
ISR 2010

3rd
International
School
on
RewritingIntroduction to Term Rewriting

lecture 6

Aart Middeldorp and Femke van Raamsdonk

Institute of Computer Science
University of Innsbruck

Department of Computer Science
VU Amsterdam

Overview

Sunday

introduction, examples, abstract rewriting, equational reasoning, term rewriting

Monday

termination, completion

Tuesday

completion, termination

Wednesday

confluence, modularity, strategies

Thursday

exam, advanced topics

AM & FvR ISR 2010 – lecture 6 2/34

Overview

Outline

Efficient Completion

Cola Gene Puzzle

Abstract Completion

Proof Orders

Critical Pair Criteria

Further Reading

AM & FvR ISR 2010 – lecture 6 3/34

Efficient Completion

Example

TRS R = {À,Á,Â,Ã,Ä,Å} TRS S = {À,Á,Â,Ã,Ä,Å,Æ,Ç,È,É}

À x + 0 → x Á x − 0 → x
Â x + s(y) → s(x + y) Ã x − s(y) → p(x − y)
Ä p(s(x)) → x Å s(p(x)) → x
Æ s(x + p(y)) → x + y Ç p(x − p(y)) → x − y
È x + p(y) → p(x + y) É x − p(y) → s(x − y)

rewrite rules Æ and Ç are redundant:

s(x + p(y)) x + y

s(p(x + y))

Æ

È Å

p(x − p(y)) x − y

p(s(x − y))

Ç

É Ä

AM & FvR ISR 2010 – lecture 6 4/34

http://www.utrechtsummerschool.nl/index.php?type=courses&code=H16
http://www.utrechtsummerschool.nl/index.php?type=courses&code=H16
http://cl-informatik.uibk.ac.at/~ami/10isr/
http://cl-informatik.uibk.ac.at/~ami
http://www.cs.vu.nl/~femke


Efficient Completion

Observation

• less rewrite rules =⇒ less critical pairs

• TRS without redundancy = reduced TRS

Definition

TRS R is reduced if for all `→ r ∈ R

1 r is normal form with respect to R

2 ` is normal form with respect to R \ {`→ r}

AM & FvR ISR 2010 – lecture 6 5/34

Efficient Completion

Example

TRS R = {À,Á,Â,Ã,Ä,Å} TRS S = {À,Á,Â,Ã,Ä,Å,Æ,Ç,È,É}

À x + 0 → x Á x − 0 → x
Â x + s(y) → s(x + y) Ã x − s(y) → p(x − y)
Ä p(s(x)) → x Å s(p(x)) → x
Æ s(x + p(y)) → x + y Ç p(x − p(y)) → x − y
È x + p(y) → p(x + y) É x − p(y) → s(x − y)

• R is reduced

• S is not reduced

AM & FvR ISR 2010 – lecture 6 6/34

Efficient Completion

simplification after completion

Theorem

∀ complete TRS R ∃ complete reduced TRS S such that
∗←→
R

=
∗←→
S

Proof Sketch (construction)

1 R′ = { `→ r ↓R | `→ r ∈ R }

2 S = { `→ r ∈ R′ | ` ∈ NF(R′ \ {`→ r} ) }

more efficient: simplification during completion

AM & FvR ISR 2010 – lecture 6 7/34

Efficient Completion

Knuth-Bendix Completion Procedure (More Efficient Version)

input ES E and reduction order >

output complete reduced TRS R such that
∗←→
E

=
∗←→
R

R := ∅ C := E
while C 6= ∅ do

choose s ≈ t ∈ C C := C \ {s ≈ t} s ′ := s↓R t ′ := t↓R
if s ′ 6= t ′ then

if s ′ > t ′ then α := s ′ β := t ′

else if t ′ > s ′ then α := t ′ β := s ′

else failure

R′ := R∪ {α→ β}
for all `→ r ∈ R do

R′ := R′ \ {`→ r} `′ := `↓R′ r ′ := r↓R′
if ` = `′ then R′ := R′ ∪ {`′ → r ′} else C := C ∪ {`′ ≈ r ′}

R := R′
C := C ∪ {e ∈ CP(R) | α→ β was used to generate e}

AM & FvR ISR 2010 – lecture 6 8/34



Efficient Completion

Example

g(b) ≈ g(b) f(f(x)) → g(x)

f(b) ≈ g(f(a)) g(a) → b

f(g(x)) → g(f(x))

f(b) → g(f(a))

• LPO with precedence f > g > b > a

• complete and reduced TRS

AM & FvR ISR 2010 – lecture 6 9/34

Efficient Completion

Example

f(f(x)) ≈ g(x) g(x) → f(f(x))

g(a) ≈ b b → f(f(a))

• LPO with precedence b > g > f > a

• complete and reduced TRS

AM & FvR ISR 2010 – lecture 6 10/34

Efficient Completion

Example

f(f(a)) ≈ b g(x) → f(f(x))

g(a) ≈ b f(f(a)) → b

• LPO with precedence g > f > b > a

• complete and reduced TRS

AM & FvR ISR 2010 – lecture 6 11/34

Efficient Completion

Theorem

if complete reduced TRSs R and S satisfy

1
∗←→
R

=
∗←→
S

2 R and S are compatible with same reduction order

then R = S (modulo variable renaming)

AM & FvR ISR 2010 – lecture 6 12/34



Cola Gene Puzzle

Outline

Efficient Completion

Cola Gene Puzzle

Abstract Completion

Proof Orders

Critical Pair Criteria

Further Reading

AM & FvR ISR 2010 – lecture 6 13/34

Cola Gene Puzzle

Example (Cola Gene Puzzle)

ES E
TCAT ≈ T GAG ≈ AG CTC ≈ TC AGTA ≈ A TAT ≈ CT

TRS R
GA→ A AGT→ AT ATA→ A CT→ T TAT→ T TCA→ TA

• R is reduced and complete

• ∗←→
E

=
∗←→
R

• (milk gene) TAGCTAGCTAGCT
∗←→
E

CTGACTGACT (cola gene)

TAGCTAGCTAGCT
!−→
R

T
!←−
R

CTGACTGACT

• (milk gene) TAGCTAGCTAGCT 6∗←→
E

CTGCTACTGACT (mad cow retrovirus)

TAGCTAGCTAGCT
!−→
R

T 6= TGT
!←−
R

CTGCTACTGACT

AM & FvR ISR 2010 – lecture 6 14/34

Abstract Completion

Outline

Efficient Completion

Cola Gene Puzzle

Abstract Completion

Proof Orders

Critical Pair Criteria

Further Reading

AM & FvR ISR 2010 – lecture 6 15/34

Abstract Completion

Definition

set of equations E set of rewrite rules R reduction order >

inference system SC (standard completion) consists of six rules

delete
E ∪ {s ≈ s},R

E ,R

compose
E ,R∪ {s → t}
E ,R∪ {s → u}

if t →R u

simplify
E ∪ {s ≈̇ t},R
E ∪ {s ≈ u},R

if t →R u

orient
E ∪ {s ≈ t},R
E ,R∪ {s → t}

if s > t

collapse
E ,R∪ {t → s}
E ∪ {u ≈ s},R

if t →R u using `→ r ∈ R with t ·B `

deduce
E ,R

E ∪ {s ≈ t},R
if s ←R u →R t

AM & FvR ISR 2010 – lecture 6 16/34



Abstract Completion

Definitions

• ·D encompassment

s ·D t ⇐⇒ ∃ position p ∃ substitution σ : s|p = tσ

• ·B strict encompassment

s ·B t ⇐⇒ s ·D t ∧ ¬(t ·D s)

Example

s(x) + s(y + 0) ·B s(x) + y x + x ·B x + y x + y 6 ·B x + x

AM & FvR ISR 2010 – lecture 6 17/34

Abstract Completion

Definitions

• completion procedure is program that takes as input set of equations E and
reduction order > and generates (finite or infinite) run

(E0,R0) `SC (E1,R1) `SC (E2,R2) `SC · · ·

with E0 = E and R0 = ∅
• Eω is set of persistent equations: Eω =

⋃
i>0

⋂
j>i

Ej
• Rω is set of persistent rules

• run succeeds if Eω = ∅ and Rω is confluent and terminating

• run fails if Eω 6= ∅

• completion procedure is correct if every run that does not fail succeeds

Question

how to guarantee correctness ?

AM & FvR ISR 2010 – lecture 6 18/34

Abstract Completion

set of equations E set of rewrite rules R reduction order >

run (E0,R0) `SC (E1,R1) `SC (E2,R2) `SC · · ·

Lemmata

• if (E ,R) `SC (E ′,R′) and R ⊆ > then R′ ⊆ >

• if (E ,R) `SC (E ′,R′) then
∗←−−→
E∪R

=
∗←−−−→

E′∪R′

Definition

E∞ =
⋃
i>0

Ei and R∞ =
⋃
i>0

Ri

Lemmata

• Rω ⊆ R∞ ⊆ >

• ∗←−−→
E

=
∗←−−−−→

E∞∪R∞

AM & FvR ISR 2010 – lecture 6 19/34

Abstract Completion

Two Questions

non-failing run (E0,R0) `SC (E1,R1) `SC (E2,R2) `SC · · ·

1 is Rω confluent ?

2
∗←−−−−→

E∞∪R∞
=

∗←−−→
Rω

?

Definitions

• run (E0,R0) `SC (E1,R1) `SC (E2,R2) `SC · · · is fair if

CP(Rω) ⊆
⋃
i>0

Ei

• completion procedure is fair if every run that does not fail is fair

Theorem

every fair completion procedure is correct

AM & FvR ISR 2010 – lecture 6 20/34



Abstract Completion

Remark

strict encompassment condition in collapse rule cannot be dropped

collapse
E ,R∪ {t → s}
E ∪ {u ≈ s},R

if t →R u using `→ r ∈ R with t ·B `

Example

a → b

g(x) → x

f(x , c) → x

f(x , g(y)) → f(g(x), y)

f(c, y) → a

• LPO with precedence f > a > g > c > b

AM & FvR ISR 2010 – lecture 6 21/34

Proof Orders

Outline

Efficient Completion

Cola Gene Puzzle

Abstract Completion

Proof Orders

Critical Pair Criteria

Further Reading

AM & FvR ISR 2010 – lecture 6 22/34

Proof Orders

Completion is Proof Normalization

(E ,R) proof in (E ,R)

⇓

⇓

⇓

⇓

⇓

fair derivation rewrite proof

AM & FvR ISR 2010 – lecture 6 23/34

Proof Orders

set of equations E set of rewrite rules R reduction order >

Definitions

• proof of s ≈ t is sequence (u1, . . . , un) of terms such that

• s = u1

• t = un

• for all 1 6 i < n ui →R ui+1 or ui ←R ui+1 or ui ↔E ui+1

• rewrite proof is proof (u1, . . . , un) such that

• ui →R ui+1 for all 1 6 i < j

• ui ←R ui+1 for all j 6 i < n

for some 1 6 j 6 n

• two proofs (s1, . . . , sn) and (t1, . . . , tn) are equivalent if s1 = t1 and sn = tn

AM & FvR ISR 2010 – lecture 6 24/34



Proof Orders

Definitions

• complexity of proof (u1, . . . , un) is multiset {c(u1, u2), . . . , c(un−1, un)}

• complexity of proof step (ui , ui+1) is triple

c(ui , ui+1) =


({ui , ui+1},−,−) if ui ↔E ui+1

({ui}, `, r) if ui →R ui+1 using rule `→ r

({ui+1}, `, r) if ui ←R ui+1 using rule `→ r

• order � on proof steps: lexicographic combination of

• >mul multiset extension of >

• ·B strict encompassment

• >

Lemma

�mul is a well-founded order on proofs

AM & FvR ISR 2010 – lecture 6 25/34

Proof Orders

non-failing and fair run S : (E0,R0) `SC (E1,R1) `SC (E2,R2) `SC · · ·

Lemma

∀ proof P in E∞ ∪R∞ that is no rewrite proof in Rω

∃ equivalent proof Q in E∞ ∪R∞ such that P �mul Q

Proof Sketch

three cases:

1 P contains step using equation ` ≈ r ∈ E∞
` ≈ r /∈ Eω : consider how equation ` ≈ r is removed in S

2 P contains step using rule `→ r ∈ R∞ \ Rω

`→ r /∈ Rω : consider how rule `→ r is removed in S

3 P contains peak using rules from Rω

use critical pair lemma

AM & FvR ISR 2010 – lecture 6 26/34

Proof Orders

Theorem

∀ non-failing and fair run (E0,R0) `SC (E1,R1) `SC (E2,R2) `SC · · ·

• ∗←−−−−→
E∞∪R∞

=
∗←−−→
Rω

• Rω is complete

Corollary

every fair completion procedure is correct

AM & FvR ISR 2010 – lecture 6 27/34

Critical Pair Criteria

Outline

Efficient Completion

Cola Gene Puzzle

Abstract Completion

Proof Orders

Critical Pair Criteria

Further Reading

AM & FvR ISR 2010 – lecture 6 28/34



Critical Pair Criteria

Fact

CP(Rω) ⊆ E∞ ensures correcteness

Question

are all critical pairs in CP(Rω) needed ?

Definitions

• critical pair criterion is mapping CPC on sets of equations such that
CPC(E) ⊆ CP(E)

• run (E0,R0) `SC (E1,R1) `SC (E2,R2) `SC · · · is fair with respect to
critical pair criterion CPC if CP(Rω) \ CPC(E∞ ∪R∞) ⊆ E∞

• critical pair criterion CPC is correct if Rω is confluent and terminating for
every non-failing run (E0,R0) `SC (E1,R1) `SC (E2,R2) `SC · · · that is
fair with respect to critical pair criterion CPC

AM & FvR ISR 2010 – lecture 6 29/34

Critical Pair Criteria

Definitions

• peak P : s ←R u →R t is composite if there exist proofs

Q1 : u1
∗←→ u2 · · · Qn−1 : un−1

∗←→ un

such that

• s = u1

• t = un

• ∀ 1 6 i 6 n u > ui

• ∀ 1 6 i < n P �mul Qi

• critical pair s ←o→ t is composite if corresponding peak s ← · → t is
composite

Definition

composite critical pair criterion: CCP(E) = {s ≈ t ∈ CP(E) | s ≈ t is composite}

AM & FvR ISR 2010 – lecture 6 30/34

Critical Pair Criteria

Lemma

critical pair criterion CCP is correct

Question

how to check compositeness ?

Definition

• critical pair s ←o→ t originating from overlap 〈`1 → r1, p, `2 → r2〉 with
mgu σ is unblocked if xσ is reducible for some x ∈ Var(`1) ∪ Var(`2)

• critical pair s ←o→ t originating from overlap 〈`1 → r1, p, `2 → r2〉 with
mgu σ is reducible if proper subterm of `1σ is reducible

Lemma

• every unblocked critical pair is composite

• every reducible critical pair is composite

AM & FvR ISR 2010 – lecture 6 31/34

Critical Pair Criteria

Example

TRS

e− → e x/e→ x

x−− → x e/x → x

x · (x− · y)→ y (x/y−)/y → x

x− → e/x z/(z−/y)− → y−

critical pair
y/e− ←o→ y

originating from overlap

〈 x/e→ x , ε, (y/z−)/z → y 〉

is reducible because (y/e−)/e is reducible at position 12

AM & FvR ISR 2010 – lecture 6 32/34



Further Reading

Outline

Efficient Completion

Cola Gene Puzzle

Abstract Completion

Proof Orders

Critical Pair Criteria

Further Reading

AM & FvR ISR 2010 – lecture 6 33/34

Further Reading

Canonical Equational Proofs

Leo Bachmair

Progress in Theoretical Computer Science, Birkhäuser, 1991

Equational Inference, Canonical Proofs, and Proof Orderings

Leo Bachmair and Nachum Dershowitz

J.ACM 41(2), pp. 236–276, 1994

Completion Tools

• Waldmeister

• Slothrop

• mkbTT

• KBCV

AM & FvR ISR 2010 – lecture 6 34/34

http://doi.acm.org/10.1145/174652.174655
http://www.mpi-inf.mpg.de/~hillen/waldmeister/
http://userweb.cs.utexas.edu/~iwehrman/slothrop.html
http://cl-informatik.uibk.ac.at/software/mkbtt/
http://cl-informatik.uibk.ac.at/software/kbcv/

	lecture 6
	Overview
	Efficient Completion
	Cola Gene Puzzle
	Abstract Completion
	Proof Orders
	Critical Pair Criteria
	Further Reading


