

Introduction to Term Rewriting lecture 6

Institute of Computer Science University of Innsbruck

Department of Computer Science VU Amsterdam

Overview

Sunday

AAVINV. B.

introduction, examples, abstract rewriting, equational reasoning, term rewriting

Monday

termination, completion

Tuesday

completion, termination

Wednesday

confluence, modularity, strategies

Thursday

exam, advanced topics

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

AM & FvR

ISR 2010 - lecture 6

Example

TRS $\mathcal{R} = \{0, 2, 3, 4, 5, 6\}$ TRS $\mathcal{S} = \{0, 2, 3, 4, 5, 6, 7, 8, 9, 0\}$

- ① $x + 0 \rightarrow x$ ② $x 0 \rightarrow x$ ③ $x + s(y) \rightarrow s(x + y)$ ④ $x s(y) \rightarrow p(x y)$ ⑤ $p(s(x)) \rightarrow x$ ⑥ $s(p(x)) \rightarrow x$ ⑦ $s(x + p(y)) \rightarrow x + y$ ⑧ $p(x p(y)) \rightarrow x y$ ⑨ $x + p(y) \rightarrow p(x + y)$ ⑩ $x p(y) \rightarrow s(x y)$

rewrite rules 7 and 8 are redundant:

$$s(x + p(y)) \xrightarrow{?} x + y$$

$$s(p(x + y))$$

$$s(x + p(y)) \xrightarrow{?} x + y \qquad p(x - p(y)) \xrightarrow{\$} x - y$$

$$s(p(x + y)) \qquad p(s(x - y))$$

Observation

- less rewrite rules less critical pairs
- TRS without redundancy = reduced TRS

Definition

TRS \mathcal{R} is reduced if for all $\ell \to r \in \mathcal{R}$

- 1 r is normal form with respect to \mathcal{R}
- **2** ℓ is normal form with respect to $\mathcal{R} \setminus \{\ell \to r\}$

AM & FvR

ISR 2010 - lecture 6

Example

TRS $\mathcal{R} = \{0, 2, 3, 4, 5, 6\}$

TRS $S = \{0, 2, 3, 4, 5, 6, 7, 8, 9, 0\}$

- ① $x + 0 \rightarrow x$ ② $x 0 \rightarrow x$ ③ $x + s(y) \rightarrow s(x + y)$ ④ $x s(y) \rightarrow p(x y)$ ⑤ $p(s(x)) \rightarrow x$ ⑥ $s(p(x)) \rightarrow x$ ⑦ $s(x + p(y)) \rightarrow x + y$ ⑧ $p(x p(y)) \rightarrow x y$ ⑨ $x + p(y) \rightarrow p(x + y)$ ⑩ $x p(y) \rightarrow s(x y)$

- ullet $\mathcal R$ is reduced
- S is **not** reduced

AM & FvR ISR 2010 - lecture 6

simplification after completion

Theorem

 $\forall \ \textit{complete TRS} \ \mathcal{R} \quad \exists \ \textit{complete reduced TRS} \ \mathcal{S} \quad \textit{such that} \quad \overset{*}{\underset{\mathcal{R}}{\longleftrightarrow}} \ = \ \overset{*}{\underset{\mathcal{S}}{\longleftrightarrow}}$

Proof Sketch (construction)

- $\mathbf{1} \quad \mathcal{R}' = \{ \ \ell \to r \downarrow_{\mathcal{R}} \mid \ell \to r \in \mathcal{R} \ \}$

ES ${\cal E}$ and reduction order >

more efficient: simplification during completion

AM & FvR

input

ISR 2010 - lecture 6

7/3

Efficient Completion

Knuth-Bendix Completion Procedure (More Efficient Version)

```
 \begin{aligned} & \textit{output} & & \textit{complete reduced TRS $\mathcal{R}$ such that } \overset{*}{\underset{\mathcal{E}}{\longleftrightarrow}} = \overset{*}{\underset{\mathcal{R}}{\longleftrightarrow}} \\ & \mathcal{R} := \varnothing \quad \mathcal{C} := \mathcal{E} \\ & \textit{while $C \neq \varnothing$ do} \\ & & \textit{choose $s \approx t \in C \quad $C := C \setminus \{s \approx t\} \quad s' := s \downarrow_{\mathcal{R}} \quad t' := t \downarrow_{\mathcal{R}} \\ & & \textit{if $s' \neq t'$ then} \\ & & \textit{if $s' > t'$ then} \\
```

AM & FvR ISR 2010 – lecture 6 8/34

 $C := C \cup \{e \in \mathsf{CP}(\mathcal{R}) \mid \alpha \to \beta \text{ was used to generate } e\}$

Example

$$\begin{array}{lll} g(b) \; \approx \; g(b) & & f(f(x)) \; \rightarrow \; g(x) \\ f(b) \; \approx \; g(f(a)) & & g(a) \; \rightarrow \; b \\ & f(g(x)) \; \rightarrow \; g(f(x)) \\ & f(b) \; \rightarrow \; g(f(a)) \end{array}$$

- LPO with precedence f > g > b > a
- complete and reduced TRS

AM & FvR ISR 2010 – lecture 6

Efficient Completion

Example

$$f(f(x)) \approx g(x)$$
 $g(x) \rightarrow f(f(x))$
 $g(a) \approx b$ $b \rightarrow f(f(a))$

- LPO with precedence b > g > f > a
- complete and reduced TRS

AM & FvR ISR 2010 – lecture 6 10/34

Example

$$f(f(a)) \approx b$$
 $g(x) \rightarrow f(f(x))$ $g(a) \approx b$ $f(f(a)) \rightarrow b$

- LPO with precedence g > f > b > a
- complete and reduced TRS

AM & FvR ISR 2010 – lecture 6 11/34

Efficient Completion

Theorem

if complete reduced TRSs $\mathcal R$ and $\mathcal S$ satisfy

$$\begin{array}{ccc}
& & & \\
& & \\
\end{array} = \begin{array}{c}
& & \\
& \\
\end{array} \times$$

 ${\bf 2}$ ${\cal R}$ and ${\cal S}$ are compatible with same reduction order

then R = S (modulo variable renaming)

AM & FvR ISR 2010 – lecture 6 12/34

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

AM & FvR

ISR 2010 - lecture 6

13/34

Cola Gene Puzzle

Example (Cola Gene Puzzle)

 $\mathsf{ES}\;\mathcal{E}$

$$\mathsf{TCAT} \approx \mathsf{T} \qquad \mathsf{GAG} \approx \mathsf{AG} \qquad \mathsf{CTC} \approx \mathsf{TC} \qquad \mathsf{AGTA} \approx \mathsf{A} \qquad \mathsf{TAT} \approx \mathsf{CT}$$

TRS \mathcal{R}

$$\mathsf{GA} \to \mathsf{A} \quad \mathsf{AGT} \to \mathsf{AT} \quad \mathsf{ATA} \to \mathsf{A} \quad \mathsf{CT} \to \mathsf{T} \quad \mathsf{TAT} \to \mathsf{T} \quad \mathsf{TCA} \to \mathsf{TA}$$

- ullet $\mathcal R$ is reduced and complete
- $\bullet \ \stackrel{*}{\underset{\mathcal{E}}{\longleftrightarrow}} = \stackrel{*}{\underset{\mathcal{R}}{\longleftrightarrow}}$
- $\bullet \ \ (\mathsf{milk} \ \mathsf{gene}) \ \mathsf{TAGCTAGCTAGCT} \stackrel{*}{\longleftrightarrow} \mathsf{CTGACTGACT} \ (\mathsf{cola} \ \mathsf{gene})$

TAGCTAGCT
$$\xrightarrow{!}$$
 T $\xleftarrow{!}$ CTGACTGACT

 $\bullet \ \ (\mathsf{milk} \ \mathsf{gene}) \ \mathsf{TAGCTAGCTAGCT} \ \overset{*}{\underset{\mathcal{E}}{\longleftrightarrow}} \ \mathsf{CTGCTACTGACT} \ \ (\mathsf{mad} \ \mathsf{cow} \ \mathsf{retrovirus})$

TAGCTAGCT
$$\xrightarrow{!}$$
 T \neq TGT $\xleftarrow{!}$ CTGCTACTGACT

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

AM & FvR ISR 2010 – lecture 6 15/3

Abstract Completion

Definition

 $\mbox{set of equations } \mathcal{E} \qquad \mbox{set of rewrite rules } \mathcal{R} \qquad \mbox{reduction order} > \\ \mbox{inference system } \mathcal{SC} \mbox{ (standard completion) consists of six rules}$

$$\begin{array}{ll} \operatorname{delete} & \frac{\mathcal{E} \cup \{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}} \\ \\ \operatorname{compose} & \frac{\mathcal{E}, \mathcal{R} \cup \{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup \{s \rightarrow u\}} & \text{if } t \rightarrow_{\mathcal{R}} u \\ \\ \operatorname{simplify} & \frac{\mathcal{E} \cup \{s \approx t\}, \mathcal{R}}{\mathcal{E} \cup \{s \approx u\}, \mathcal{R}} & \text{if } t \rightarrow_{\mathcal{R}} u \\ \\ \operatorname{orient} & \frac{\mathcal{E} \cup \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{s \rightarrow t\}} & \text{if } s > t \\ \\ \operatorname{collapse} & \frac{\mathcal{E}, \mathcal{R} \cup \{t \rightarrow s\}}{\mathcal{E} \cup \{u \approx s\}, \mathcal{R}} & \text{if } t \rightarrow_{\mathcal{R}} u \text{ using } \ell \rightarrow r \in \mathcal{R} \text{ with } t \bowtie \ell \\ \\ \operatorname{deduce} & \frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup \{s \approx t\}, \mathcal{R}} & \text{if } s \leftarrow_{\mathcal{R}} u \rightarrow_{\mathcal{R}} t \\ \\ \end{array}$$

AM & FvR ISR 2010 – lecture 6 16/34

Definitions

• ⊵ encompassment

 \iff \exists position $p \exists$ substitution σ : $s|_p = t\sigma$

strict encompassment

 $s \triangleright t \iff s \trianglerighteq t \land \neg (t \trianglerighteq s)$

Example

 $s(x) + s(y + 0) \triangleright s(x) + y$ $x + x \triangleright x + y$ $x + y \triangleright x + x$

AM & FvR

ISR 2010 - lecture 6

Definitions

ullet completion procedure is program that takes as input set of equations ${\mathcal E}$ and reduction order > and generates (finite or infinite) run

$$(\mathcal{E}_0, \mathcal{R}_0) \vdash_{\mathcal{SC}} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{\mathcal{SC}} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{\mathcal{SC}} \cdots$$

with $\mathcal{E}_0 = \mathcal{E}$ and $\mathcal{R}_0 = \varnothing$

- \mathcal{E}_{ω} is set of persistent equations: $\mathcal{E}_{\omega} = \bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$ \mathcal{R}_{ω} is set of persistent rules
- \mathcal{R}_{ω} is set of persistent rules
- ullet run succeeds if $\mathcal{E}_{\omega}=arnothing$ and \mathcal{R}_{ω} is confluent and terminating
- run fails if $\mathcal{E}_{\omega} \neq \emptyset$
- completion procedure is correct if every run that does not fail succeeds

Question

how to guarantee correctness?

set of equations ${\mathcal E}$ set of rewrite rules ${\mathcal R}$ reduction order >

$$\mathsf{run}\; (\mathcal{E}_0,\mathcal{R}_0) \; \vdash_{\mathcal{SC}} \; (\mathcal{E}_1,\mathcal{R}_1) \; \vdash_{\mathcal{SC}} \; (\mathcal{E}_2,\mathcal{R}_2) \; \vdash_{\mathcal{SC}} \; \cdots$$

Lemmata

- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{SC}} (\mathcal{E}', \mathcal{R}')$ and $\mathcal{R} \subseteq >$ then $\mathcal{R}' \subseteq >$
- $\bullet \ \ \textit{if} \ (\mathcal{E},\mathcal{R}) \ \vdash_{\mathcal{SC}} \ (\mathcal{E}',\mathcal{R}') \ \textit{then} \ \xleftarrow{*}_{\mathcal{E} \cup \mathcal{R}} = \xleftarrow{*}_{\mathcal{E}' \cup \mathcal{R}'}$

Definition

$$\mathcal{E}_{\infty} = \bigcup_{i \geqslant 0} \mathcal{E}_i$$
 and $\mathcal{R}_{\infty} = \bigcup_{i \geqslant 0} \mathcal{R}_i$

Lemmata

- $\mathcal{R}_{\omega} \subseteq \mathcal{R}_{\infty} \subseteq >$
- $\bullet \ \xleftarrow{\ \ *} \ = \xleftarrow{\ \ \ast} \ \mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$

AM & FvR

ISR 2010 - lecture 6

19/34

Abstract Completion

Two Questions

non-failing run $(\mathcal{E}_0, \mathcal{R}_0) \vdash_{\mathcal{SC}} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{\mathcal{SC}} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{\mathcal{SC}} \cdots$

- 1 is \mathcal{R}_{ω} confluent ?
- $\underbrace{ \overset{*}{\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}}} = \overset{*}{\overset{*}{\mathcal{R}_{\omega}}} ?$

Definitions

• run $(\mathcal{E}_0, \mathcal{R}_0) \vdash_{\mathcal{SC}} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{\mathcal{SC}} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{\mathcal{SC}} \cdots$ is fair if

$$\mathsf{CP}(\mathcal{R}_\omega) \subseteq \bigcup_{i\geqslant 0} \; \mathcal{E}_i$$

ISR 2010 - lecture 6

• completion procedure is fair if every run that does not fail is fair

Theorem

every fair completion procedure is correct

Remark

strict encompassment condition in collapse rule cannot be dropped

$$\begin{array}{ll} \text{collapse} & & \frac{\mathcal{E}, \mathcal{R} \cup \{t \to s\}}{\mathcal{E} \cup \{u \approx s\}, \mathcal{R}} & & \text{if } t \to_{\mathcal{R}} u \text{ using } \ell \to r \in \mathcal{R} \text{ with } \textcolor{red}{t} \vartriangleright \textcolor{black}{\ell} \end{array}$$

Example

$$\begin{array}{ccc} \mathsf{a} & \to \mathsf{b} \\ \mathsf{g}(x) & \to x \\ \mathsf{f}(x,\mathsf{c}) & \to x \\ \mathsf{f}(x,\mathsf{g}(y)) & \to \mathsf{f}(\mathsf{g}(x),y) \\ \mathsf{f}(\mathsf{c},y) & \to \mathsf{a} \end{array}$$

• LPO with precedence f > a > g > c > b

AM & FvR

ISR 2010 - lecture 6

21/34

Proof Orders

Outline

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

AM & FvR ISR 2010 – lecture 6 22/34

AM & FvR ISR 2010 – lecture 6

010 – lecture 6

23/34

Proof Order

set of equations ${\cal E}$

set of rewrite rules ${\cal R}$

 ${\sf reduction}\ {\sf order}>$

Definitions

- proof of $s \approx t$ is sequence (u_1, \ldots, u_n) of terms such that
 - $s = u_1$
 - $t = u_n$
 - for all $1 \leqslant i < n$ $u_i \to_{\mathcal{R}} u_{i+1}$ or $u_i \leftarrow_{\mathcal{R}} u_{i+1}$ or $u_i \leftrightarrow_{\mathcal{E}} u_{i+1}$
- rewrite proof is proof (u_1, \ldots, u_n) such that
 - $u_i \to_{\mathcal{R}} u_{i+1}$ for all $1 \leqslant i < j$
 - $u_i \leftarrow_{\mathcal{R}} u_{i+1}$ for all $j \leqslant i < n$

for some $1 \leqslant j \leqslant n$

• two proofs (s_1, \ldots, s_n) and (t_1, \ldots, t_n) are equivalent if $s_1 = t_1$ and $s_n = t_n$

Definitions

- complexity of proof (u_1, \ldots, u_n) is multiset $\{c(u_1, u_2), \ldots, c(u_{n-1}, u_n)\}$
- complexity of proof step (u_i, u_{i+1}) is triple

$$c(u_i, u_{i+1}) = \begin{cases} (\{u_i, u_{i+1}\}, -, -) & \text{if } u_i \leftrightarrow_{\mathcal{E}} u_{i+1} \\ (\{u_i\}, \ell, r) & \text{if } u_i \to_{\mathcal{R}} u_{i+1} \text{ using rule } \ell \to r \\ (\{u_{i+1}\}, \ell, r) & \text{if } u_i \leftarrow_{\mathcal{R}} u_{i+1} \text{ using rule } \ell \to r \end{cases}$$

- order ≫ on proof steps: lexicographic combination of
 - >_{mul} multiset extension of >
 - **b** strict encompassment
 - >

Lemma

≫_{mul} is a well-founded order on proofs

AM & FvR

ISR 2010 - lecture 6

25/34

Proof Orders

non-failing and fair run $S: (\mathcal{E}_0, \mathcal{R}_0) \vdash_{SC} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{SC} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{SC} \cdots$

Lemma

 \forall proof P in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ that is no rewrite proof in \mathcal{R}_{ω} \exists equivalent proof Q in $\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ such that $P \gg_{mul} Q$

Proof Sketch

three cases:

- $\begin{array}{ll} \textbf{I} & P \text{ contains step using equation } \ell \approx r \in \mathcal{E}_{\infty} \\ \\ \ell \approx r \notin \mathcal{E}_{\omega} \colon & \text{consider how equation } \ell \approx r \text{ is removed in } \mathcal{S} \\ \end{array}$
- 2 P contains step using rule $\ell \to r \in \mathcal{R}_{\infty} \setminus \mathcal{R}_{\omega}$ $\ell \to r \notin \mathcal{R}_{\omega}$: consider how rule $\ell \to r$ is removed in \mathcal{S}
- 3 P contains peak using rules from \mathcal{R}_{ω} use critical pair lemma

FvR ISR 2010 – lecture 6

Theorem

 \forall non-failing and fair run $(\mathcal{E}_0, \mathcal{R}_0) \vdash_{\mathcal{SC}} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{\mathcal{SC}} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{\mathcal{SC}} \cdots$

- $\bullet \ \stackrel{*}{\underset{\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}}{\longleftarrow}} = \stackrel{*}{\underset{\mathcal{R}_{\omega}}{\longleftarrow}}$
- \mathcal{R}_{ω} is complete

Corollary

every fair completion procedure is correct

AM & FvR

ISR 2010 - lecture 6

27/34

Critical Pair Criteria

Outline

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

AM & FvR ISR 2010 – lecture 6 28/34

Fact

 $\mathsf{CP}(\mathcal{R}_\omega)\subseteq\mathcal{E}_\infty$ ensures correcteness

Question

are all critical pairs in $\mathsf{CP}(\mathcal{R}_\omega)$ needed ?

Definitions

- critical pair criterion is mapping CPC on sets of equations such that $CPC(\mathcal{E}) \subseteq CP(\mathcal{E})$
- run $(\mathcal{E}_0, \mathcal{R}_0) \vdash_{\mathcal{SC}} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{\mathcal{SC}} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{\mathcal{SC}} \cdots$ is fair with respect to critical pair criterion CPC if $CP(\mathcal{R}_{\omega}) \setminus CPC(\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}) \subseteq \mathcal{E}_{\infty}$
- critical pair criterion CPC is correct if \mathcal{R}_{ω} is confluent and terminating for every non-failing run $(\mathcal{E}_0, \mathcal{R}_0) \vdash_{\mathcal{SC}} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{\mathcal{SC}} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{\mathcal{SC}} \cdots$ that is fair with respect to critical pair criterion CPC

AM & FvR ISR 2010 – lecture 6

Critical Pair Criteria

Definitions

• peak $P: s \leftarrow_{\mathcal{R}} u \rightarrow_{\mathcal{R}} t$ is composite if there exist proofs

$$Q_1: u_1 \stackrel{*}{\longleftrightarrow} u_2 \quad \cdots \quad Q_{n-1}: u_{n-1} \stackrel{*}{\longleftrightarrow} u_n$$

such that

- $s = u_1$
- $t = u_n$
- $\forall 1 \leq i \leq n \quad u > u_i$
- $\forall 1 \leq i < n \quad P \gg_{\text{mul}} Q_i$
- critical pair $s \leftarrow \rtimes \to t$ is composite if corresponding peak $s \leftarrow \cdot \to t$ is composite

Definition

composite critical pair criterion: $CCP(\mathcal{E}) = \{s \approx t \in CP(\mathcal{E}) \mid s \approx t \text{ is composite}\}$

Critical Pair Criter

Lemma

critical pair criterion CCP is correct

Question

how to check compositeness?

Definition

- critical pair $s \leftarrow \rtimes \rightarrow t$ originating from overlap $\langle \ell_1 \rightarrow r_1, p, \ell_2 \rightarrow r_2 \rangle$ with mgu σ is unblocked if $x\sigma$ is reducible for some $x \in Var(\ell_1) \cup Var(\ell_2)$
- critical pair $s \leftarrow \rtimes \to t$ originating from overlap $\langle \ell_1 \to r_1, p, \ell_2 \to r_2 \rangle$ with mgu σ is reducible if proper subterm of $\ell_1 \sigma$ is reducible

Lemma

- every unblocked critical pair is composite
- every reducible critical pair is composite

AM & FvR

ISR 2010 - lecture 6

31/34

Critical Pair Criteria

Example

TRS

$$e^{-} \rightarrow e \qquad x/e \rightarrow x$$

$$x^{--} \rightarrow x \qquad e/x \rightarrow x$$

$$x \cdot (x^{-} \cdot y) \rightarrow y \qquad (x/y^{-})/y \rightarrow x$$

$$x^{-} \rightarrow e/x \qquad z/(z^{-}/y)^{-} \rightarrow y^{-}$$

critical pair

$$y/e^- \leftarrow \times \rightarrow y$$

originating from overlap

$$\langle x/e \rightarrow x, \epsilon, (y/z^{-})/z \rightarrow y \rangle$$

is reducible because $(y/e^{-})/e$ is reducible at position 12

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

AM & FvR ISR 2010 - lecture 6

Canonical Equational Proofs

Leo Bachmair Progress in Theoretical Computer Science, Birkhäuser, 1991

Equational Inference, Canonical Proofs, and Proof Orderings Leo Bachmair and Nachum Dershowitz J.ACM 41(2), pp. 236-276, 1994

Completion Tools

- Waldmeister
- Slothrop
- mkbTT
- KBCV