

AM & FvR ISR 2010 — lecture 6 21/36

Two Questions
non-failing run (&, Ro) Fsc (€1, R1) Fse (£2,R2) Fsc -+
is R, confluent ?

* _ * 7

e run (&, Ro) Fse (€1,R1) Fsc (£2,R2) Fsc --- is fairif

CP(R.) S &

i=0

AM & FvR ISR 2010 — lecture 6 21/36

Two Questions
non-failing run (&, Ro) Fsc (€1, R1) Fse (£2,R2) Fsc -+

is R, confluent ?

e run (&, Ro) Fse (£1,R1) Fse (€2,R2) Fsc --- is fair if

CP(R,)C &

i>0

e completion procedure is fair if every run that does not fail is fair

AM & FvR ISR 2010 — lecture 6 21/36

Two Questions
non-failing run (&, Ro) Fsc (€1, R1) Fse (£2,R2) Fsc -+

is R, confluent ?

[
*
Il
*
~

e run (&, Ro) Fse (£1,R1) Fse (€2,R2) Fsc --- is fair if

CP(R,)C &

i=0

e completion procedure is fair if every run that does not fail is fair

every fair completion procedure is correct

AM & FvR ISR 2010 — lecture 6 21/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t — s}

collapse -
P EU{u~s}R

if t >% v using £ — r € R with ¢t > /

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t — s}

Zulunsl, R TtoRUuSNELor ER with el

collapse

(()

e PO with precedence f>a>g>c>b

v

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a~c
g(x) — x
f(x,c) — x
f(x,8(y)) — f(a(x),y)
flc,y) —a
e | PO with precedence f >a>g>c>b
e deduce: a < f(c,c)—c

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a~rcC
g(x) — x f(g(c),y) ~ a
f(x,c) — x
f(x,8(y)) — f(a(x),y)

flc,y) — a
e | PO with precedence f >a>g>c>b
® deduce: a —f(c,g(y)) — f(g(c),y)

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a—c
g(x) — x f(g(c).y) ~ a
f(x,c) — x
f(x,8(y)) — f(g(x),¥)

flc,y) —a
e | PO with precedence f >a>g>c>b
e orient: a>po C

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a—c
g(x) — x f(g(c),y) —a
f(x,c) — x
f(x,8(y)) — f(g(x),¥)

flc,y) —a
e | PO with precedence f >a>g>c>b
e orient: f(g(c),y) >ipo @

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped
E,RU{t— s}
EU{u~s}R

collapse if t >% uusing £ — r € R with ¢t > ¢

a —b a—c
g(x) — x f(g(c),y) —a
f(x,c) — x a =~ g(c)
f(x,g(y)) — f(g(x),y)
f(c,y) — a

e PO with precedence f >a>g>c>b
o deduce: a < f(g(c),c) — g(c)

v

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}

collapse -
P EU{u~s}R

if t =g v using £ — r € R with t > ¢

a —b a—c
g(x) — x f(g(c),y) —a
f(x,c) — x a ~ g(c)
f(x,g(y)) — f(e(x),y) f(g(g(c)),y) ~ a
flc,y) — a

e PO with precedence f >a>g>c>b

o deduce: a«— f(g(c),g(y)) — f(g(g(c)),y)

v

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a—c
g(x) — x f(g(c),y) —a
f(x,c) — x a — g(c)
f(x,8(y)) — f(g(x),y) f(a(s(c)),y) = a
flc,y) —a
e PO with precedence f >a>g>c>b
e orient: a >po 8(C)

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a—c
g(x) — x f(g(c),y) —a
f(x,c) — x a — g(c)
f(x,8(y)) — f(g(x),y) f(a(g(c)),y) — a
flc,y) —a
e PO with precedence f >a>g>c>b
e orient: f(g(g(c)). ¥) >ipo @

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% v using £ — r € R with ¢t > /
a —b glc) = ¢
g(x) — x f(g(c),y) —a
f(x,c) — x a — g(c)
f(x,8(y)) — f(a(x),y) f(s(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
e collapse: a — g(c)

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b cRcC
g(x) — x f(g(c),y) —a
f(x,c) — x a — g(c)
f(x,8(y)) — f(a(x),y) f(s(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
e simplify: g(c) — ¢

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b
g(x) — x f(g(c),y) —a
f(x,c) — x a — g(c)
f(x,8(y)) — f(g(x),y) f(a(g(c)),y) — a
flc,y) —a
e PO with precedence f >a>g>c>b
o delete

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b
g(x) — x flc,y) =~
f(x,c) — x a — g(c)
f(x,8(y)) — f(g(x),y) f(a(g(c)),y) — a

flc,y) —a
e | PO with precedence f >a>g>c>b
e collapse: f(g(c),y) — f(c,y)

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b
g(x) — x a~
f(x,c) — x a — g(c)
f(x,8(y)) — f(g(x),y) f(a(g(c)),y) — a

flc,y) —a
e | PO with precedence f >a>g>c>b
e simplify: f(c,y) —a

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b
g(x) — x
f(x,c) — x a — g(c)
f(x,8(y)) — f(a(x),y) f(s(g(c)),y) — a

flc,y) —a
e | PO with precedence f >a>g>c>b
o delete

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}
EU{u~s}R

collapse if t >% uusing £ — r € R with ¢t > ¢

a —b a ~ g(g(c))
g(x) — x
f(x,c) — x a — g(c)
f(x,g(y)) — f(e(x),y) f(g(g(c)),y) —a
f(c,y) —a

e | PO with precedence f >a>g>c>b

o deduce: a <« f(g(g(c)),c) — g(g(c))

v

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a ~ g(g(c))
g(x) — x f(s(g(g(c))),y) ~ a
f(x,c) — x a — g(c)
f(x,8(y)) — f(a(x).y) f(a(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
® deduce: a — f(g(g(c)), a(y)) — fla(a(g(c)))y))

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) ~ a
f(x,c) — x a — g(c)
f(x,8(y)) — f(a(x),y) f(s(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
e orient: a >ipo 8(g(c))

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s} : : .
collapse m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x a —g(c)
f(x,8(y)) — f(a(x),y) f(s(g(c)),y) — a
flc,y) — a
e | PO with precedence f >a>g>c>b
e orient: f(g(g(g(c))). ¥) >ipo 2)

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s} : : .
collapse m if t >% v using £ — r € R with ¢t > /
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x g(g(c)) ~ &l(c)
f(x,8(y)) — f(a(x),y) f(a(g(c)),y) — a
flc,y) — a
e | PO with precedence f >a>g>c>b
e collapse: a — g(g(c))

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s} : . .
collapse m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x g(c) =~ gl(c)
f(x,8(y)) — f(a(x),y) f(a(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
o simplify: g(g(c)) — g(c))

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x
f(x,8(y)) — f(a(x),y) f(a(g(c)),y) — a
flc,y) —a
e | PO with precedence f >a>g>c>b
o delete

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x
f(x,8(y)) — f(a(x),y) f(g(c),y) =~ a
flc,y) —a
e | PO with precedence f >a>g>c>b
 collapse: (g(&(0)).) — f(e(c).y) |

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}

collapse -
P EU{u~s}R

if t =g v using £ — r € R with t > ¢

a —b a — g(g())
g(x) — x f(g(g(g(c))).y) — a
f(x,c) — x
f(x,g(y)) — f(e(x),y) f(c,y) =~ a
flc,y) — a

e | PO with precedence f >a>g>c>b
e simplify: f(g(c),y) — f(c,y)

v

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}

collapse -
P EU{u~s}R

if t =g v using £ — r € R with t > ¢

a —b a — g(g())
g(x) — x f(g(g(g(c))).y) — a
f(x,c) — x
f(x,g(y)) — f(e(x),y) a~a
flc,y) — a

e | PO with precedence f >a>g>c>b

e simplify: f(c,y) —a

v

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x
f(x,8(y)) — f(a(x),y)

flc,y) — a
e | PO with precedence f >a>g>c>b
o delete

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b a — g(g(c))
g(x) — x f(e(s(g(c))).y) —a
f(x,c) — x
f(x,8(y)) — f(a(x),y)

flc,y) — a
e | PO with precedence f >a>g>c>b
O ooo

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a—b a — g(g(c))
g(x) — x f(e(e(e(c))),y) — a
f(x,c) — x
f(x.g(y)) — f(g(x),y)

flc,y) — a
e | PO with precedence f >a>g>c>b
° ... fair but unsuccessful run

AM & FvR ISR 2010 — lecture 6 22/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t — s}

EU{u=~s}R if t > u using £ — r € R with t > £

collapse

a —b
— X

— X

— f(g(x),y)

— a

e PO with precedencef>a>g>c>b

v

AM & FvR ISR 2010 — lecture 6

23/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}
EU{u~s}R

collapse if t >% uusing £ — r € R with ¢t > ¢

e PO with precedence f >a>g>c>b

e compose: a — b
v

AM & FvR ISR 2010 — lecture 6 23/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}
EU{u~s}R

collapse if t >% uusing £ — r € R with ¢t > ¢

e | PO with precedence f >a>g>c>b

e compose: f(g(x),y) — f(x,y)

AM & FvR ISR 2010 — lecture 6 23/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢

a —b
g(x) — x
f(x,c) — x
fix,y) = f(x,y)
f(c,y) — b

e | PO with precedence f >a>g>c>b

e collapse: f(x,g(y)) — f(x,y))

AM & FvR ISR 2010 — lecture 6 23/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢
a —b
g(x) — x

f(x,c) — x
fc,y) — b

e | PO with precedence f >a>g>c>b

o delete

v

AM & FvR ISR 2010 — lecture 6 23/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢
a —b cxb
g(x) — x

f(x,c) — x
flc,y) — b

e | PO with precedence f >a>g>c>b

o deduce: c«f(c,c)—b

v

AM & FvR ISR 2010 — lecture 6 23/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢
a —b c—b
g(x) — x

f(x,c) — x
fc,y) — b

e | PO with precedence f >a>g>c>b

e orient: C>ppo b

v

AM & FvR ISR 2010 — lecture 6 23/36

strict encompassment condition in collapse rule cannot be dropped
E,RU{t— s}
EU{u~s}R

collapse if t >% uusing £ — r € R with ¢t > ¢

a —b c—b
g(x) — x
f(x,b) = x

f(c,y) — b

e | PO with precedence f >a>g>c>b
e collapse: f(x,c) — f(x,b)

v

AM & FvR ISR 2010 — lecture 6 23/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢
a —b c—b
g(x) — x

f(x,b) — x

flc,y) — b
e | PO with precedence f >a>g>c>b
e orient: f(x,b) >ipo X

AM & FvR ISR 2010 — lecture 6 23/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t— s}
EU{u~s}R

a —b c—b
g(x) — x
f(x,b) — x

collapse if t >% uusing £ — r € R with ¢t > ¢

f(b,y) ~ b

e | PO with precedence f >a>g>c>b

e collapse: f(c,y) — f(b, y)

v

AM & FvR ISR 2010 — lecture 6 23/36

strict encompassment condition in collapse rule cannot be dropped

collapse %ﬁ—m if t >% uusing £ — r € R with ¢t > ¢
a —b c—b
g(x) — x
f(x,b) — x
f(b,y) — b
e | PO with precedence f >a>g>c>b
e orient: f(b,y) >ipo b

AM & FvR ISR 2010 — lecture 6 23/36

strict encompassment condition in collapse rule cannot be dropped

E,RU{t
collapse ﬁ if t >% uusing £ — r € R with ¢t > ¢
a —b c—b
g(x) — x
f(x,b) — x
f(b,y) — b
e | PO with precedence f >a>g>c>b
e complete and reduced TRS

AM & FvR ISR 2010 — lecture 6 23/36

Outline

@ Proof Orders

AM & FvR ISR 2010 — lecture 6

Completion is Proof Normalization

(E,R) proof in (£, R)

v

AM & FvR ISR 2010 — lecture 6 25/36

Completion is Proof Normalization

(E,R) proof in (£, R)

—

v

AM & FvR ISR 2010 — lecture 6 25/36

Completion is Proof Normalization

(E,R) proof in (£,R)
(8
C——— mm Y~
U

—— B

v

AM & FvR ISR 2010 — lecture 6 25/36

Completion is Proof Normalization

(£, R)

proof in (£, R)

O\a_w_)o/o
W

v

AM & FvR

ISR 2010 — lecture 6 25/36

Completion is Proof Normalization

(E,R) proof in (£, R)
(8
C——— mm Y~
U
[— S~
(8

—

—— e

v

AM & FvR ISR 2010 — lecture 6 25/36

Completion is Proof Normalization

(£, R)

4

4

4

¥
*

fair derivation

proof in (£, R)

W
W
0\0(—)0/0

T
O\O\O/Q

rewrite proof

v

AM & FvR

ISR 2010 — lecture 6

25/36

set of equations £ set of rewrite rules R reduction order > J

e proof of s ~ t is sequence (uy, ..., u,) of terms such that
e S=1Uu
e t = un

o forall 1<i<n wu—R U1 OF U <R Uyl OF Uj<g Ul

AM & FvR ISR 2010 — lecture 6 26/36

set of equations £ set of rewrite rules R reduction order > J

e proof of s ~ t is sequence (uy, ..., u,) of terms such that
e S=1Uu
e t = up

o forall 1<i<n wu—R U1 OF U <R Uyl OF Uj<g Ul

e rewrite proof is proof (us, ..., u,) such that
o u —p Uiy forall 1 <i<j
o ui g Uiy forallj<i<n

forsome 1 <j<n

AM & FvR ISR 2010 — lecture 6 26/36

set of equations £ set of rewrite rules R reduction order > J

e proof of s ~ t is sequence (uy, ..., u,) of terms such that
e S=1Uu
e t = up

o forall 1<i<n wu—R U1 OF U <R Uyl OF Uj<g Ul

e rewrite proof is proof (us, ..., u,) such that
o u —p Uiy forall 1 <i<j
o ui g Uiy forallj<i<n
forsome 1 <j<n
® two proofs (si,...,s,) and (ti,...,t,) are equivalent if s; = t; and s, = t,

v

AM & FvR ISR 2010 — lecture 6 26/36

e complexity of proof (uy, ..., u,) is multiset {c(u1, u2), ..., c(Un—1, ts)}

AM & FvR ISR 2010 — lecture 6 27/36

e complexity of proof (uy, ..., u,) is multiset {c(u1, u2), ..., c(uy—1,u,)}

e complexity of proof step (uj, uj+1) is triple

({ui, vz}, — =) if uj e v
c(uj, uip1) = if uj >R ujr1 using rule £ — r
if uj «<x uj41 using rule £ — r

AM & FvR ISR 2010 — lecture 6 27/36

e complexity of proof (uy, ..., u,) is multiset {c(u1, u2), ..., c(uy—1,u,)}

e complexity of proof step (uj, uj+1) is triple

({ui, vz}, — =) if uj e v
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r
if uj «<x uj41 using rule £ — r

AM & FvR ISR 2010 — lecture 6 27/36

e complexity of proof (uy, ..., u,) is multiset {c(u1, u2), ..., c(uy—1,u,)}

e complexity of proof step (uj, uj+1) is triple

({ui, vz}, — =) if uj e v
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r
({uiz1}, 4, r) if uj <R ujr1 using rule £ — r

AM & FvR ISR 2010 — lecture 6 27/36

e complexity of proof (us, ..., u,) is multiset {c(u1, u2), ..., c(tn—_1, Us)}

e complexity of proof step (uj, uj+1) is triple

({uis viy1}, =, =) if ui =g Uit
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r

({uisa}, 4, r) if uj —x uj11 using rule £ — r

e order > on proof steps: lexicographic combination of

e > .. multiset extension of >

AM & FvR ISR 2010 — lecture 6 27/36

e complexity of proof (us, ..., u,) is multiset {c(u1, u2), ..., c(tn—_1, Us)}

e complexity of proof step (uj, uj+1) is triple

({uis viy1}, — =) if ui =g Ui
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r

({uiz1}, 4, r) if uj <R ujr1 using rule £ — r

e order > on proof steps: lexicographic combination of
e > multiset extension of >

° > strict encompassment

AM & FvR ISR 2010 — lecture 6 27/36

e complexity of proof (us, ..., u,) is multiset {c(u1, u2), ..., c(tn—_1, Us)}

e complexity of proof step (uj, uj+1) is triple

({uis viy1}, — =) if ui =g Ui
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r

({uiz1},4,r) if uj <R ujr1 using rule £ — r

e order > on proof steps: lexicographic combination of
e > multiset extension of >

° > strict encompassment
° >

AM & FvR ISR 2010 — lecture 6 27/36

e complexity of proof (us, ..., u,) is multiset {c(u1, u2), ..., c(tn—_1, Us)}

e complexity of proof step (uj, uj+1) is triple

({uis viy1}, = =) if ui =g Ui
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r

({uiz1}, 4, r) if uj <R ujr1 using rule £ — r

e order > on proof steps: lexicographic combination of
e > multiset extension of >

° > strict encompassment
° >

> mul is @ well-founded order on proofs

AM & FvR ISR 2010 — lecture 6 27/36

non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+ J

V proof P in £, U R that is no rewrite proof in R,
3 equivalent proof @ in oo U Reo such that P >, Q

AM & FvR ISR 2010 — lecture 6 28/36

non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

—

P contains step using equation £~ r € £

AM & FvR ISR 2010 — lecture 6 28/36

non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

—

P contains step using equation £~ r € £

l~r¢&,: consider how equation ¢ = r is removed in S

AM & FvR ISR 2010 — lecture 6 28/36

non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

P contains step using equation £~ r € £
l~r¢&,: consider how equation ¢ = r is removed in S

P contains step using rule £ — r € Roo \ Ru

AM & FvR ISR 2010 — lecture 6 28/36

non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

P contains step using equation £ = r € £
l~r¢&,: consider how equation ¢ = r is removed in S
P contains step using rule £ — r € Roo \ Ru

¢ —r¢R,: consider how rule £ — r is removed in S

AM & FvR ISR 2010 — lecture 6 28/36

non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

P contains step using equation £ = r € £

l~r¢&,: consider how equation ¢ = r is removed in S
P contains step using rule £ — r € Roo \ Ru

¢ —r¢R,: consider how rule £ — r is removed in S

P contains peak using rules from R,

AM & FvR ISR 2010 — lecture 6 28/36

non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

P contains step using equation £ = r € £

l~r¢&,: consider how equation ¢ = r is removed in S
P contains step using rule £ — r € Roo \ Ru

¢ —r¢R,: consider how rule £ — r is removed in S
P contains peak using rules from R,

use critical pair lemma

AM & FvR ISR 2010 — lecture 6 28/36

Y non-failing and fair run (£, Ro) Fsc (€1, R1) Fsc (&2, R2) Fsc -+

* *
[] =

ExoUR o R

AM & FvR ISR 2010 — lecture 6 29/36

Y non-failing and fair run (£, Ro) Fsc (€1, R1) Fsc (&2, R2) Fsc -+

* *
[] =

ExoUR o R

o R, is complete

AM & FvR ISR 2010 — lecture 6 29/36

Y non-failing and fair run (£, Ro) Fsc (€1, R1) Fsc (&2, R2) Fsc -+

* *
[] =

ExoUR o R

o R, is complete

every fair completion procedure is correct

AM & FvR ISR 2010 — lecture 6 29/36

Critical Pair Criteria

Outline

@ Critical Pair Criteria

AM & FvR ISR 2010 — lecture 6

Critical Pair Criteria

CP(R,) C £ ensures correcteness

AM & FvR ISR 2010 — lecture 6 31/36

CP(R,) C £ ensures correcteness

are all critical pairs in CP(R,,) needed ?

AM & FvR ISR 2010 — lecture 6 31/36

CP(R,) C £ ensures correcteness

are all critical pairs in CP(R,,) needed ?

v

e critical pair criterion is mapping CPC on sets of equations such that
CPC(&) C CP(E)

AM & FvR ISR 2010 — lecture 6 31/36

CP(R,) C £ ensures correcteness

are all critical pairs in CP(R,,) needed ?

v

Definitions

e critical pair criterion is mapping CPC on sets of equations such that
CPC(&) C CP(E)

o run (&, Ro) Fsc (£1,R1) Fse (€2,R2) Fsc -+ is fair with respect to
critical pair criterion CPC if CP(R,,) \ CPC(€xo U R) C Eo

AM & FvR ISR 2010 — lecture 6 31/36

CP(R,) C £ ensures correcteness

are all critical pairs in CP(R,,) needed ?

v

Definitions

e critical pair criterion is mapping CPC on sets of equations such that
CPC(&) C CP(E)

e run (&, Ro) Fsc (&1,R1) Fse (E2,R2) Fse -+ is fair with respect to
critical pair criterion CPC if CP(R,,) \ CPC(Ex U R o) C Exo

e critical pair criterion CPC is correct if R, is confluent and terminating for
every non-failing run (o, Ro) Fsc (€1, R1) Fsc (€2, R2) Fsc -+ thatis
fair with respect to critical pair criterion CPC

AM & FvR ISR 2010 — lecture 6 31/36

e peak P: s g u —g tis composite if there exist proofs

Quiun<—u -+ QniiUp_1—— up
such that
e 5=
o t=u,
e V1<i<n u>u
e Vi<i<n P> Qi

AM & FvR ISR 2010 — lecture 6 32/36

® peak P: s «—x u —p t is composite if there exist proofs

. * . *
Quiug et - Quo1iUp_1 < Uy
such that
e S—=1Up
.t:un

e V1<i<n u>u
eV1i<i<n P> Qi

® critical pair s < X — t is composite if corresponding peak s «— - — t is
composite

AM & FvR ISR 2010 — lecture 6 32/36

® peak P: s «—x u —p t is composite if there exist proofs

. * . *
Quiug et - Quo1iUp_1 < Uy
such that
e S—=1Up
.t:un

e V1<i<n u>u
eV1i<i<n P> Qi

® critical pair s < X — t is composite if corresponding peak s «— - — t is
composite

composite critical pair criterion: CCP(E) = {s~ t € CP(€) | s = t is composite}
v

AM & FvR ISR 2010 — lecture 6 32/36

Critical Pair Criteria

critical pair criterion CCP is correct

AM & FvR ISR 2010 — lecture 6 33/36

critical pair criterion CCP is correct

how to check compositeness ?

AM & FvR ISR 2010 — lecture 6 33/36

critical pair criterion CCP is correct

how to check compositeness ?

v

e critical pair s < x — t originating from overlap ({1 — r, p, {2 — r2) with
mgu o is unblocked if xo is reducible for some x € Var(¢1) U Var(¢)

AM & FvR ISR 2010 — lecture 6 33/36

critical pair criterion CCP is correct

how to check compositeness ?

Definition

o critical pair s «+ X — t originating from overlap (¢; — r, p,¢> — r») with
mgu o is unblocked if xo is reducible for some x € Var(¢1) U Var(¥,)

e every unblocked critical pair is composite

AM & FvR ISR 2010 — lecture 6 33/36

critical pair criterion CCP is correct

how to check compositeness ?

Definition

o critical pair s «+ X — t originating from overlap (¢; — r, p,¢> — r») with
mgu o is unblocked if xo is reducible for some x € Var(¢1) U Var(¥,)

e critical pair s < x — t originating from overlap (¢; — r, p,{, — r2) with
mgu o is reducible if proper subterm of /10 is reducible

e every unblocked critical pair is composite

AM & FvR ISR 2010 — lecture 6 33/36

critical pair criterion CCP is correct

how to check compositeness ?

Definition

o critical pair s «+ X — t originating from overlap (¢; — r, p,¢> — r») with
mgu o is unblocked if xo is reducible for some x € Var(¢1) U Var(¥,)

e critical pair s < x — t originating from overlap (¢; — r, p,{, — r2) with
mgu o is reducible if proper subterm of /10 is reducible

e every unblocked critical pair is composite

e every reducible critical pair is composite

AM & FvR ISR 2010 — lecture 6 33/36

TRS
e” —e x/e — x
X T — X e/x — x
x-(x"-y)—y (x/y7)]y — x
X~ —e/x z/(z7/y)” =y~

AM & FvR ISR 2010 — lecture 6 34/36

TRS
e” —e x/e — x
X T — X e/x — x
x-(x"y)—y (x/y")y — x
X~ —e/x z/(z7/y)” =y~
critical pair
y/em —x—y

originating from overlap

(x/le=x,6 (v/z7)/z—y)

AM & FvR ISR 2010 — lecture 6 34/36

TRS
e” —e x/e — x
X T — X e/x — x
x-(x"y)—y (x/y")y — x
X~ —e/x z/(z7/y)” =y~
critical pair
y/em —x—y

originating from overlap

(x/le=x,6 (v/z7)/z—y)

is reducible because (y/e~)/e is reducible at position 12

AM & FvR ISR 2010 — lecture 6 34/36

Outline

@ Further Reading

AM & FvR ISR 2010 — lecture 6 35/36

@ Canonical Equational Proofs
Leo Bachmair
Progress in Theoretical Computer Science, Birkhauser, 1991

@ Equational Inference, Canonical Proofs, and Proof Orderings
Leo Bachmair and Nachum Dershowitz
J.ACM 41(2), pp. 236-276, 1994

Completion Tools

o \Waldmeister

® Slothrop

mkbTT
KBCV

AM & FvR ISR 2010 — lecture 6 36/36

http://doi.acm.org/10.1145/174652.174655
http://www.mpi-inf.mpg.de/~hillen/waldmeister/
http://userweb.cs.utexas.edu/~iwehrman/slothrop.html
http://cl-informatik.uibk.ac.at/software/mkbtt/
http://cl-informatik.uibk.ac.at/software/kbcv/

	lecture 6
	Overview
	Efficient Completion
	Cola Gene Puzzle
	Abstract Completion
	Proof Orders
	Critical Pair Criteria
	Further Reading

