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TRS R ={9,0,0,®,6,6} TRS § ={9,0,0,®,0,®,?,®,®, 0}
@ Efficient Completion ® X110 — x ® -0 — x
® x+s(y) = s(x+y) @ x—s(y) — p(x—y)
@ Cola Gene Puzzle ® p(s(x)) — x ® s(p(x)) — x
@ (X+p(y)) — X+y p(x—p(y)) — x—vy
@ Abstract Completion ® +py) — p(x+y) x—ply) — s(x—y)
rewrite rules @ and ® are redundant:
@ Proof Orders
@
s(x+p(y)) ——— x+y p(x — p(y)) — = x —y
@ Critical Pair Criteria
o 6 \ /
@ Further Reading s(p(x + v)) p(s(x — y))
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http://www.utrechtsummerschool.nl/index.php?type=courses&code=H16
http://www.utrechtsummerschool.nl/index.php?type=courses&code=H16
http://cl-informatik.uibk.ac.at/~ami/10isr/
http://cl-informatik.uibk.ac.at/~ami
http://www.cs.vu.nl/~femke

Observation

o less rewrite rules = less critical pairs

e TRS without redundancy = reduced TRS

Definition
TRS R is reduced if forall { - re R

r is normal form with respect to R

£ is normal form with respect to R\ {£ — r}
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simplification after completion J

V complete TRS R 3 complete reduced TRS S such that % = %

Proof Sketch (construction)

R ={l—-rlg|l—-reR}
S ={l—-reR'|LeNF(R'\{{—r})}

more efficient: simplification during completion J
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TRS R ={9,0,®,®,®,®} TRS § = {9,9,®,®,0,0,0,®,®, ®}

@ x+0— x ® x—0— x
®  x+s(y) —>S(X+y) ® x —s(y) — p(x —y)
® p(s(x)) — ® s(p(x)) — x
@ s(x+p(y ))—>X+y p(x —p(y)) = x—y
©®  x+p(y)—px+y) x—p(y) = s(x—y)

e R is reduced

e S is not reduced
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Knuth-Bendix Completion Procedure (More Efficient Version)

input ES £ and reduction order >

output  complete reduced TRS R such that % = %

R=2 C=¢&

while C # @ do
choose s~te C C:=C\{s~t} s :=s|g t :=tlg
if s’ # t’ then

if s/ > t’ then a:=s p=t
elseif t' > s’ then «a:=t (:=5¢
else failure

R =RU{a— G}
forall £ — r € R do
R =R'\{{—r} V:=Llr 1 :=rlg
if (=1 then R":=R'U{l/ = r'}else C:=CU{l' ="'}
R: =R
C:=CU{ee€CP(R)| a — [ was used to generate e}
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g(b) ~ g(b) f(f(x)) — &(x)
f(b) ~ g(f(a)) gl@a) — b
fla(x)) — &(f(x))
f(b) — &(f(a))
e | PO with precedence f > g >b > a
e complete and reduced TRS
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f(f(a)) =~
g(a)

2
o T
=

R @
E K
N N

e L PO with precedence g > f>b > a

e complete and reduced TRS
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f(f(x)) ~ &(x) g(x) — f(f(x))
g(a) = b b — f(f(a))

Q

e | PO with precedence b > g > f > a

e complete and reduced TRS
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if complete reduced TRSs R and S satisfy

R
R S

R and S are compatible with same reduction order

then R = S (modulo variable renaming)
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Outline Example (Cola Gene Puzzle)

ES &
TCAT~T GAG =~ AG CTC~TC AGTA ~ A TAT =~ CT

TRS R

GA—-A AGT - AT ATA—A CT—=T TAT—=T TCA—-TA
@ Cola Gene Puzzle

e R is reduced and complete
° <i> = (i)
£ R
e (milk gene) TAGCTAGCTAGCT % CTGACTGACT (cola gene)
TAGCTAGCTAGCT —» T — CTGACTGACT
e (milk gene) TAGCTAGCTAGCT <7ZL> CTGCTACTGACT (mad cow retrovirus)

TAGCTAGCTAGCT % T#TGT % CTGCTACTGACT
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Outline Definition
set of equations £ set of rewrite rules R reduction order >
inference system SC (standard completion) consists of six rules
EU{s~s} R
E,R
compose SRl — ) if t u
e ——— —)R
. E,RU{s
@ Abstract Completion 5= ol
EU{s=t},R
simplify _— if t >r u
P EU{s=u},R R
EU{s~t},R
orient # if s>t
E,RU{s — t}
E,RU{t— s}
collapse - — if t >» u using { — r € R with t > ¢
P EU{u~rs},R R &
E,R
deduce _—T ifse—ru—pt
EU{s~t},R RETR
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Definitions

° [> encompassment
st <= dposition p 3 substitution o: s|, = to
° > strict encompassment

st < skt A (tks)

s(x) +s(y+0) > s(x)+y X+XB>XFYy X+Yy¥x+x

set of equations & set of rewrite rules R reduction order >
run (€0, Ro) Fsc (€1,R1) Fse (€2, R2) Fsc -+

o if(E,R) Fsc (§/,R') and R C > then R’ C >

[ / / * _ *
* if(&,R) Fsc (£',R') thenm_ o

fw=|J& and Ro=|JR

i>0 i>0

V.
Lemmata

®* Rv CRec &>
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e completion procedure is program that takes as input set of equations £ and
reduction order > and generates (finite or infinite) run
(&0, Ro) Fsc (€1,R1) Fse (€2,R2) Fse -+
with & = € and Ry = @
e &, s set of persistent equations: &, = U ﬂ &
e R, is set of persistent rules i20 jzi

e run succeeds if £, = @ and R, is confluent and terminating
e run fails if &, # @

e completion procedure is correct if every run that does not fail succeeds

how to guarantee correctness ?
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Two Questions

non-failing run (£, Ro) Fsc (€1,R1) Fsc (€2, R2) Fsc -

is R, confluent ?

* *

— 4

EcoUR o R

® run (80,7?,0) |—5c (51,R1) l_SC (52,7?,2) |—5c ... s fair if

CP(R,)C | &

i>0

e completion procedure is fair if every run that does not fail is fair

every fair completion procedure is correct
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strict encompassment condition in collapse rule cannot be dropped

collapse %{{Li—{;s_}:;i if t >x uusing { — r € R with ¢t >/
a —b
g(x) — x
f(x,c) — x
f(x;g(v)) — fg(x),y)
flc,y) —a
e LPO with precedence f >a>g>c>b
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Completion is Proof Normalization

(&,R) proof in (€, R)

O\a_)o(_)o/"
W

T
\\0/"

fair derivation rewrite proof

I

I

I

I
*
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@ Proof Orders
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set of equations £ set of rewrite rules R reduction order > J

e proof of s & t is sequence (us, ..., u,) of terms such that
® S — Ul
e = un

o forall1<i<n wuj—gr U1 OF U <R Uyl OF U<g U
e rewrite proof is proof (uy,. .., uy,) such that

o ui —p Uy forall 1<i<y
i<n

AN/

® i «<—p Uy forall j
forsome 1 <j<n

® two proofs (si,...,s,) and (ti,...,t,) are equivalent if sy = t; and s, = t,

v
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e complexity of proof (uy,...,u,) is multiset {c(uy, u2), ..., c(Up—1,un)}
e complexity of proof step (u;, ujy1) is triple
({ui, vita}, — =) if ui &g Ui

C(ui7ui+1) = ({U,’},f, r)
{uit1}, 4, r) if uj <R ujy1 using rule £ — r

if uj =R ujy1 using rule £ — r

e order > on proof steps: lexicographic combination of
e > . multiset extension of >
o > strict encompassment
° >

>l Is a well-founded order on proofs
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Y non-failing and fair run (€, Ro) Fsc (€1, R1) Fse (&2, R2) Fse - --

* *
[ ] =]

EseUMRss Rw

o R, is complete

every fair completion procedure is correct
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non-failing and fair run S: (&, Ro) Fsc (1, R1) Fsc (&2, R2) Fse - J

Y proof P in £, U R that is no rewrite proof in R,
3 equivalent proof Q in Es, U Ry such that P >, Q

Proof Sketch

three cases:
P contains step using equation £ ~ r € £
lr~r¢é&,: consider how equation £ ~ r is removed in S
P contains step using rule £ — r € Roo \ Ro,
{—r¢R,: consider how rule £ — r is removed in S
P contains peak using rules from R,

use critical pair lemma
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Outline

@ Critical Pair Criteria
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CP(R.) C € ensures correcteness

are all critical pairs in CP(R,,) needed ?

| A\

Definitions

e critical pair criterion is mapping CPC on sets of equations such that
CPC(&) C CP(&)

e run (&, Ro) Fsc (&1,R1) Fse (£2,R2) Fsc --- is fair with respect to
critical pair criterion CPC if CP(R,) \ CPC(Ex UR ) C Exo

e critical pair criterion CPC is correct if R, is confluent and terminating for
every non-failing run (&, Ro) Fsc (€1, R1) Fse (€2,R2) Fsc -+ thatis
fair with respect to critical pair criterion CPC
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critical pair criterion CCP is correct

how to check compositeness ?

Definition

e critical pair s < x — t originating from overlap (¢{; — r1, p,f> — r2) with
mgu o is unblocked if xo is reducible for some x € Var(¢1) U Var(¢)

e critical pair s < x — t originating from overlap ({1 — r1, p, > — r2) with
mgu o is reducible if proper subterm of ¢;0 is reducible

e cvery unblocked critical pair is composite

e cvery reducible critical pair is composite
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e peak P: s «x u—px tis composite if there exist proofs

* *
Qi up — Qn—1: Up—1 < Uy

such that
e S — ui
e = un

e V1<i<n u>uy
e V1Ki<n P>>muIQi

e critical pair s < X — t is composite if corresponding peak s «— - — t is
composite

Definition

composite critical pair criterion: CCP(E) = {s~t € CP(€) | s & t is composite}
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TRS
e e x/e — x
X T —x e/x — x
x-(x"-y)—y (x/y")y — x
X~ —e/x z/(z7/y)” =y~
critical pair
ylem —x—y

originating from overlap
(xle—=x, 6 (y/z7)/z—y)

is reducible because (y/e~)/e is reducible at position 12
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Canonical Equational Proofs
Leo Bachmair

Progress in Theoretical Computer Science, Birkhduser, 1991

Equational Inference, Canonical Proofs, and Proof Orderings
Leo Bachmair and Nachum Dershowitz
J.ACM 41(2), pp. 236-276, 1994

Completion Tools

e \Waldmeister
® Slothrop
. o mkbTT
@ Further Reading
e KBCV
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http://doi.acm.org/10.1145/174652.174655
http://www.mpi-inf.mpg.de/~hillen/waldmeister/
http://userweb.cs.utexas.edu/~iwehrman/slothrop.html
http://cl-informatik.uibk.ac.at/software/mkbtt/
http://cl-informatik.uibk.ac.at/software/kbcv/
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