ISR 2010

Introduction to Term Rewriting

lecture 6

Aart Middeldorp and Femke van Raamsdonk Institute of Computer Science

> Department of Computer Science VU Amsterdam

University of Innsbruck

Outline

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

AM & FvR

verview

Sunday

introduction, examples, abstract rewriting, equational reasoning, term rewriting

Monday

termination, completion

Tuesday

completion, termination

Wednesday

confluence, modularity, strategies

Thursday

exam, advanced topics

AM & FvR

ISR 2010 – lecture 6

2/34

Efficient Completion

Example

$TRS\; \mathcal{R} = \{ @, @, @, @, @, @, @ \}$	$TRS\ \mathcal{S} = \{1, 2, 3, 4, 6, 6, 7, 8, 9, 0\}$
$\begin{array}{ccccc} \textcircled{1} & x+0 & \rightarrow & x \\ \textcircled{3} & x+s(y) & \rightarrow & s(x+y) \\ \textcircled{5} & p(s(x)) & \rightarrow & x \\ \fbox{7} & s(x+p(y)) & \rightarrow & x+y \\ \textcircled{9} & x+p(y) & \rightarrow & p(x+y) \end{array}$	$\begin{array}{cccccc} @& x-0 & \rightarrow & x \\ @& x-s(y) & \rightarrow & p(x-y) \\ @& s(p(x)) & \rightarrow & x \\ @& p(x-p(y)) & \rightarrow & x-y \\ @& x-p(y) & \rightarrow & s(x-y) \end{array}$
rewrite rules $\overline{\mathcal{O}}$ and $\overline{\mathbb{B}}$ are redundant:	
$s(x + p(y)) \xrightarrow{?} x + y$	$p(x-p(y)) \xrightarrow{(a)} x-y$

p(s(x - y))

Observation

- less rewrite rules
- \implies less critical pairs
- TRS without redundancy = reduced TRS

Definition

- TRS \mathcal{R} is reduced if for all $\ell \to r \in \mathcal{R}$
 - **1** r is normal form with respect to \mathcal{R}
- **2** ℓ is normal form with respect to $\mathcal{R} \setminus \{\ell \to r\}$

Example	
$TRS\ \mathcal{R} = \{ (1, @, (3), (4), (5), (6) \}$	$TRS\ \mathcal{S} = \{ @, @, @, @, $, $, $, $, $, $, $, $, $, $, $, $, $,$
$\begin{array}{cccc} (1) & x+0 \rightarrow x \\ (3) & x+s(y) \rightarrow s(x+y) \\ (5) & p(s(x)) \rightarrow x \\ (7) & s(\mathbf{x}+p(y)) \rightarrow x+y \\ (9) & x+p(y) \rightarrow p(x+y) \end{array}$	$ \begin{array}{ccc} & x - 0 \rightarrow x \\ \hline @ & x - s(y) \rightarrow p(x - y) \\ \hline @ & s(p(x)) \rightarrow x \\ \hline @ & p(x - p(y)) \rightarrow x - y \\ \hline @ & x - p(y) \rightarrow s(x - y) \end{array} $
• \mathcal{R} is reduced	
• S is not reduced	

AM & FvR	ISR 2010 – lecture 6	5/34
Efficient Completion		
	simplification after completion	J
Iheorem		
\forall complete TRS	$\mathcal{R} \exists$ complete reduced TRS \mathcal{S} such that $\stackrel{*}{\longleftrightarrow} = \stackrel{*}{\longleftrightarrow}$	
	R S	
Proof Sketch (construction)	
1 $\mathcal{R}' = \{ \ell -$	$ ightarrow r\downarrow_{\mathcal{R}} \mid \ell ightarrow r \in \mathcal{R} \}$	
$\sum_{i=1}^{n} S_{i} = \int \ell_{i}$	$\rightarrow \mathbf{r} \in \mathcal{P}' \mid \ell \in NF(\mathcal{P}' \setminus \{\ell \rightarrow \mathbf{r}\}) \}$	
	more efficient: simplification during completion	

AM & FvR	ISR 2010 – lecture 6	6/34
Efficient Compl	ation	
Encient comp		
Knuth-	Bendix Completion Procedure (More Efficient Version)	
input output	$\begin{array}{l} ES\ \mathcal{E} \ \text{and reduction order} > \\ complete\ \textbf{reduced}\ TRS\ \mathcal{R} \ \text{such that}\ \underset{\mathcal{E}}{\overset{*}{\longleftrightarrow}} = \underset{\mathcal{R}}{\overset{*}{\longleftrightarrow}} \end{array}$	
$\mathcal{R} := \emptyset$ while C choos if s'	$C := \mathcal{E}$ $\neq \emptyset \text{ do}$ $\text{ose } s \approx t \in C C := C \setminus \{s \approx t\} s' := s \downarrow_{\mathcal{R}} t' := t \downarrow_{\mathcal{R}}$ $\neq t' \text{ then}$ $\text{if } s' > t' \text{ then} \alpha := s' \beta := t'$ $\text{else if } t' > s' \text{ then} \alpha := t' \beta := s'$ $\text{else} \qquad failure$ $\mathcal{R}' := \mathcal{R} \cup \{\alpha \to \beta\}$	
	for all $\ell \to r \in \mathcal{R}$ do $\mathcal{R}' := \mathcal{R}' \setminus \{\ell \to r\} \ell' := \ell \downarrow_{\mathcal{R}'} r' := r \downarrow_{\mathcal{R}'}$ if $\ell = \ell'$ then $\mathcal{R}' := \mathcal{R}' \cup \{\ell' \to r'\}$ else $\mathcal{C} := \mathcal{C} \cup \{\ell' \approx r'\}$ $\mathcal{R} := \mathcal{R}'$ $\mathcal{C} := \mathcal{C} \cup \{e \in CP(\mathcal{R}) \mid \alpha \to \beta \text{ was used to generate } e\}$	

7/34

Example		
$\begin{array}{lll} g(b) &\approx & g(b) \\ f(b) &\approx & g(f(a)) \end{array}$	$\begin{array}{rcl} f(f(x)) & \to & g(x) \\ g(a) & \to & b \\ f(g(x)) & \to & g(f(x)) \\ f(b) & \to & g(f(a)) \end{array}$	
• LPO with precedence $f > g > b > a$		

- 110	om	nlotic
		pieric

Example		
$f(f(x)) \approx g(x)$	$g(x) \rightarrow f(f(x))$	
${ m g(a)}~pprox~{ m b}$	$b \rightarrow f(f(a))$	
• LPO with precedence $b > g > f > a$		
 complete and reduced TRS 		

AM & FvR	ISR 2010 – lecture 6	9/34
Efficient Completion		
Example		
f(f(a)) pprox b	$g(x) \rightarrow f(f(x))$	
g(a)~pprox b	$f(f(a)) \ \to \ b$	
• LPO with precedence g > f 2	> b > a	
• complete and reduced TRS		

AM & FvR	ISR 2010 – lecture 6	10/34
Efficient Completion		
Theorem		
if complete reduced Th	RSs ${\mathcal R}$ and ${\mathcal S}$ satisfy	
$1 \stackrel{*}{\longleftrightarrow} = \stackrel{*}{\longleftrightarrow} {\underset{\mathcal{S}}{\longrightarrow}} $		
2 \mathcal{R} and \mathcal{S} are co	mpatible with same reduction order	
then $\mathcal{R} = \mathcal{S}$ (modulo v	variable renaming)	

Outline

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

ISR 2010 – lecture 6	13/34
	ISR 2010 – lecture 6

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

Example (Cola Gene Puzzle)

$\mathsf{ES}\; \mathcal{E}$

 $\mathsf{TCAT} \approx \mathsf{T} \qquad \mathsf{GAG} \approx \mathsf{AG} \qquad \mathsf{CTC} \approx \mathsf{TC} \qquad \mathsf{AGTA} \approx \mathsf{A} \qquad \mathsf{TAT} \approx \mathsf{CT}$

TRS \mathcal{R}

 $\mathsf{GA} \to \mathsf{A} \qquad \mathsf{A}\mathsf{GT} \to \mathsf{A}\mathsf{T} \qquad \mathsf{A}\mathsf{T}\mathsf{A} \to \mathsf{A} \qquad \mathsf{CT} \to \mathsf{T} \qquad \mathsf{T}\mathsf{A}\mathsf{T} \to \mathsf{T} \qquad \mathsf{T}\mathsf{CA} \to \mathsf{T}\mathsf{A}$

- ${\mathcal R}$ is reduced and complete
- $\stackrel{*}{\longleftrightarrow} = \stackrel{*}{\longleftrightarrow} \mathcal{R}$
- (milk gene) TAGCTAGCTAGCT $\stackrel{*}{\underset{\mathcal{E}}{\longleftrightarrow}}$ CTGACTGACT (cola gene)

TAGCTAGCTAGCT $\xrightarrow{!}{\mathcal{R}}$ T $\xleftarrow{!}{\mathcal{R}}$ CTGACTGACT

• (milk gene) TAGCTAGCTAGCT $\xleftarrow{*_\ell}{\mathcal{E}}$ CTGCTACTGACT (mad cow retrovirus)

ISR 2010 - lecture 6

$$\mathsf{TAGCTAGCTAGCT} \xrightarrow{!} \mathsf{T} \neq \mathsf{TGT} \xleftarrow{!}_{\mathcal{R}} \mathsf{CTGCTACTGACT}$$

AM & FvR

14/34

Abstract Completion

Definition		
set of	equations ${\cal E}$	set of rewrite rules ${\cal R}$ reduction order $>$
inference syst	em \mathcal{SC} (standard	completion) consists of six rules
delete	$\frac{\mathcal{E} \cup \{\mathbf{s} \approx \mathbf{s}\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$	
compose	$\frac{\mathcal{E}, \mathcal{R} \cup \{ s \to t \}}{\mathcal{E}, \mathcal{R} \cup \{ s \to u \}}$	$\text{if } t \to_{\mathcal{R}} u$
simplify	$\frac{\mathcal{E} \cup \{s \approx t\}, \mathcal{R}}{\mathcal{E} \cup \{s \approx u\}, \mathcal{R}}$	if $t \to_{\mathcal{R}} u$
orient	$\frac{\mathcal{E} \cup \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{s \to t\}}$	if $s > t$
collapse	$\frac{\mathcal{E}, \mathcal{R} \cup \{\mathbf{t} \to \mathbf{s}\}}{\mathcal{E} \cup \{\mathbf{u} \approx \mathbf{s}\}, \mathcal{R}}$	if $t \to_{\mathcal{R}} u$ using $\ell \to r \in \mathcal{R}$ with $t \triangleright \ell$
deduce	$\frac{\mathcal{E},\mathcal{R}}{\mathcal{E}\cup\{\mathbf{s}\approx \mathbf{t}\},\mathcal{R}}$	$ \text{if } s \leftarrow_{\mathcal{R}} u \rightarrow_{\mathcal{R}} t $

ISR 2010 - lecture 6

AM & FvR

Example

 $s(x) + s(y+0) \triangleright s(x) + y$ $x + x \triangleright x + y$ $x + y \not \triangleright x + x$

Lemmata

- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{SC}} (\mathcal{E}', \mathcal{R}')$ and $\mathcal{R} \subseteq >$ then $\mathcal{R}' \subseteq >$
- if $(\mathcal{E}, \mathcal{R}) \vdash_{\mathcal{SC}} (\mathcal{E}', \mathcal{R}')$ then $\xleftarrow{*}{\mathcal{E} \cup \mathcal{R}} = \xleftarrow{*}{\mathcal{E}' \cup \mathcal{R}'}$

Definition

 $\mathcal{E}_{\infty} = \bigcup_{i \ge 0} \mathcal{E}_i$ and $\mathcal{R}_{\infty} = \bigcup_{i \ge 0} \mathcal{R}_i$

Lemmata • $\mathcal{R}_{\omega} \subseteq \mathcal{R}_{\infty} \subseteq >$ • $\xleftarrow{*}{\mathcal{E}} = \xleftarrow{*}{\mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}}$ AM & FvR ISR 2010 - lecture 6 19/

Definitions

• completion procedure is program that takes as input set of equations \mathcal{E} and reduction order > and generates (finite or infinite) run

$$(\mathcal{E}_0, \mathcal{R}_0) \vdash_{\mathcal{SC}} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{\mathcal{SC}} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{\mathcal{SC}} \cdots$$

i≥0 j≥i

with $\mathcal{E}_0 = \mathcal{E}$ and $\mathcal{R}_0 = \emptyset$

- \mathcal{E}_{ω} is set of persistent equations: $\mathcal{E}_{\omega} = \bigcup \bigcap \mathcal{E}_{j}$
- \mathcal{R}_{ω} is set of persistent rules
- run succeeds if $\mathcal{E}_\omega = arnothing$ and \mathcal{R}_ω is confluent and terminating
- run fails if $\mathcal{E}_{\omega} \neq \varnothing$
- completion procedure is correct if every run that does not fail succeeds

Question

how to guarantee correctness ?

AM & FvR

ISR 2010 – lecture 6

18/34

Abstract Completion

Two Questions

non-failing run $(\mathcal{E}_0, \mathcal{R}_0) \vdash_{\mathcal{SC}} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{\mathcal{SC}} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{\mathcal{SC}} \cdots$

1 is \mathcal{R}_{ω} confluent ?

$$2 \quad \stackrel{*}{\longleftrightarrow_{\mathcal{R}_{\infty} \cup \mathcal{R}_{\infty}}} = \stackrel{*}{\longleftrightarrow_{\mathcal{R}_{\omega}}} 2$$

Definitions

• run $(\mathcal{E}_0, \mathcal{R}_0) \vdash_{\mathcal{SC}} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{\mathcal{SC}} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{\mathcal{SC}} \cdots$ is fair if

 $\mathsf{CP}(\mathcal{R}_\omega) \subseteq igcup_{i \geqslant 0} \mathcal{E}_i$

• completion procedure is fair if every run that does not fail is fair

Theorem

every fair completion procedure is correct

Remark

strict encompassment condition in collapse rule cannot be dropped

$$\begin{array}{l} \text{collapse} \quad \ \frac{\mathcal{E}, \mathcal{R} \cup \{t \to s\}}{\mathcal{E} \cup \{u \approx s\}, \mathcal{R}} \quad \ \text{if } t \to_{\mathcal{R}} u \text{ using } \ell \to r \in \mathcal{R} \text{ with } t \triangleright \ell \end{array}$$

xample
$a \rightarrow b$
$g(x) \ o x$
$f(x,c) \rightarrow x$
$f(x,g(y)) \ o \ f(g(x),y)$
$f(c,y) \ o$ a
• LPO with precedence $f > a > g > c > b$

ISR 2010 – lecture 6

AM & FvR

Proof Orders

Proof Orders

Outline

- Efficient Completion
 Cola Gene Puzzle
 Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

AM & F	FvR ISR 2010 – lecture 6	22/34	
Proof C	Inders		
	set of equations ${\mathcal E}$ set of rewrite rules ${\mathcal R}$ reduction order $>$		
_		_	
Det	finitions		
•	• proof of $s \approx t$ is sequence (u_1, \ldots, u_n) of terms such that		
	• $s = u_1$		
	• $t = u_n$		
	• for all $1 \leqslant i < n$ $u_i \to_{\mathcal{R}} u_{i+1}$ or $u_i \leftarrow_{\mathcal{R}} u_{i+1}$ or $u_i \leftrightarrow_{\mathcal{E}} u_{i+1}$		
• rewrite proof is proof (u_1, \ldots, u_n) such that			
• $u_i \rightarrow_{\mathcal{R}} u_{i+1}$ for all $1 \leqslant i < j$			
	• $u_i \leftarrow_{\mathcal{R}} u_{i+1}$ for all $j \leq i < n$		
	for some $1 \leqslant j \leqslant n$		
•	• two proofs (s_1, \ldots, s_n) and (t_1, \ldots, t_n) are equivalent if $s_1 = t_1$ and $s_n = t_n$		

21/34

Definitions

- complexity of proof (u_1, \ldots, u_n) is multiset $\{c(u_1, u_2), \ldots, c(u_{n-1}, u_n)\}$
- complexity of proof step (u_i, u_{i+1}) is triple

 $c(u_i, u_{i+1}) = \begin{cases} (\{u_i, u_{i+1}\}, -, -) & \text{if } u_i \leftrightarrow_{\mathcal{E}} u_{i+1} \\ (\{u_i\}, \ell, r) & \text{if } u_i \rightarrow_{\mathcal{R}} u_{i+1} \text{ using rule } \ell \rightarrow r \\ (\{u_{i+1}\}, \ell, r) & \text{if } u_i \leftarrow_{\mathcal{R}} u_{i+1} \text{ using rule } \ell \rightarrow r \end{cases}$

- order \gg on proof steps: lexicographic combination of
 - >_{mul} multiset extension of >
 - **b** strict encompassment
 - >

Lemma

≫_{mul} is a well-founded order on proofs

AM & FvR

ISR 2010 - lecture 6

Proof Orders

Theorem

 $\forall \textit{ non-failing and fair run } (\mathcal{E}_0, \mathcal{R}_0) \vdash_{\mathcal{SC}} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{\mathcal{SC}} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{\mathcal{SC}} \cdots$

•
$$\stackrel{*}{\longleftrightarrow} \stackrel{\to}{\longleftrightarrow} \stackrel{\to}{\longrightarrow} \stackrel{\to}{\longrightarrow} \stackrel{\to}{\longleftrightarrow} \stackrel{\to}{\longleftarrow} \stackrel{\to}{\longleftarrow} \stackrel{\to}{\longleftarrow} \stackrel{\to}{\longleftarrow} \stackrel{\to}{\longleftarrow} \stackrel{\to}{\longrightarrow} \stackrel{\to}{\to} \stackrel{$$

• \mathcal{R}_{ω} is complete

Corollary

every fair completion procedure is correct

Proof Orders

non-failing and fair run \mathcal{S} : $(\mathcal{E}_0, \mathcal{R}_0) \vdash_{\mathcal{SC}} (\mathcal{E}_1, \mathcal{R}_1) \vdash_{\mathcal{SC}} (\mathcal{E}_2, \mathcal{R}_2) \vdash_{\mathcal{SC}} \cdots$

Lemma

 $\forall \text{ proof } P \text{ in } \mathcal{E}_{\infty} \cup \mathcal{R}_{\infty} \text{ that is no rewrite proof in } \mathcal{R}_{\omega} \\ \exists \text{ equivalent proof } Q \text{ in } \mathcal{E}_{\infty} \cup \mathcal{R}_{\infty} \text{ such that } P \gg_{mul} Q$

Proof Sketch

three cases:

1 *P* contains step using equation $\ell \approx r \in \mathcal{E}_{\infty}$

 $\ell \approx r \notin \mathcal{E}_{\omega}$: consider how equation $\ell \approx r$ is removed in S

2 *P* contains step using rule $\ell \to r \in \mathcal{R}_{\infty} \setminus \mathcal{R}_{\omega}$

 $\ell
ightarrow r \notin \mathcal{R}_{\omega}$: consider how rule $\ell
ightarrow r$ is removed in \mathcal{S}

3 P contains peak using rules from \mathcal{R}_{ω}

use critical pair lemma

AM & FvR

ISR 2010 - lecture 6

0/34

Critical Pair Criteria

Outline

• Efficient Completion

- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

Fact

 $\mathsf{CP}(\mathcal{R}_{\omega}) \subseteq \mathcal{E}_{\infty}$ ensures correcteness

Question

are all critical pairs in $CP(\mathcal{R}_{\omega})$ needed ?

Definitions

- critical pair criterion is mapping CPC on sets of equations such that $CPC(\mathcal{E}) \subseteq CP(\mathcal{E})$
- run (E₀, R₀) ⊢_{SC} (E₁, R₁) ⊢_{SC} (E₂, R₂) ⊢_{SC} ··· is fair with respect to critical pair criterion CPC if CP(R_ω) \ CPC(E_∞ ∪ R_∞) ⊆ E_∞
- critical pair criterion CPC is correct if R_ω is confluent and terminating for every non-failing run (E₀, R₀) ⊢_{SC} (E₁, R₁) ⊢_{SC} (E₂, R₂) ⊢_{SC} ··· that is fair with respect to critical pair criterion CPC

```
AM & FvR
```

ISR 2010 – lecture 6

Critical Pair Criteria

Lemma

critical pair criterion CCP is correct

Question

how to check compositeness ?

Definition

- critical pair s ← ⋊ → t originating from overlap (l₁ → r₁, p, l₂ → r₂) with mgu σ is unblocked if xσ is reducible for some x ∈ Var(l₁) ∪ Var(l₂)
- critical pair s ← ⋊ → t originating from overlap (l₁ → r₁, p, l₂ → r₂) with mgu σ is reducible if proper subterm of l₁σ is reducible

Lemma

- every unblocked critical pair is composite
- every reducible critical pair is composite

31/34

Definitions

• peak $P: s \leftarrow_{\mathcal{R}} u \rightarrow_{\mathcal{R}} t$ is composite if there exist proofs

$$Q_1: u_1 \stackrel{*}{\longleftrightarrow} u_2 \quad \cdots \quad Q_{n-1}: u_{n-1} \stackrel{*}{\longleftrightarrow} u_n$$

such that

- *s* = *u*₁
- $t = u_n$
- $\forall 1 \leq i \leq n \quad u > u_i$
- $\forall 1 \leq i < n \quad P \gg_{mul} Q_i$
- critical pair $s \leftarrow \rtimes \rightarrow t$ is composite if corresponding peak $s \leftarrow \cdot \rightarrow t$ is composite

Definition

composite critical pair criterion: $CCP(\mathcal{E}) = \{s \approx t \in CP(\mathcal{E}) \mid s \approx t \text{ is composite}\}$

```
AM & FvR
```

ISR 2010 – lecture 6

30/34

Critical Pair Criteria

Example

TRS

 $e^{-} \rightarrow e \qquad x/e \rightarrow x$ $x^{--} \rightarrow x \qquad e/x \rightarrow x$ $x \cdot (x^{-} \cdot y) \rightarrow y \qquad (x/y^{-})/y \rightarrow x$ $x^{-} \rightarrow e/x \qquad z/(z^{-}/y)^{-} \rightarrow y^{-}$

critical pair

 $y/e^- \leftarrow \rtimes \rightarrow y$

originating from overlap

$$\langle x/e \rightarrow x, \epsilon, (y/z^{-})/z \rightarrow y \rangle$$

is reducible because $(y/e^-)/e$ is reducible at position 12

Outline

- Efficient Completion
- Cola Gene Puzzle
- Abstract Completion
- Proof Orders
- Critical Pair Criteria
- Further Reading

urther Reading

Canonical Equational Proofs

Leo Bachmair

Progress in Theoretical Computer Science, Birkhäuser, 1991

Equational Inference, Canonical Proofs, and Proof Orderings
 Leo Bachmair and Nachum Dershowitz
 J.ACM 41(2), pp. 236–276, 1994

Completion Tools

- Waldmeister
- Slothrop
- mkbTT
- KBCV

AM & FvR

AM & FvR	ISR 2010 – lecture 6

33/34

ISR 2010 – lecture 6

34/34