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TRS R = {®,®,®,®,®, ®} TRS S = {9,2,0,®,®,®,0,®,®, ®}
©) x+0 — x @ x—0 — x
® x+s(y) — s(x+y) @ x—s(y) — p(x—y)
® p(s(x)) — x ® s(p(x)) — x
@ (X+p(y)) — x+y p(x—p(y)) — x—y
© +p(y) — p(x+y) x=ply) = s(x—y)

rewrite rules @ and ® are redundant:

s(x +p(y)) x+y p(x — p(y —>x—
s(p(x +y)) p(s(x —y))
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Observation

® |ess rewrite rules —> less critical pairs

e TRS without redundancy =  reduced TRS

Definition
TRS R is reduced if for all ¢ — re R

r is normal form with respect to R

¢ is normal form with respect to R \ {¢ — r}
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TRSR ={®,0,0,®,0,0} TRS § ={9,0,0,®,6,0,0,®,®, 0}

@
®
®
6]
©)

x+0— x ®
x+s(y) — S(X+y) )
p(s(x)) — ®
s(x + p(y ))—>X+y
x+p(y) — p(x+y)

e R is reduced

e S is not reduced

x—0— x
x—s(y) — p(X— y)
s(p(x)) —
p(x —p(y)) — x —
x—=p(y) — s(><— y)
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simplification after completion J

YV complete TRS R 3 complete reduced TRS S such that % = %

Proof Sketch (construction)

R ={{l—rlg|l—reR}
S ={{—-reR|LeNF(R'\{{ —-r})}

more efficient: simplification during completion J
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Knuth-Bendix Completion Procedure (More Efficient Version)

input ES £ and reduction order >
output  complete reduced TRS R such that % = %
R=8 C:=¢
while C # @ do
choose s~te C C:=C\{s=t} §:=s|lg t :=tlg
if s’ # t' then

if s >t/ then a:=s p=t
elseif t' > s then «a:=t [:=5¢
else failure

R :=RU{a — g}
forall £ — r € R do
R =R'\{l—r} O :=0lr 1 =rlg
if =20 then R\ :=R'U{l' > r'}else C:=CU{' ="'}
R:=TR
C:=CU{e e CP(R) | a— [ was used to generate e}
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g(b) ~ g(b) f(f(x)) — &(x)
f(b) ~ g(f(a)) ga) — b
flg(x)) — s(f(x
f(b) — &(f(a))

e L PO with precedence f > g >b > a

e complete and reduced TRS
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f(f(x)) =~ g(x) g(x) — f(f(x))
g(a) b b — f(f(a))

Q

Q

e L PO with precedence b > g >f>a

e complete and reduced TRS
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f(f(a)) ~ g(x) — f(f(x))
g(a) ~ f(f(a)) — b

I
o o

e L PO with precedence g >f>b > a

e complete and reduced TRS
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if complete reduced TRSs R and S satisfy
® =5

R and S are compatible with same reduction order

then R = S (modulo variable renaming)
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Outline

@ Cola Gene Puzzle
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Example (Cola Gene Puzzle)

ES &
TCAT ~ T GAG =~ AG CTC~TC AGTA =~ A TAT =~ CT

TRS R
GA—-A AGT —-AT ATA—-A CT—-T TAT—-T TCA—-TA

® R is reduced and complete
[} (i) = <L>
£ R
e (milk gene) TAGCTAGCTAGCT %» CTGACTGACT (cola gene)
TAGCTAGCTAGCT 7': T % CTGACTGACT
e (milk gene) TAGCTAGCTAGCT <7;4> CTGCTACTGACT (mad cow retrovirus)

TAGCTAGCTAGCT % T#TGT <_7I2 CTGCTACTGACT
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Outline

@ Abstract Completion
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set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s},R
delet _—
elete R
compose MU—M if t >g u
P E,RU{s — u} R
~ t
simplify % if t >» u
. EU{s~t},R .
orient mu—{s—)t} if s>t
t
collapse %25]—;:}:2 if t >» u using { — r € R with t >/
deduce 5‘U{f,—;€t}77€ if s —R U—R Tt
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Definitions

° [> encompassment
st <= 3 position p 3 substitution o: s|, = to
° > strict encompassment

st <= skt A (tk5s)

s(x) +s(y +0) > s(x) +y X+xB>x+y X+y¥x+x
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e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run

(€0, Ro) Fsc (&1,R1) Fse (£2,R2) Fsc -+
with & =& and Rp = @
o &, is set of persistent equations: &, = U ﬂ £
e R, is set of persistent rules 20 j2i

e run succeeds if &, = @ and R, is confluent and terminating
run fails if £, # @

e completion procedure is correct if every run that does not fail succeeds

how to guarantee correctness ?
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set of equations £ set of rewrite rules R reduction order >

run (£, Ro) Fsc (&1,R1) Fse (£2,R2) Fse -+

4
Lemmata

e if(E,R) Fsc (§',R') and R C > then R’ C >

f '— / 12 h * — *
o f(E,R) Fsc (5,R)tenm> ST

Ex=J& and Ro=[JRi

i>0 i>0
v
Lemmata
® Ry, SR C>
* *
[ ) =
£ EesURss

AM & FvR ISR 2010 — lecture 6 19/34



Two Questions
non-failing run (&, Ro) Fsc (€1, R1) Fse (£2,R2) Fsc -+

is R, confluent ?

[
*
Il
*
~

e run (&, Ro) Fse (£1,R1) Fse (€2,R2) Fse --- is fair if

CP(R,)C &

i=0

e completion procedure is fair if every run that does not fail is fair

every fair completion procedure is correct
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strict encompassment condition in collapse rule cannot be dropped

E,RU{t — s}
EU{u~s}R

collapse if t >x uusing £ — r € R with ¢t > /

a —b

g(x) — x

f(x,c) — x
f(x,g(y)) — f(g(x),y)

flc,y) —a

e PO with precedence f >a>g>c>b
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Outline

@ Proof Orders
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Completion is Proof Normalization

(£, R)

4

4

4

¥
*

fair derivation

proof in (£, R)

W
W
0\0(—)0/0

T
O\O\O/Q

rewrite proof

v
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set of equations £ set of rewrite rules R reduction order > J

e proof of s ~ t is sequence (uy, ..., u,) of terms such that
e S=1Uu
e t = up

o forall 1<i<n wu—R U1 OF U <R Uyl OF Uj<g Ul

e rewrite proof is proof (us, ..., u,) such that
o u —p Uiy forall 1 <i<j
o ui g Uiy forallj<i<n
forsome 1 <j<n
® two proofs (si,...,s,) and (ti,...,t,) are equivalent if s; = t; and s, = t,

v
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e complexity of proof (uy, ..., u,) is multiset {c(u1, u2), ..., c(uy—1,u,)}

e complexity of proof step (uj, uj+1) is triple

({uis viy1}, = =) if ui =g Uit
c(up, uiv1) = § ({uit, 4, r) if uj >R ujr1 using rule £ — r

{uisar}, 6, r) if uj —x uj11 using rule £ — r

e order > on proof steps: lexicographic combination of
e > .. multiset extension of >

° > strict encompassment
° >

> mul is @ well-founded order on proofs
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non-failing and fair run S: (&, Ro) Fsc (€1, R1) Fse (€2, R2) Fsc -+

Lemma

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in £, U R such that P >, Q

Proof Sketch

three cases:

P contains step using equation £ = r € £

l~r¢&,: consider how equation ¢ = r is removed in S
P contains step using rule £ — r € Roo \ Ru

¢ —r¢R,: consider how rule £ — r is removed in S
P contains peak using rules from R,

use critical pair lemma
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Y non-failing and fair run (£, Ro) Fsc (€1, R1) Fsc (&2, R2) Fsc -+

* *
[ ] =

ExoUR o R

o R, is complete

every fair completion procedure is correct
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Critical Pair Criteria

Outline

@ Critical Pair Criteria
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CP(R,) C £ ensures correcteness

are all critical pairs in CP(R,,) needed ?

e critical pair criterion is mapping CPC on sets of equations such that
CPC(E) C CP(&)

e run (&, Ro) Fse (£1,R1) Fsc (€2,R2) Fsc -+ is fair with respect to

critical pair criterion CPC if CP(R,,) \ CPC(Ex U Roo) C Exo

e critical pair criterion CPC is correct if R, is confluent and terminating for

every non-failing run (£, Ro) Fsc (€1, R1) Fse (&2, R2) Fsc -+
fair with respect to critical pair criterion CPC

that is
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® peak P: s «—x u —p tis composite if there exist proofs

. * . *
Quiug et - Quo1iUp_1 < Uy
such that
e S—=1Up
.t:un

e V1<i<n u>u
eV1i<i<n P> Qi

® critical pair s < X — t is composite if corresponding peak s «— - — t is
composite

composite critical pair criterion: CCP(E) = {s~ t € CP(€) | s = t is composite}
v
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critical pair criterion CCP is correct

how to check compositeness ?

Definition

o critical pair s «+ X — t originating from overlap (¢; — r, p,¢> — r») with
mgu o is unblocked if xo is reducible for some x € Var(¢1) U Var(¥,)

e critical pair s < x — t originating from overlap (¢; — r, p,{, — r2) with
mgu o is reducible if proper subterm of /10 is reducible

e every unblocked critical pair is composite

e every reducible critical pair is composite
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TRS
e” —e x/e — x
X T — X e/x — x
x-(x"-y)—y (x/y7)]y — x
X~ —e/x z/(z7/y)” =y~
critical pair
y/em —x—y

originating from overlap

(x/le=x,6 (v/z7)/z—y)

is reducible because (y/e~)/e is reducible at position 12
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Outline

@ Further Reading
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@ Canonical Equational Proofs
Leo Bachmair
Progress in Theoretical Computer Science, Birkhauser, 1991

@ Equational Inference, Canonical Proofs, and Proof Orderings
Leo Bachmair and Nachum Dershowitz
J.ACM 41(2), pp. 236-276, 1994

Completion Tools

o \Waldmeister

® Slothrop

mkbTT
KBCV
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