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Abstract

For a hierarchy of properties of term rewriting systems related to termination we
prove relative undecidability : For implications X ⇒ Y in the hierarchy the property
X is undecidable for term rewriting systems satisfying Y . For most implications we
obtain this result for term rewriting systems consisting of a single rewrite rule.
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1 Introduction

Termination and confluence are fundamental properties of term rewriting systems (TRSs)
which are often very hard to prove. Classical results ([11, 12]) state that they are un-
decidable. Besides termination and confluence, a number of related properties are of
interest. For termination they are ordered by implication:

PT ⇒ ωT ⇒ TT ⇒ ST ⇒ NSE ⇒ SN ⇒ NL ⇒ AC
⇓

WN

The acronyms stand for polynomial termination (PT), ω-termination (ωT), total ter-
mination (TT), simple termination (ST), non-self-embeddingness (NSE), termination
(strong normalization, SN), weak normalization (WN), non-loopingness (NL), and acyclic-
ity (AC). We call this the termination hierarchy.

Apart from polynomial termination, all properties in the termination hierarchy are
known to be undecidable ([11, 22, 19, 26, 7]), sometimes even for single rules ([3, 19, 15]).
In this paper we show the stronger result of relative undecidability : For all implications
X ⇒ Y in the hierarchy except one—PT ⇒ ωT—we prove that the property X is
undecidable for TRSs satisfying Y .

We also address the question of relative undecidability for TRSs consisting of a single
rewrite rule. We show that for all implications X ⇒ Y in the termination hierarchy ex-
cept two—PT⇒ ωT and SN⇒WN—the property X is undecidable for one-rule TRSs
satisfying property Y . Dauchet [3] was the first to prove undecidability of termination
for one-rule TRSs, by means of a reduction of the uniform halting problem for Turing
machines. Middeldorp and Gramlich [19] reduced the undecidability of simple termi-
nation, non-self-embeddingness, and non-loopingness for one-rule TRSs to the uniform
halting problem for linear bounded automata. Lescanne [15] showed that Dauchet’s re-
sult can also be obtained by a reduction of Post’s Correspondence Problem (PCP). The
results presented in this paper are stronger because (1) we obtain the same undecidabil-
ity results for (much) smaller classes of one-rule TRSs, (2) we show the undecidability
of total termination for one-rule (simply terminating) TRSs—solving problem 87 in [5]
and rectifying a conjecture in [26]—and (3) we show the undecidability of ω-termination
for one-rule totally terminating TRSs. The latter strengthens Geser’s [7] result that
ω-termination is an undecidable property of totally terminating TRSs, to the one-rule
case.

We obtain our relative undecidability results by using PCP in the following uniform
way: First we construct a TRS U(P,Q) parameterized by a PCP instance P and a TRS
Q. The TRS U(P,Q) has the following properties: (1) the left-hand sides of its rewrite
rules are the same, (2) if P admits no solution then U(P,Q) is ω-terminating, and (3) if
P admits a solution then U(P,Q) simulates Q. Because of property (1) every U(P,Q)
can be compressed into a one-rule TRS S(P,Q) without affecting (2) and (3). That is,
if P admits no solution, then S(P,Q) is ω-terminating and if P admits a solution, then
S(P,Q) simulates Q. Finally, for all implications X ⇒ Y in the termination hierarchy
except PT ⇒ ωT and SN ⇒ WN we define a suitable TRS Q such that S(P,Q) always
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satisfies Y and satisfies X if and only if P admits no solution. The advantage of this
approach is that the complicated part—the construction and properties of the TRS
U(P,Q)—is independent of the involved level in the termination hierarchy.

The paper is organized as follows. In the next section we give the definition of
rewriting and PCP. The properties in the termination hierarchy are defined in Section 3.
In Section 4 we define the TRS U(P,Q) and show that it simulates Q whenever P admits
a solution. In Section 5 we present the difficult proof of ω-termination of U(P,Q) for
PCP instances P that admit no solution. In the final few sections we instantiate U(P,Q)
and S(P,Q) by suitable TRSs Q in order to conclude the desired relative undecidability
results.

Some of the results in this paper were first reported in our earlier papers [9] and [10].

2 Preliminaries

For preliminaries on rewriting the reader is referred to [1, 13, 4]. We recall here the
following definitions. A rewrite rule l → r is called non-erasing (variable-preserving) if
the sets (multisets) of variables (variable occurrences) in l and r are the same. We call
l → r collapsing if r is a variable and duplicating if some variable occurs more often in
r than in l. A TRS is non-erasing (variable-preserving, non-collapsing, non-duplicating)
if all its rewrite rules are so.

For the proofs we use Post’s Correspondence Problem (PCP), which can be stated
as follows:

given a finite alphabet Γ and a finite set P ⊂ Γ+×Γ+, is there some natural
number n > 0 and (αi, βi) ∈ P for i = 1, . . . , n such that α1α2 · · ·αn =
β1β2 · · ·βn?

This problem is known to be undecidable even in the case of a two-letter alphabet
(Post [23]). The set P is called an instance of PCP, the string α1α2 · · ·αn = β1β2 · · ·βn
a solution for P . Without loss of generality we require P to be non-empty. Matiyasevich
and Senizergues [18] recently showed that PCP is undecidable even when restricted to
instances consisting of seven pairs.

3 The Termination Hierarchy

Before we can define the properties in the termination hierarchy, we need a few pre-
liminary definitions. Throughout the following we assume that F is a finite signa-
ture containing at least one constant. A (strict partial) order > on the set T (F) of
ground terms is called monotonic if for all f ∈ F and t, u ∈ T (F) with t > u we have
f(. . . , t, . . . ) > f(. . . , u, . . . ). A TRS R over F and an order > on T (F) are called com-
patible if t > u for all rewrite steps t→R u. For compatibility with a monotonic order it
suffices to check that lσ > rσ for all rules l→ r in R and all ground substitutions σ. It
is well-known that a TRS is terminating if and only if it is compatible with a monotonic
well-founded order. An F-algebra consists of a set A and for every f ∈ F a function
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fA : An → A, where n is the arity of f . A monotone F-algebra (A,>) is an F-algebra A
for which the underlying set is provided with an order > such that every algebra opera-
tion is monotonic in all of its arguments. More precisely, for all f ∈ F and a, b ∈ A with
a > b we have fA(. . . , a, . . . ) > fA(. . . , b, . . . ). A monotone F-algebra (A,>) is called
well-founded if > is a well-founded order. Every monotone F-algebra (A,>) induces an
order >A on the set of terms T (F ,X ) as follows: t >A u if and only if [α](t) > [α](u)
for all assignments α : X → A. Here [α] denotes the homomorphic extension of α, i.e.,
[α](x) = α(x) for x ∈ X and [α](f(t1, . . . , tn)) = fA([α](t1), . . . , [α](tn)) for all n-ary
f ∈ F and t1, . . . , tn ∈ T (F ,X ). A TRS R and a monotone algebra (A,>) are called
compatible if R and >A are compatible. It is well-known that a TRS is terminating if
and only if it is compatible with a well-founded monotone algebra. The set of rewrite
rules f(x1, . . . , xn) → xi for all f ∈ F and all i = 1, . . . , n, where n > 1 is the arity of
f , is denoted by Emb(F), or simply by Emb when the signature F can be inferred from
the context.

The properties in the termination hierarchy are defined as follows. A TRS is called
terminating if it does not allow an infinite rewrite sequence. A TRS R over a signa-
ture F is called simply terminating if R ∪ Emb(F) is terminating, or, equivalently (by
Kruskal’s Tree Theorem [14]), R∪Emb(F) has no cycle. A well-known sufficient condi-
tion for simple termination of terminating TRSs is length-preservingness, which means
that |lσ| = |rσ| for all rules l → r and all ground substitutions σ. Here |t| denotes
the number of (occurrences of) function symbols in t. Note that length-preservingness
is equivalent to the combination of variable-preservingness and the requirement that
|l| = |r| for all rules l → r. A TRS over a signature F is called totally terminating if
it is compatible with a monotonic well-founded total order on T (F), or, equivalently, it
is compatible with >A for some well-founded monotone F-algebra (A,>) in which the
order > is total. A TRS over a signature F is called ω-terminating if it is compatible
with some well-founded monotone F-algebra (A,>) such that A is a subset of the set N
of natural numbers and > is the restriction of the usual order on N to A. If, in addition,
every interpretation function fA is a polynomial, we say that the TRS is polynomially
terminating. Our definitions of ω-termination and polynomial termination differ from
the ones in [25] in that we allow an arbitrary subset of N as carrier of the compatible
algebra. For ω-termination this makes no difference: If A is an infinite subset of N then
there exists exactly one monotonic bijection φ : A → N. Let ψ be its (monotonic) in-
verse and define fN(x1, . . . , xn) = φ(fA(ψ(x1), . . . , ψ(xn))) for every function symbol f .
In this way we obtain a monotone algebra with carrier N. This construction preserves
all compatibility requirements, hence both definitions of ω-termination yield the same
class of TRSs. (For polynomial termination this is unclear.) A TRS R is called looping
if it admits a rewrite sequence t →+

R C[tσ] for some term t, some context C and some
substitution σ. A TRS R is called cyclic if it admits a rewrite sequence t →+

R t for
some term t. A TRS R over a signature F is called self-embedding if it admits a rewrite
sequence t →+

R u →∗Emb(F) t for some terms t and u. Recent investigations of these
notions include [2, 6, 7, 16, 17, 21, 24, 27].

Validity of most of the implications in the termination hierarchy is direct from the
definitions; only TT ⇒ ST requires some well-known argument, see e.g. [25], and NSE
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⇒ SN requires Kruskal’s theorem. None of the implications are equivalences: for all
implications X ⇒ Y in the termination hierarchy a TRS exists satisfying Y but not X.
For infinite TRSs over infinite signatures the termination hierarchy is more complicated:
if the notion of embedding is not changed then NSE ⇒ SN does not hold any more, if
the notions of embedding and simple termination are adjusted as motivated in [21], then
the implication TT⇒ ST no longer holds ([21]). In this paper however we consider only
finite TRSs over finite signatures.

4 The TRS U(P,Q)

We encode PCP instances P and, for each layer X ⇒ Y of the hierarchy, a characteristic
non-empty TRS Q into a TRS U(P,Q) such that U(P,Q) is in Y for all P , and in X if
and only if P has no solution. In order to facilitate the transformation (in Section 6) of
U(P,Q) into a one-rule TRS S(P,Q), we require that all rewrite rules of U(P,Q) have
the same left-hand side. This property it will inherit from the TRS Q.

The technical definition of U(P,Q) can be seen as an accumulation of a number of
modifications of the following system from Zantema [26]:

SP =
{
F (w, a(x), w, a(x)) → F (a(w), x, a(w), x) for all a ∈ Γ
F (α(w), x, β(y), z) → F (w,α(x), y, β(z)) for all (α, β) ∈ P

Here for every a ∈ Γ two unary symbols a and a are defined, while

α(t) = a1(a2(· · · ak(t) · · · )) and α(t) = ak(ak−1(· · · a1(t) · · · ))
for α = a1a2 . . . ak. The system SP admits a cycle

F (γ(w), x, γ(w), x)→+ F (γ(w), x, γ(w), x)

if and only if γ is a solution of the PCP instance P . If P has no solution then SP is
totally terminating. The use of barred symbols in the second and fourth argument of
F is essential for the proof of total termination. It is now straightforward to change
the cyclic behaviour to any desired behaviour that can be expressed by some non-empty
TRS Q. To this end F is equipped with an additional argument. This extra argument
is left unchanged, except for the step that completes the cycle when it is rewritten by
a rule in Q. To avoid unintended rewrite steps, we refine control: We distinguish two
states, exhibited by function symbols G and H, which enable only steps of the first and
second shape, respectively, in SP . A change from state G to state H is possible only if
the second and fourth arguments are equal to ε. Vice versa, a change of state from H
to G requires that the first and third arguments are equal to ε. This yields the TRS
consisting of the rewrite rules

G(w, ε, y, ε, LHS) → H(w, ε, y, ε, LHS) (1)
H(α(w), x, β(y), z, LHS) → H(w,α(x), y, β(z), LHS) (2)
H(ε, a(x), ε, a(z), LHS) → G(a(ε), x, a(ε), z,RHS) (3)
G(w, a(x), y, a(z), LHS) → G(a(w), x, a(y), z, LHS) (4)
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for every (α, β) ∈ P , a ∈ Γ, and right-hand side RHS of the rewrite rules in Q. Here
LHS denotes the unique left-hand side of the rules in Q. The TRS is linear whenever Q
is linear.

Throughout the remainder of the paper we assume that Γ = {0, 1}. This entails no
loss of generality. Writing n for the size of the PCP instance P and m for the number
of rules of Q, there is one rule of type (1), there are n rules of type (2), there are 2m
rules of type (3), and there are 2 rules of type (4), hence n+ 2m+ 3 rules in total.

In view of the one-rule construction it is necessary to have equal left-hand sides.
Subsequently we describe how to code the difference between G and H, the transfer of
strings from one argument position to another argument position, and the treatment of
the empty string. The accumulation of all of these modifications will yield the technical
definition of the system U(P,Q) again consisting of n+2m+3 rules, in which the single
left-hand side and all right-hand sides are of the shape A(· · · ) for a symbol A of high
arity. The encoding is highly inspired by Lescanne [15]. Basically, some of the matching
is delayed and extra parameters serve for the delayed matching. Let us demonstrate
the technique at a simple example. The TRS {f(a)→ f(a′), f(b)→ f(b′)} is translated
into the TRS {f ′(a, b, x) → f ′(x, b, a′), f ′(a, b, x) → f ′(a, x, b′)}. Rewrite steps f(t) →
f(t′) in the original system correspond to rewrite steps f ′(a, b, t) → f ′(a, b, t′) in the
translated system. Rewrite steps that have no counterpart in the original system, e.g.
f ′(a, b, a)→ f ′(a, a, b′), produce an irreducible term.

For treating the difference between G and H we use four arguments of A. The system
is transformed according to the following scheme:

rule of shape is coded as

G(. . . )→ H(. . . ) A(0, 1, u, v, . . . )→ A(u, v, 1, 0, . . . )
H(. . . )→ H(. . . ) A(0, 1, u, v, . . . )→ A(v, u, 1, 0, . . . )
H(. . . )→ G(. . . ) A(0, 1, u, v, . . . )→ A(v, u, 0, 1, . . . )
G(. . . )→ G(. . . ) A(0, 1, u, v, . . . )→ A(u, v, 0, 1, . . . )

By coding G(. . . ) as A(0, 1, 0, 1, . . . ) and H(. . . ) as A(0, 1, 1, 0, . . . ) every rewrite step
in the old system transforms to a rewrite step in the new system. Conversely, every
rewrite step in the new system not corresponding to this coding of G and H will result
in a term A(1, 0, . . . ) not allowing further rewrite steps.

Next we describe the transfer of strings from one argument position to another
argument position. In the system SP string elements were coded by unary symbols.
In order to allow variables as string elements we now choose another representation:
Elements of Γ are represented by constants and combined into strings by a binary
symbol cons. In order to distinguish between unbarred and barred strings as in SP we
introduce another binary symbol cons. For any term t and string α = t1t2 . . . tn of terms
we write

α(t) = cons(t1, cons(t2, . . . cons(tn, t) . . . ))

and

α(t) = cons(tn, cons(tn−1, . . . cons(t1, t) . . . ))
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We introduce an extra constant $ to mark the end of a string. The intention of the rules
of type (2) is to enable a rewrite sequence

H(γ(ε), ε, . . . )→+ H(ε, γ(ε), . . .)

for γ = αi1αi2 . . . αik by means of rules of the shape

H(αi(x), y, . . . )→ H(x, αi(y), . . .)

for 1 6 i 6 n. In the new notation the same can be achieved by a single left-hand side
by adding n+ 2 arguments to the symbol A (the only n+ 2 arguments to be displayed
for the moment) and choosing rules with left-hand side

A(α1(ε), . . . , αn(ε), w1 . . . wµ(w), x1(x))

and right-hand sides

A(α1(ε), . . . , αi−1(ε), w1 . . . w|αi|(ε), αi+1(ε), . . . , αn(ε), w|αi|+1 . . . wµ(w), x1αi(x))

for 1 6 i 6 n. Here µ is a number satisfying |αi| 6 µ for all 1 6 i 6 n, and x, x1, w, and
w1, . . . , wµ are fresh variables. The objective of w1 . . . w|αi|(ε) in the right-hand sides at
the position of αi is that rewriting can only be continued if the variables w1, . . . , w|αi|
are instantiated by the successive elements of the string αi. In this way we obtain the
rewrite sequence

A(α1(ε), . . . , αn(ε), γ(t1), $(x))
→ A(α1(ε), . . . , αn(ε), αi2 . . . αik(t1), $αi1(x))
→∗ A(α1(ε), . . . , αn(ε), αik(t1), $αi1 . . . αik−1

(x))
→ A(α1(ε), . . . , αn(ε), t1, $γ(x))

for γ = αi1αi2 . . . αik and t1 = $w2 . . . wµ(w). Here the variables after $ in t1 are needed
to perform the last few steps in the above rewrite sequence if the length of the remaining
string to be transferred is less than µ. (Actually, any term t1 of the form s1 . . . sµ(s)
will do here.)

The next thing to do is to represent the elementwise backward transfer of strings as is
done by the rules of type (3) and (4). This is simpler than the forward transfer described
above. We need three new arguments of A to code this; besides these three also the
arguments w1 . . . wµ(w) and x1(x), as they occur in the left-hand side, are involved since
the real string transfer has to take place here. For the moment we will only consider
these five arguments of A. For transferring a ‘0’ or a ‘1’ by rule (3) we give rules

A(0, 1, $, w1 . . . wµ(w), x1(x))→ A(x1, 1, w1, 0$w2 . . . wµ(w), x)

and

A(0, 1, $, w1 . . . wµ(w), x1(x))→ A(0, x1, w1, 1$w2 . . . wµ(w), x)
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For transferring a ‘0’ or a ‘1’ by rule (4) we give rules

A(0, 1, $, w1 . . . wµ(w), x1(x))→ A(x1, 1, $, 0w1 . . . wµ(w), x)

and

A(0, 1, $, w1 . . . wµ(w), x1(x))→ A(0, x1, $, 1w1 . . . wµ(w), x)

These rules allow the full backward transfer

A(0, 1, $, t1, $γ(x))→+ A(0, 1, $, γ(t1), $(x))

for t1 = $w2 . . . wµ(w). Note that for continuation after the first step in this rewrite
sequence it is essential that t1 starts with $.

Just like in the rules of type (2) the α’s and β’s are transferred simultaneously;
in our system we will similarly add n + 2 arguments again in order to simultaneously
transfer β’s, and another 3 arguments for elementwise backward transfer. In this way
the arity of A becomes 2n + 15: 4 arguments for coding the difference between G and
H, 2(n + 2 + 3) = 2n + 10 for transferring strings, and one final argument to contain
LHS or RHS from Q. In order to obtain rewrite sequences that have a consecutive group
of non-changing arguments (which is very convenient when we present statements and
proofs about the construction later on), the arguments are not ordered in the way we
just introduced them. Instead they are ordered as follows:

• arguments 1, 2, 2n + 9, 2n + 10 are the four arguments for coding the difference
between G and H;

• arguments 6, . . . , n+ 5 are the n arguments for coding the matching with the α’s;

• arguments 2n+ 11 and 2n+ 12 are the arguments in which the string transfer of
the α’s takes place as in the first two arguments of G and H;

• arguments 3, 4, 5 are the three arguments for coding the elementwise backward
transfer of the string consisting of α’s;

• arguments n+ 9, . . . , 2n+ 8 are the n arguments for coding the matching with the
β’s;

• arguments 2n+ 13 and 2n+ 14 are the arguments in which the string transfer of
the β’s takes place as in the third and fourth argument of G and H;

• arguments n+ 6, n+ 7, n+ 8 are the three arguments for coding the elementwise
backward transfer of the string consisting of β’s;

• argument 2n+ 15 contains LHS or RHS from Q.

Combining all parts of the construction as described above in this order, we arrive at
the following definition where (I), (II), (III), and (IV) refer to transformations of the
rules of type (1), (2), (3), and (4), respectively.
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Definition 4.1 Let P = (α1, β1), . . . , (αn, βn) be an arbitrary PCP instance and let
Q = {LHS → RHS1, . . . , LHS → RHSm} be a finite non-empty TRS with the property
that all left-hand sides equal LHS. The maximum length of strings in P is denoted by
µ: µ = max{|α|, |β| | (α, β) ∈ P}. We define the TRS U(P,Q) as follows. Its signature
FU consists of the signature FQ of the TRS Q together with constants 0, 1, $, and ε,
binary function symbols cons and cons, and a function symbol A of arity 2n+ 15. The
TRS U(P,Q) consists of the rewrite rules l→ ri, 1 6 i 6 n+ 2m+ 3, where l and ri are
defined as follows:

l = A(0, 1, 0, 1, $, α1(ε), . . . , αn(ε), 0, 1, $, β1(ε), . . . , βn(ε),
u, v, w1 . . . wµ(w), x1(x), y1 . . . yµ(y), z1(z), LHS)

r1 = A(u, v, 0, 1, x1, α1(ε), . . . , αn(ε), 0, 1, z1, β1(ε), . . . , βn(ε),

1, 0, w1 . . . wµ(w), $(x), y1 . . . yµ(y), $(z), LHS)
(I)

ri+1 = A(v, u, 0, 1, $, α1(ε), . . . , αi−1(ε), w1 . . . w|αi|(ε), αi+1(ε), . . . , αn(ε),

0, 1, $, β1(ε), . . . , βi−1(ε), y1 . . . y|βi|(ε), βi+1(ε), . . . , βn(ε),

1, 0, w|αi|+1 . . . wµ(w), x1αi(x), y|βi|+1 . . . yµ(y), z1βi(z), LHS)

(II)

for all 1 6 i 6 n,

rn+1+j = A(v, u, x1, 1, w1, α1(ε), . . . , αn(ε), z1, 1, y1, β1(ε), . . . , βn(ε),
0, 1, 0$w2 . . . wµ(w), x, 0$y2 . . . yµ(y), z,RHSj)

(III)

rn+1+m+j = A(v, u, 0, x1, w1, α1(ε), . . . , αn(ε), 0, z1, y1, β1(ε), . . . , βn(ε),
0, 1, 1$w2 . . . wµ(w), x, 1$y2 . . . yµ(y), z,RHSj)

(III)

for all 1 6 j 6 m, and finally

rn+2m+2 = A(u, v, x1, 1, $, α1(ε), . . . , αn(ε), z1, 1, $, β1(ε), . . . , βn(ε),
0, 1, 0w1 . . . wµ(w), x, 0y1 . . . yµ(y), z, LHS)

(IV)

rn+2m+3 = A(u, v, 0, x1, $, α1(ε), . . . , αn(ε), 0, z1, $, β1(ε), . . . , βn(ε),
0, 1, 1w1 . . . wµ(w), x, 1y1 . . . yµ(y), z, LHS)

(IV)

Let V = 0, 1, 0, 1, $, α1(ε), . . . , αn(ε), 0, 1, $, β1(ε), . . . , βn(ε) be the sequence of the first
2n+ 8 arguments of the left-hand side l and let V1, . . . , V2n+8 denote its components.

The next lemma states that U(P,Q) can simulate root reductions in Q provided P
admits a solution.

Lemma 4.2 If the PCP instance P admits a solution then there exist terms W1, . . . ,W6

such that for every rewrite rule LHS→ RHS in Q there is a rewrite sequence

A(V,W1, . . . ,W6, LHS)→+
U(P,Q) A(V,W1, . . . ,W6,RHS).
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Proof Let γ = αi1 . . . αik = βi1 . . . βik = γ′a be a solution of P . Define t1 = $w2 . . . wµ(w),
t2 = $y2 . . . yµ(y), W1 = 0, W2 = 1, W3 = a(t1), W4 = $γ′(x), W5 = a(t2), and
W6 = $γ′(z). It is easy to see that for every LHS → RHS in Q we have the following
rewrite sequence in U(P,Q):

A(V, 0, 1, a(t1), $γ′(x), a(t2), $γ′(z), LHS)

→∗(IV) A(V, 0, 1, γ(t1), $(x), γ(t2), $(z), LHS)

→(I) A(V, 1, 0, γ(t1), $(x), γ(t2), $(z), LHS)

→(II) A(V, 1, 0, αi2 . . . αik(t1), $αi1(x), βi2 . . . βik(t2), $βi1(z), LHS)

→∗(II) A(V, 1, 0, t1, $γ(x), t2, $γ(z), LHS)

→(III) A(V, 0, 1, a(t1), $γ′(x), a(t2), $γ′(z),RHS)

�

Conversely, a rewrite sequence in U(P,Q) gives rise to either a rewrite sequence in Q
or a rewrite sequence in U(P,Q) without the type (III) rules. We will denote the latter
system by U−(P,Q). From now on W and W ′ denote sequences of 6 arbitrary terms,
and V ′ denotes a sequence of 2n+ 8 arbitrary terms.

Lemma 4.3 If W and t do not contain A symbols then A(V,W, t)→U(P,Q) A(V ′,W ′, t′)
implies either t→Q t

′ or both t = t′ and A(V,W, t)→U−(P,Q) A(V ′,W ′, t).
Proof Since there is only one A symbol in A(V,W, t), the rewrite step must take place
at the root position. If a rewrite rule of type (III) has been applied then t = LHSσ →Q

RHSσ = t′ for some rewrite rule LHS → RHS in Q and substitution σ. Otherwise,
A(V,W, t)→U−(P,Q) A(V ′,W ′, t′) which obviously implies t = t′ by the form of the rules
in U−(P,Q). �

5 ω-Termination of U(P,Q)

In this somewhat lengthy section we will show the ω-termination of U(P,Q) for PCP
instances P that do not have a solution and of U−(P,Q) for arbitrary PCP instances
P . Since we prefer not to treat the two cases separately, we write U ′(P,Q) to denote
either U(P,Q) under the assumption that P admits no solution or U−(P,Q) without
any assumptions on P .

The proof is quite complicated, so readers may want to skip it upon first reading.
The basic idea of the proof is similar to the one in Geser [7], but the details are more
intricate here.

First we will show that the length of rewrite sequences in U ′(P,Q) is bounded. For
a term t, let ‖t‖ denote the maximal length of the “mixed” string ζ ∈ {0, 1, 0, 1}∗ such
that t = ζ(t′) for some term t′.
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Lemma 5.1 No rewrite sequence in U ′(P,Q) starting from a term t = A(V,W, t′) con-
tains more than 1 + 4‖W3‖+ 3‖W4‖ steps at the root position.
Proof First we consider the case that U ′(P,Q) = U(P,Q) and thus P lacks a solution.
Consider a maximal rewrite sequence in U(P,Q) starting from t. Since rewrite steps
that take place inside the first 2n+ 14 arguments of t cannot create a redex at the root
position, we may assume without loss of generality that there are no rewrite steps inside
the first 2n + 14 arguments. This reasoning does not apply to the last argument of t
because the left-hand side LHS of the rewrite rules in Q need not be linear. However,
by taking t′ = LHSσ = RHSσ for some substitution σ, we are assured that there are no
rewrite sequences starting from A(V,W, t′′) that have more steps at the root position
than A(V,W, t′). (In other words, for the purpose of proving this lemma we may assume
without loss of generality that Q = {d → d}.) So all steps in the maximal rewrite
sequence starting from t = A(V,W, t′) take place at the root position.

Below we write root′(s) = s′ (root′(s) = s′) to indicate that s = cons(s′, s′′) (s =
cons(s′, s′′)) for some term s′′. For a proof by contradiction, consider a rewrite sequence
starting from t that contains more than 1 + 4‖W3‖+ 3‖W4‖ steps at the root position.
We are going to show that P has a solution. We must have (W1,W2) = (0, 1) or
(W1,W2) = (1, 0). First we consider the former.

All terms of the rewrite sequence, except possibly the last, are of the form A(V, . . .).
Due to the fact that there must be changes in the state (W1,W2), the given rewrite
sequence without its last step is a prefix of a rewrite sequence of the form

t→∗(IV) t
1 →(I) t

2 →∗(II) t3 →(III) t
4 →∗(IV) t

5 →(I) t
6 → · · · (5)

By the forms of the rules we can reason as follows.
In (5) we must have t1 = A(V, 0, 1,W 1

3 ,W
1
4 ,W

1
5 ,W

1
6 , t
′) with

W 1
3 = γ(W3) W 1

5 = γ(W5)

γ(W 1
4 ) = W4 γ(W 1

6 ) = W6

for some γ ∈ {0, 1}∗. Likewise, t2 = A(V, 1, 0,W 2
3 ,W

2
4 ,W

2
5 ,W

2
6 , t
′) with root′(W 1

4 ) =
root′(W 1

6 ) = $ and

W 2
3 = W 1

3 W 2
5 = W 1

5

W 2
4 = W 1

4 W 2
6 = W 1

6

Furthermore, t3 = A(V, 1, 0,W 3
3 ,W

3
4 ,W

3
5 ,W

3
6 , t
′) with

α(W 3
3 ) = W 2

3 β(W 3
5 ) = W 2

5

W 3
4 = α(W 2

4 ) W 3
6 = β(W 2

6 )
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and α = αi1 . . . αik and β = βi1 . . . βik with k > 0 and 1 6 ij 6 n for all 1 6 j 6 k. Here
k denotes the number of steps of type (II). Next, t4 = A(V, 0, 1,W 4

3 ,W
4
4 ,W

4
5 ,W

4
6 , t
′)

with root′(W 3
3 ) = root′(W 3

5 ) = $ and

W 4
3 = i(W 3

3 ) W 4
5 = i(W 3

5 )

i(W 4
4 ) = W 3

4 i(W 4
6 ) = W 3

6

for some i ∈ {0, 1}. Next, t5 = A(V, 0, 1,W 5
3 ,W

5
4 ,W

5
5 ,W

5
6 , t
′) with

W 5
3 = δ(W 4

3 ) W 5
5 = δ(W 4

5 )

δ(W 5
4 ) = W 4

4 δ(W 5
6 ) = W 4

6

for some δ ∈ {0, 1}∗. Finally, t6 = A(V, 1, 0, . . .) with root′(W 5
4 ) = root′(W 5

6 ) = $. We
have i(W 4

4 ) = α(W 2
4 ) and i(W 4

6 ) = β(W 2
6 ). So there exist α′, β′ ∈ {0, 1}∗ such that

α = α′i and β = β′i. In particular, since α = αi1 . . . αik (and β = βi1 . . . βik), k > 0.
We have W 4

4 = α′(W 2
4 ) = δ(W 5

4 ) with root′(W 2
4 ) = root′(W 5

4 ) = $. This implies that
α′ = δ. In the same way we obtain β′ = δ. Hence α = β. In other words, P has a
solution. Since this contradicts our assumption we conclude that rewrite sequence (5)
cannot go beyond t5. It still must be shown that there are at most 1 + 4‖W3‖+ 3‖W4‖
steps until t5 is reached.

The sequence from t to t1 contains |γ| steps and clearly |γ| 6 ‖W4‖. Recall that
α, β ∈ {0, 1}+ for all (α, β) ∈ P . So in every step in the sequence from t2 to t3 at least
one symbol of W 2

3 is consumed. It follows that k 6 ||W 2
3 ||. Because W 2

3 = γ(W3), we
have ‖W 2

3 ‖ = |γ|+‖W3‖ 6 ‖W3‖+‖W4‖. Next consider the sequence from t4 to t5. This
part contains |δ| steps. Since δi = α and |α| 6 ‖W 2

3 ‖, we obtain |δ| 6 ‖W3‖+ ‖W4‖− 1.
By putting everything together we obtain

‖W4‖+ 1 + (‖W3‖+ ‖W4‖) + 1 + (‖W3‖+ ‖W4‖ − 1) = 1 + 2‖W3‖+ 3‖W4‖
as an upper bound for the maximum length of the sequence from t to t5 in (5) and
clearly 1 + 2‖W3‖+ 3‖W4‖ 6 1 + 4‖W3‖+ 3‖W4‖.

In the other case we have (W1,W2) = (1, 0). By using very similar arguments as
above we obtain 4‖W3‖+2‖W4‖ as an upper bound on the maximum number of rewrite
steps at the root position in a rewrite sequence starting from t. Since 4‖W3‖+2‖W4‖ <
1 + 4‖W3‖ + 3‖W4‖ this proves the lemma in the case that U ′(P,Q) = U(P,Q) and P
admits no solution.

Next we consider the case that U ′(P,Q) = U−(P,Q). If (W1,W2) = (0, 1) then we
obtain 1 + ‖W3‖+ 2‖W4‖ as an upper bound on the maximum number of rewrite steps
at the root position in a rewrite sequence starting from t; note that rewrite sequence (5)
above cannot go beyond t3 since there are no rules of type (III) in U−(P,Q). Similarly,
if (W1,W2) = (1, 0) then we obtain the upper bound ‖W3‖. Since both bounds do not
exceed 1 + ‖W3‖+ 2‖W4‖, the lemma also holds for U ′(P,Q) = U−(P,Q). �

Definition 5.2 Let len(W ) denote the maximum number of root rewrite steps in any
rewrite sequence in U ′(P,Q) starting from a term of the form A(V,W, t).

12



The following result is an immediate consequence of Lemma 5.1.

Corollary 5.3 The function len satisfies len(W ) 6 1 + 4‖W3‖+ 3‖W4‖. �

Below we define an interpretation [ ] into the positive integers which is capable of
orienting all ground instances of the rewrite rules in U ′(P,Q) from left to right.

We start by defining a few useful auxiliary functions on the positive integers N+.
Let `(x) denote the number of digits in the decimal representation of a positive integer
x and let `(0) = 0. Define two binary operators ◦ and ↑ on non-negative integers by

x ◦ y = 10`(y) · x+ y

x ↑ 0 = 0
x ↑ (y + 1) = x ↑ y ◦ x

We will assume that ◦ binds weaker than + and ↑. Informally, x◦y yields the concatena-
tion of the decimal representations of x and y without leading zeros and the expression
x ↑ y denotes the y-fold repetition of x. Both functions are strictly monotonic in all
arguments, ◦ is associative, and the identities `(x◦y) = `(x)+`(y) and `(x ↑ y) = y ·`(x)
hold. A function code : N+ → N+ is defined to take the octal representation of its argu-
ment and adds 2 to every digit greater than 4. The resulting digit sequence is the decimal
representation of the result. For instance, code(11209) = 27911 as (11209)10 = (25711)8.
Note that code is strictly monotonic. Note furthermore that code(x) does not contain
the digits 5 and 6. It is not difficult to see that code is the smallest function with these
two properties.

Below we will define the interpretation of all function symbols except A.

Definition 5.4 We interpret function symbols in {ε, $, 0, 1, cons, cons} as follows:

[ε] = 1
[$] = 2
[0] = 3
[1] = 4

[cons](x, y) = y ◦ 5 ◦ x ◦ 6
[cons](x, y) = 5 ◦ x ◦ 6 ◦ y ◦ 7 ↑ (2 + `(x))

Every k-ary function symbol f in the signature of Q is interpreted as follows:

[f ](x1, . . . , xk) =

{
10 · code(x1 + · · ·+ xk) if k > 0
10 if k = 0

Before we can extend the interpretation to A, we need a few further auxiliary func-
tions, some of which depend on the interpretation of terms over FU \ {A}.

For the treatment of the last argument of A we first define two unary functions φQ
and ψQ which depend on the TRS Q. Function φQ estimates the growth of the last
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argument of A caused by an application of a type (III) rewrite rule of U ′(P,Q): For
every upper bound x of the interpretations of LHS, φQ(x) is an upper bound of the
corresponding interpretations of RHS, for all LHS→ RHS ∈ Q. Function φQ : N+ → N+

is defined as follows:

φQ(x) = max {x} ∪ {[θ](RHS) | LHS→ RHS ∈ Q and [θ](LHS) 6 x}

Since LHS and RHS only contain function symbols in the signature of Q, we can compute
[θ](LHS) and [θ](RHS) for every assignment θ of positive integers for the variables in
LHS→ RHS. Here [θ](t) for t ∈ T (FQ,X ) is inductively defined as follows:

[θ](t) =

{
[f ]([θ](t1), . . . , [θ](tk)) if t = f(t1, . . . , tk) with k > 0
θ(t) if t ∈ X

Because the interpretation of every function symbol in Q is strictly monotonic in all its
arguments—(an immediate consequence of the strict monotonicity of ◦ and code)—there
can only be a finite number of assignments θ such that [θ](LHS) 6 x for a given x ∈ N+.
Hence the maximum is formed over a finite computable set and thus the function φQ
is well-defined. Note that for every ground instance t → u of a rewrite rule in Q, we
have φQ([t]) > [u]. It is easy to check that φQ is monotonic and that φQ(x) > x holds.
Function ψQ : N × N+ → N+ is used to compensate a potential increase of the last
argument of A along an application of a type (III) rewrite rule of U ′(P,Q). It is defined
inductively as follows:

ψQ(0, y) = y + 1
ψQ(x+ 1, y) = y + ψQ(x, φQ(y))

One easily verifies that ψQ is strictly monotonic in both arguments.
One more auxiliary function is needed before we can define the interpretation of

function symbol A. The interpretation defined above has the property that for a ground
term t not containing any A symbol, the top part of t that consists of symbols in
{cons, cons, ε, $, 0, 1} can be extracted from [t]. A suitable extraction function π is
defined next.

Definition 5.5 The function π : N+ → T (F) from positive integers to ground terms is
inductively defined as follows:

π(x) =





ε if x = 1
$ if x = 2
0 if x = 3
1 if x = 4
cons(π(y), π(z)) if x = z ◦ 5 ◦ y ◦ 6 with y > 0 well-balanced
cons(π(y), π(z)) if x = 5 ◦ y ◦ 6 ◦ z ◦ 7 ↑ (2 + `(y)) with y > 0 well-balanced
A(ε, . . . , ε) otherwise
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Here for well-definedness we require that the digits 5 (“left parenthesis”) and 6 (“right
parenthesis”) form a well-balanced sequence in the decimal representation of y in the
fifth and sixth clause of the definition. Formally, the decimal representation of a natural
number is well-balanced if it is generated by the context-free grammar

S → 5S6 | SS | T | 56
T → 0 | 1 | 2 | 3 | 4 | 7 | 8 | 9

with start symbol S. For example, 123 and 1556576236 are well-balanced numbers but
65 is not.

The premise on y in the fifth and sixth clause of the definition ensures well-definedness
of the definition of π.

Lemma 5.6 The function π is well-defined.
Proof First we show that there is no ambiguity in the fifth clause of the definition of π.
Suppose to the contrary that there exists x ∈ N+ such that x = z ◦5◦y ◦6 = z′ ◦5◦y′ ◦6
with different well-balanced y, y′ > 0. Without loss of generality, assume that y > y′.
Then y = z′′ ◦ 5 ◦ y′ for some z′′ ∈ N. However, since y′ is well-balanced, y cannot be
well-balanced (as there is no 6 in y′ that corresponds to the displayed 5 in y). A similar
argument shows that there is no ambiguity in the sixth clause of the definition of π. �

For instance,

π(156655635626) = π(1566 ◦ 5 ◦ 563562 ◦ 6) = cons(π(563562), π(1566))
= cons(A(ε, . . . , ε), A(ε, . . . , ε))

and π(5462777536) = cons(π(3), π(5462777)) = cons(0, cons(1, $)).
We need two more definitions:

revc(x, y) = x ◦ y ◦ 7 ↑ `(x)
bound(x, y) = 6`(x) + 3`(y)

The function revc (for “reverse concatenation”) is strictly monotonic and bound is mono-
tonic in both arguments.

Definition 5.7 The interpretation [A] is defined as follows:

[A](x1, . . . , x2n+15) = code(ψQ(D(x1, . . . , x2n+14), x2n+15)) ◦ 8

Here D(x1, . . . , x2n+14) denotes the expression
(

2n+8∏

i=1

χ(xi ≥ [Vi])

)
· E(x1, . . . , x2n+14) +

(
1−

2n+8∏

i=1

χ(xi ≥ [Vi])

)
·
(

2n+14∑

i=1

xi

)
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χ : {false, true} → {0, 1} is defined by χ(false) = 0 and χ(true) = 1, andE(x1, . . . , x2n+14)
denotes the expression

len(π(x2n+9), . . . , π(x2n+14)) + bound(x2n+11, x2n+12) · factor(x1, . . . , x2n+14)

where factor(x1, . . . , x2n+14) is an abbreviation for

2(x2n+9 + x2n+10) + revc(x2n+11, x2n+12) + revc(x2n+13, x2n+14) +
2n+8∑

i=1

xi

Note that D(x1, . . . , x2n+14) = E(x1, . . . , x2n+14) if xi > [Vi] for all 1 6 i 6 2n + 8.
If there is at least one 1 6 i 6 2n + 8 such that xi < [Vi], then D(x1, . . . , x2n+14) =∑2n+14

i=1 xi.

Lemma 5.8 For every ground term t the decimal representation of its interpretation [t]
has a well-balanced sequence of 5 and 6 digits.
Proof Easy induction on the structure of t. If t ∈ {ε, $, 0, 1} then the decimal represen-
tation of [t] does not contain any 5 or 6. If t = cons(t1, t2) or t = cons(t1, t2) then the
result follows from the induction hypothesis. If t = A(t1, . . . , t2n+15) or t = f(t1, . . . , tk)
with f ∈ FQ then the decimal representation of [t] does not contain any 5 or 6 by the
definition of the function code. �

The next lemma states that π([t]) is sufficiently close to t.

Definition 5.9 Let ∼ be the smallest congruence on ground terms such that t ∼ t′

holds if root(t), root(t′) ∈ {A} ∪FQ. In other words, t ∼ t′ if the top parts consisting of
symbols in {ε, $, 0, 1, cons, cons} in t and t′ coincide. Let us call a term over the restricted
signature {ε, $, 0, 1, cons, cons} pure. We extend ∼ to sequences of terms componentwise.

For instance, if f ∈ FQ then cons(0, cons(1, A(. . . ))) ∼ cons(0, cons(1, f(. . . ))) for all
sequences of arguments of A and f . On the other hand, cons(0, ε) 6∼ cons(1, ε).

Lemma 5.10 If t is a ground term then π([t]) ∼ t. In addition, if t is pure then
π([t]) = t.
Proof Let t be a ground term. We prove that π([t]) ∼ t by induction on the structure
of t. The base case is an immediate consequence of the definitions of [ ] and π. Suppose
t = cons(t1, t2). We have [t] = [t2]◦5◦ [t1]◦6. According to Lemma 5.8 the subsequence
of the digits 5 and 6 in [t1] is well-balanced. Hence π([t]) = cons(π([t1]), π([t2])) ∼
cons(t1, t2) by the definition of π and the induction hypothesis. The case t = cons(t1, t2)
is just as easy. If root(t) = A or root(t) ∈ FQ then the decimal representation of [t] ends
with the digit 8 or 0. Hence π([t]) = A(ε, . . . , ε) and thus π([t]) ∼ t by the definition of
∼.

To conclude the latter statement, according to the former statement and the defi-
nition of ∼ it is sufficient to show that π([t]) is pure whenever t is pure. This is easily
proved by induction on the structure of t, similar to the above proof. �
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Lemma 5.11 If W ∼W ′ then len(W ) = len(W ′).
Proof Let A(V,W, t) → A(V1,W1, t1) and W ∼ W ′. Due to the fact that the argu-
ments of the left-hand side of the rewrite rules in U ′(P,Q) are terms over the signature
{ε, $, 0, 1, cons, cons}, it follows that A(V,W ′, t) also matches the left-hand side. If we
apply the same rewrite rule, we obtain A(V,W ′, t) → A(V ′1 ,W

′
1, t1) with V1 ∼ V ′1 and

W1 ∼ W ′1. If one of V1, V ′1 equals V then both are equal to V . From this observation
we easily obtain len(W ) = len(W ′). �

Next we are going to show that the interpretation functions [f ] for f ∈ FU are
strictly monotonic in all arguments. The proof of this statement for function symbol A
relies on the following lemma.

Lemma 5.12 For all x1, . . . , x6 ∈ N+, len(π(x1), . . . , π(x6)) < bound(x3, x4).
Proof First we show that ‖π(x)‖ 6 `(x) by induction on x ∈ N+ according to the
definition of π. If π(x) ∈ {ε, $, 0, 1, A(ε, . . . , ε)} then ‖π(x)‖ = 0. Suppose x = z◦5◦y◦6
with y > 0 being well-balanced, so π(x) = cons(π(y), π(z)). We have ‖π(x)‖ = 1+‖π(z)‖
if π(y) ∈ {0, 1} and ‖π(x)‖ = 0 otherwise. (Here we exploit the fact that ζ in the
definition of ‖t‖ is a mixed string.) In the former case we obtain the desired ‖π(x)‖ 6
`(x) from the induction hypothesis (applied to z). In the latter case the inequality
‖π(x)‖ 6 `(x) is trivial. If x = 5 ◦ y ◦ 6 ◦ z ◦ 7 ↑ (2 + `(y)) with y > 0 well-balanced, and
thus π(x) = cons(π(y), π(z)), we obtain ‖π(x)‖ 6 `(x) in exactly the same way. Using
Corollary 5.3 we now obtain

len(π(x1), . . . , π(x6)) 6 1 + 4‖π(x3)‖+ 3‖π(x4)‖
6 1 + 4`(x3) + 3`(x4)
< 6`(x3) + 3`(x4) (6)
= bound(x3, x4)

Here (6) follows from the fact that x3 > 0 and thus `(x3) > 0. �

Lemma 5.13 For every f ∈ FU , the interpretation function [f ] is strictly monotonic
in all its arguments.
Proof For constants in FU there is nothing to show. For [cons] and [cons] the result
follows directly from the strict monotonicity of ◦. We already observed that every [f ]
with f ∈ FQ is strictly monotonic. For function symbol A more effort is required.
The strict monotonicity of [A] in its last argument follows from the strict monotonicity
of ψQ, code, and ◦. For the other arguments we reason as follows. Let xi > yi for
1 6 i 6 2n + 14 where at least one of these inequalities is strict. We distinguish three
cases. If

2n+8∏

i=1

χ(yi > [Vi]) = 1
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then also

2n+8∏

i=1

χ(xi > [Vi]) = 1

because xi > yi. We have

factor(x1, . . . x2n+14) > factor(y1, . . . , y2n+14)

by the strict monotonicity of revc and +, and

bound(x2n+11, x2n+12) > bound(y2n+11, y2n+12)

by the monotonicity of bound. Using Lemma 5.12, it follows that

E(x1, . . . , x2n+14)
= len(π(x2n+9), . . . , π(x2n+14)) + bound(x2n+11, x2n+12) · factor(x1, . . . , x2n+14)
> bound(x2n+11, x2n+12) · factor(x1, . . . , x2n+14)
> bound(y2n+11, y2n+12) · factor(x1, . . . , x2n+14)
> bound(y2n+11, y2n+12) · (1 + factor(y1, . . . , y2n+14))
= bound(y2n+11, y2n+12) + bound(y2n+11, y2n+12) · factor(y1, . . . , y2n+14)
> len(π(y2n+9), . . . , π(y2n+14)) + bound(y2n+11, y2n+12) · factor(y1, . . . , y2n+14)
= E(y1, . . . , y2n+14)

and so, by the strict monotonicity of ψQ, code, and ◦,

[A](x1, . . . , x2n+14, x2n+15) = code(ψQ(E(x1, . . . , x2n+14), x2n+15)) ◦ 8
> code(ψQ(E(y1, . . . , y2n+14), x2n+15)) ◦ 8
= [A](y1, . . . , y2n+14, x2n+15)

Suppose

2n+8∏

i=1

χ(yi > [Vi]) =
2n+8∏

i=1

χ(xi > [Vi]) = 0

We have

D(x1, . . . , x2n+14) =
2n+14∑

i=1

xi >
2n+14∑

i=1

yi = D(y1, . . . , y2n+14)

and hence the assertion follows from the strict monotonicity of ψQ, code, and ◦. Finally,
suppose

2n+8∏

i=1

χ(yi > [Vi]) = 0
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and
2n+8∏

i=1

χ(xi > [Vi]) = 1

In this case D(x1, . . . , x2n+14) equals

len(π(x2n+9), . . . , π(x2n+14)) + bound(x2n+11, x2n+12) · factor(x1, . . . , x2n+14)

and

D(y1, . . . , y2n+14) =
2n+14∑

i=1

yi

Since revc(x2n+11, x2n+12) > x2n+11+x2n+12 and revc(x2n+13, x2n+14) > x2n+13+x2n+14,
it follows that

factor(x1, . . . , x2n+14) >
2n+14∑

i=1

xi

and thus D(x1, . . . , x2n+14) > D(y1, . . . , y2n+14). The desired result now follows from
the strict monotonicity of ψQ, code, and ◦. �

In the final part of this section we will make good on our claim that the interpretation
[ ] is capable of orienting all ground instances of the rewrite rules in U ′(P,Q) from left
to right. We need a few preliminary results, concerning the interplay of revc and [ ].

Lemma 5.14 Let α be a sequence of ground terms. For all ground terms s and t we
have revc([α(s)], [t]) = revc([s], [α(t)]).
Proof By induction on the length of α. If α is the empty sequence, then the lemma is
trivially true. Let α = uβ. Then

revc([α(s)], [t]) = revc([cons(u, β(s))], [t])
= revc([cons]([u], [β(s)]), [t])
= revc([β(s)] ◦ 5 ◦ [u] ◦ 6, [t])
= [β(s)] ◦ 5 ◦ [u] ◦ 6 ◦ [t] ◦ 7 ↑ `([β(s)] ◦ 5 ◦ [u] ◦ 6)
= revc([β(s)], 5 ◦ [u] ◦ 6 ◦ [t] ◦ 7 ↑ `(5 ◦ [u] ◦ 6))
= revc([β(s)], [cons]([u], [t]))
= revc([β(s)], [cons(u, t)])

= revc([s], [β(cons(u, t))]) (7)

= revc([s], [β(u(t))])

= revc([s], [uβ(t)])
= revc([s], [α(t)])

Here (7) follows from the induction hypothesis. �
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Lemma 5.15 Let s, t, and u be ground terms and x a positive integer. If [s] > [t] then

revc([cons(s, u)], x) + [t] > revc([cons(t, u)], x) + [s]
revc(x, [cons(s, u)]) + [t] > revc(x, [cons(t, u)]) + [s]

Moreover, if [s] > [t] then both inequalities are strict.
Proof The first statement is obtained as follows:

revc([cons(s, u)], x) + [t] = [cons(s, u)] ◦ x ◦ 7 ↑ `([cons(s, u)]) + [t]
= [u] ◦ 5 ◦ [s] ◦ 6 ◦ x ◦ 7 ↑ `([cons(s, u)]) + [t]
> [u] ◦ 5 ◦ [t] ◦ 6 ◦ x ◦ 7 ↑ `([cons(s, u)]) + [s] (8)
> [u] ◦ 5 ◦ [t] ◦ 6 ◦ x ◦ 7 ↑ `([cons(t, u)]) + [s] (9)
= [cons(t, u)] ◦ x ◦ 7 ↑ `([cons(t, u)]) + [s]
= revc([cons(t, u)], x) + [s]

Here (8) follows from the fact that, for all x, y, z ∈ N+, x ◦ y ◦ z + y′ > x ◦ y′ ◦ z + y
whenever y > y′ and (9) follows from the monotonicity of `, ◦, and 7◦(·). If [s] > [t] then
(9) becomes strict, and so

revc([cons(s, u)], x) + [t] > revc([cons(t, u)], x) + [s]

The other two statements are obtained in a similar fashion. �

The last preliminary result is a variant of the previous lemma.

Lemma 5.16 Let α and β be sequences of ground terms, t a ground term, and x a
positive integer. If [α(ε)] > [β(ε)] then

revc([α(t)], x) + [β(ε)] > revc([β(t)], x) + [α(ε)]

Moreover, if [α(ε)] > [β(ε)] then the inequality is strict.
Proof Write α = s1 . . . sk and β = t1 . . . tl. We have

[α(ε)] = 1 ◦ 5 ◦ [sk] ◦ 6 · · · ◦ 5 ◦ [s1] ◦ 6
> 1 ◦ 5 ◦ [tl] ◦ 6 · · · ◦ 5 ◦ [t1] ◦ 6 = [β(ε)]

and thus

a = 5 ◦ [sk] ◦ 6 · · · ◦ 5 ◦ [s1] ◦ 6 > 5 ◦ [tl] ◦ 6 · · · ◦ 5 ◦ [t1] ◦ 6 = b

which implies [α(t)] = [t] ◦ a > [t] ◦ b = [β(t)]. Now the desired inequality is obtained as
in the proof of Lemma 5.15:

revc([α(t)], x) + [β(ε)] = [α(t)] ◦ x ◦ 7 ↑ `([α(t)]) + [β(ε)]
= [t] ◦ a ◦ x ◦ 7 ↑ `([α(t)]) + 1 ◦ b
> [t] ◦ b ◦ x ◦ 7 ↑ `([α(t)]) + 1 ◦ a (10)
> [t] ◦ b ◦ x ◦ 7 ↑ `([β(t)]) + 1 ◦ a
= [β(t)] ◦ x ◦ 7 ↑ `([β(t)]) + [α(ε)]
= revc([β(t)], x) + [α(ε)]
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Here (10) follows from the fact that, for all x, y, z ∈ N+, x◦y ◦z+1◦y′ > x◦y′ ◦z+1◦y
whenever y > y′. Note that the second inequality in the above derivation becomes strict
if [α(ε)] > [β(ε)]. �

Theorem 5.17 For every ground instance

lσ = A(t1, . . . , t2n+15)→ A(u1, . . . , u2n+15) = rσ

of a rewrite rule l→ r in U ′(P,Q) we have [lσ] > [rσ].
Proof First we consider the case that [ui] > [ti] for all 1 6 i 6 2n + 8. By definition
of U ′(P,Q) we have t1, . . . , t2n+8 = V , t2n+15 = LHSσ, and either u2n+15 = LHSσ or
u2n+15 = RHSjσ for some 1 6 j 6 m. Positive integers E1 and F1 are defined as follows:

E1 = [t1] + [t2] + 2([t2n+9] + [t2n+10])
F1 = [u1] + [u2] + 2([u2n+9] + [u2n+10])

We claim that

E1 > F1 (11)

We claim moreover that, if [ui] > [ti] for some i = 1, 2 then E1 > F1. Inspection of the
rewrite rules shows that [t1]+[t2] = [u2n+9]+[u2n+10], and [t2n+9]+[t2n+10] = [u1]+[u2].
Hence E1 = [t1] + [t2] + 2([u1] + [u2]) and F1 = [u1] + [u2] + 2([t1] + [t2]). By assumption
[u1] + [u2] > [t1] + [t2] and thus E1 > F1. Clearly, either [u1] > [t1] or [u2] > [t2] is
sufficient to conclude that E1 > F1.

Positive integers E2 and F2 are defined as follows:

E2 = revc([t2n+11], [t2n+12]) +
n+5∑

i=3

[ti]

F2 = revc([u2n+11], [u2n+12]) +
n+5∑

i=3

[ui]

We claim that

E2 > F2 (12)

Moreover we claim that, if [ui] > [ti] for some 3 6 i 6 n + 5 then E2 > F2. To prove
this claim, we distinguish between the four types of rewrite rules.

Suppose a rule of type (I) is used. In this case the sequences of terms t3, . . . , tn+5

and u3, . . . , un+5 differ only in their third terms: t5 = $ and u5 = x1σ. Hence E2 − F2

equals

revc([w1 . . . wµ(w)σ], [x1(x)σ]) + [$]− (revc([w1 . . . wµ(w)σ], [$(x)σ]) + [x1σ])

which is non-negative according to Lemma 5.15. Recall here that [x1σ] = [u5] > [t5] = [$]
as we are in the case that [ui] > [ti] for all 1 6 i 6 2n + 8. In addition to that, if
[x1σ] = [u5] > [t5] = [$] then E2 − F2 > 0.
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Next suppose that a rule of type (II) is used. More precisely suppose rule l → ri+1

(1 6 i 6 n) is used. In this case the sequences of terms t3, . . . , tn+5 and u3, . . . , un+5

differ only in their i+ 3-th terms: ti+5 = αi(ε) and ui+5 = w1 . . . w|αi|(ε)σ. Hence

E2 − F2 = revc([w1 . . . wµ(w)σ], [x1(x)σ]) + [αi(ε)]−
(revc([w|αi|+1 . . . wµ(w)σ], [x1αi(x)σ]) + [w1 . . . w|αi|(ε)σ])

From Lemmata 5.16 (with α = w1 . . . w|αi|, β = αi, and t = w|αi|+1 . . . wµ(w)) and 5.14
it follows that

revc([w1 . . . wµ(w)σ], [x1(x)σ]) + [αi(ε)σ]
> revc([αiw|αi|+1 . . . wµ(w)σ], [x1(x)σ]) + [w1 . . . w|αi|(ε)σ]

= revc([w|αi|+1 . . . wµ(w)σ], [αi(x1(x))σ]) + [w1 . . . w|αi|(ε)σ]

= revc([w|αi|+1 . . . wµ(w)σ], [x1αi(x)σ]) + [w1 . . . w|αi|(ε)σ]

and thus E2 − F2 > 0. We obtain E2 − F2 > 0 if [ui+5] > [ti+5].
Suppose that a rule of type (III) is used. In this case the difference between the

sequences of terms t3, . . . , tn+5 and u3, . . . , un+5 is the third term and either the first
or second term. Here we will consider the former (so a rule rn+1+j with 1 6 j 6 m is
used); the latter is proved in exactly the same way. So t3 = 0, t5 = $, u3 = x1σ, and
u5 = w1σ. Hence

E2 − F2 = revc([w1 . . . wµ(w)σ], [x1(x)σ]) + [0] + [$]−
(revc([0$w2 . . . wµ(w)σ], [xσ]) + [x1σ] + [w1σ])

Two applications of Lemma 5.15 and a single application of Lemma 5.14 yield

revc([w1 . . . wµ(w)σ], [x1(x)σ]) + [0] + [$]
> revc([$w2 . . . wµ(w)σ], [x1(x)σ]) + [0] + [w1σ]
> revc([$w2 . . . wµ(w)σ], [0(x)σ]) + [x1σ] + [w1σ]
= revc([0$w2 . . . wµ(w)σ], [xσ]) + [x1σ] + [w1σ]

and thus E2 − F2 > 0. Moreover, if [u3] > [t3] or [u5] > [t5] then E2 − F2 > 0.
Finally, suppose that a rule of type (IV) is used. In this case the difference between

the sequences of terms t3, . . . , tn+5 and u3, . . . , un+5 is either the first or the second term.
We consider here the latter (so the rule rn+2m+3 is used); the former is proved in exactly
the same way. So t4 = 1 and u4 = x1σ. Hence

E2 − F2 = revc([w1 . . . wµ(w)σ], [x1(x)σ]) + [1]−
(revc([1w1 . . . wµ(w)σ], [xσ]) + [x1σ])

From Lemmata 5.15 (recall that [x1σ] = [u4] > [t4] = [1]) and 5.14 we obtain

revc([w1 . . . wµ(w)σ], [x1(x)σ]) + [1]
> revc([w1 . . . wµ(w)σ], [1(x)σ]) + [x1σ]
= revc([1w1 . . . wµ(w)σ], [xσ]) + [x1σ]
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and thus E2 − F2 > 0. Moreover, if [u4] > [t4] then E2 − F2 > 0.
This concludes the proof of claim (12). Positive integers E3 and F3 are defined as

follows:

E3 = revc([t2n+13], [t2n+14]) +
2n+8∑

i=n+6

[ti]

F3 = revc([u2n+13], [u2n+14]) +
2n+8∑

i=n+6

[ui]

We claim that

E3 > F3 (13)

Moreover, if [ui] > [ti] for some n + 6 6 i 6 2n + 8 then E3 > F3. The proof of this
claim is very similar to the proof of (12) and hence omitted.

From (11), (12), and (13) we immediately obtain

factor([t1], . . . , [t2n+14]) = E1 +E2 +E3

> F1 + F2 + F3 = factor([u1], . . . , [u2n+14]) (14)

and if additionally [ui] > [ti] for some 1 6 i 6 2n+ 8 then

factor([t1], . . . , [t2n+14]) > factor([u1], . . . , [u2n+14]) (15)

From (12) we easily obtain

revc([t2n+11], [t2n+12]) > revc([u2n+11], [u2n+12])

Hence

2`([t2n+11]) + `([t2n+12]) > 2`([u2n+11]) + `([u2n+12])

by the monotonicity of ` and the fact that `(revc(x, y)) = 2`(x) + `(y) for all x, y ∈ N+.
Therefore

bound([t2n+11], [t2n+12]) > bound([u2n+11], [u2n+12]) (16)

Now if [ui] > [ti] for some 1 6 i 6 2n + 8 then the statement of the theorem follows
from (15) and (16) as in the proof of Lemma 5.13. Otherwise, we have [ui] = [ti] for all
1 6 i 6 2n + 8. From the first part of Lemma 5.10 we obtain ui ∼ π([ui]) = π([ti]) ∼
ti = Vi. Since Vi is a pure ground term, the second part yields π([ui]) = Vi and hence
ui = Vi by the definition of ∼. Hence rσ = A(V, u2n+9, . . . , u2n+15) and therefore

len(t2n+9, . . . , t2n+14) > len(u2n+9, . . . , u2n+14) (17)

by the definition of len. From (14), (16), and (17) we obtain

D([t1], . . . , [t2n+14]) = E([t1], . . . , [t2n+14])
> E([u1], . . . , [u2n+14]) = D([u1], . . . , [u2n+14])
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With help of the strict monotonicity of the various functions, we now obtain

[lσ] = code(ψQ(D([t1], . . . , [t2n+14]), [t2n+15])) ◦ 8
> code(ψQ(D([u1], . . . , [u2n+14]) + 1, [t2n+15])) ◦ 8
= code([t2n+15] + ψQ(D([u1], . . . , [u2n+14]), φQ([t2n+15]))) ◦ 8
> code(ψQ(D([u1], . . . , [u2n+14]), φQ([t2n+15]))) ◦ 8
> code(ψQ(D([u1], . . . , [u2n+14]), [u2n+15])) ◦ 8
= [rσ]

Note that φQ([t2n+15]) > [u2n+15] because either t2n+15 → u2n+15 is a ground instance
of a rewrite rule in Q in which case the inequality follows from the definition of φQ or
t2n+15 = u2n+15 in which case the inequality follows from φQ(x) > x.

In the second half of the proof we consider the case that [ui] < [ti] for at least one
1 6 i 6 2n+ 8. In this case D([t1], . . . , [t2n+14]) equals

len(π([t2n+9]), . . . , π([t2n+14])) + bound([t2n+11], [t2n+12]) · factor([t1], . . . , [t2n+14])

and D([u1], . . . , [u2n+14]) equals
∑2n+14

i=1 [ui]. If we show that

factor([t1], . . . , [t2n+14]) >
2n+14∑

i=1

[ui] (18)

then D([t1], . . . , [t2n+14]) > D([u1], . . . , [u2n+14]) because bound([t2n+11], [t2n+12]) > 0
and thus we obtain the desired [lσ] > [rσ] as in the preceding case. The proof of (18)
has the same structure as the proof of (14) above. Positive integers are defined as
follows:

E1 = [t1] + [t2] + 2([t2n+9] + [t2n+10])
F ′1 = [u1] + [u2] + [u2n+9] + [u2n+10]

E2 = revc([t2n+11], [t2n+12]) +
n+5∑

i=3

[ti]

F ′2 = [u2n+11] + [u2n+12] +
n+5∑

i=3

[ui]

E3 = revc([t2n+13], [t2n+14]) +
2n+8∑

i=n+6

[ti]

F ′3 = [u2n+13] + [u2n+14] +
2n+8∑

i=n+6

[ui]

Note that factor([t1], . . . , [t2n+14]) = E1 +E2 +E3 and

2n+14∑

i=1

[ui] = F ′1 + F ′2 + F ′3
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In order to show (18) it is sufficient to show that E1 > F ′1, E2 > F ′2, and E3 > F ′3. For
every rewrite rule in U ′(P,Q) we have

E1 = [0] + [1] + 2([uσ] + [vσ]) > [uσ] + [vσ] + [0] + [1] = F ′1

We show E2 > F ′2 and E3 > F ′3 by distinguishing between the four types of rewrite
rules. Actually, we only show E2 > F ′2 for rules of type (II) and E3 > F ′3 for rules of
type (III). The other cases are very similar.

We start with E2 > F ′2. Suppose that rule l→ ri+1 (1 6 i 6 n) is used. In this case
the only difference between the sequences of terms t3, . . . , tn+5 and u3, . . . , un+5 is the
i+ 3-th term: ti+5 = αi(ε) and ui+5 = w1 . . . w|αi|(ε)σ. Hence

E2 − F ′2 = revc([w1 . . . wµ(w)σ], [x1(x)σ]) + [αi(ε)]−
([w|αi|+1 . . . wµ(w)σ] + [x1αi(x)σ] + [w1 . . . w|αi|(ε)σ])

If [w1 . . . w|αi|(ε)σ] > [αi(ε)], then we obtain E2−F2 > 0 from the first half of this proof
(claim (12)) and therefore E2 − F ′2 > 0 as revc(a, b) > a + b for all positive integers a
and b. So suppose that [w1 . . . w|αi|(ε)σ] < [αi(ε)]. Since the decimal representation of
the interpretation of a term that is not a constant has at least two digits, this is possible
only if wjσ is a constant for every 1 6 j 6 |αi|. This implies that the number of digits
in [w1 . . . w|αi|(ε)σ] and [αi(ε)] coincide. We have

E2 − F ′2 > revc([w1 . . . wµ(w)σ], [x1(x)σ])− ([w|αi|+1 . . . wµ(w)σ] + [x1αi(x)σ])

From Lemma 5.14 we obtain

revc([w1 . . . wµ(w)σ], [x1(x)σ]) = revc([w|αi|+1 . . . wµ(w)σ], [x1w1 . . . w|αi|(x)σ])

Hence revc([w1 . . . wµ(w)σ], [x1(x)σ]) has

`1 = 2 · `([w|αi|+1 . . . wµ(w)σ]) + `([x1w1 . . . w|αi|(x)σ])

digits. On the other hand, [w|αi|+1 . . . wµ(w)σ] + [x1αi(x)σ] has at most

`2 = 1 + max {`([w|αi|+1 . . . wµ(w)σ]), `([x1αi(x)σ])}

digits. Because `([x1w1 . . . w|αi|(x)σ]) = `([x1αi(x)σ]) it follows that `1 > `2 and thus
E2 > F ′2.

Next we show that E3 > F ′3 for rules of type (III). In this case the difference
between the sequences of terms tn+6, . . . , t2n+8 and un+6, . . . , u2n+8 is the third term
and either the first or second term. We consider here the latter (so a rule rn+1+m+j

with 1 6 j 6 m is used); the former is proved in exactly the same way. So tn+7 = 1,
tn+8 = $, un+7 = z1σ, and un+8 = y1σ. Hence

E3 − F ′3 = revc([y1 . . . yµ(y)σ], [z1(z)σ]) + [1] + [$]−
([1$y2 . . . yµ(y)σ] + [zσ] + [z1σ] + [y1σ])
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If both [y1σ] > [$] and [z1σ] > [1] then we obtain

revc([y1 . . . yµ(y)σ], [z1(z)σ]) + [1] + [$]
> revc([$y2 . . . yµ(y)σ], [z1(z)σ]) + [1] + [y1σ]
> revc([$y2 . . . yµ(y)σ], [1(z)σ]) + [z1σ] + [y1σ]
= revc([1$y2 . . . yµ(y)σ], [zσ]) + [z1σ] + [y1σ]
> [1$y2 . . . yµ(y)σ] + [zσ] + [z1σ] + [y1σ]

by two applications of Lemma 5.15, a single application of Lemma 5.14, and the fact
that revc(a, b) > a + b for all positive integers a and b. Consequently E3 − F ′3 > 0. If
neither [y1σ] > [$] nor [z1σ] > [1] then y1σ and z1σ are constants. From Lemma 5.14
we obtain

revc([y1 . . . yµ(y)σ], [z1(z)σ]) = revc([z1y1 . . . yµ(y)σ], [zσ])

Hence revc([y1 . . . yµ(y)σ], [z1(z)σ]) + [1] + [$] has at least

`1 = 2 · `([z1y1 . . . yµ(y)σ]) + `([zσ])

digits. On the other hand, since [z1σ] + [y1σ] 6 [1] + [$] = 6, [1$y2 . . . yµ(y)σ] + [zσ] +
[z1σ] + [y1σ] has at most

`2 = 1 + max {`([1$y2 . . . yµ(y)σ]), `([zσ])}

digits. Because `([z1y1 . . . yµ(y)σ]) = `([1$y2 . . . yµ(y)σ]) it follows that `1 > `2 and thus
E3 > F ′3. If either [y1σ] > [$] or [z1σ] > [1] then we obtain the desired E3 > F ′3 by
combining the argumentation for the preceding two cases. �

Theorem 5.18 The TRS U ′(P,Q) is ω-terminating.
Proof Let A = {[t] | t ∈ T (FU )} be the set of all natural numbers that are the inter-
pretation of some ground term. Note that the interpretation functions [f ] for f ∈ FU
are well-defined on A. According to the preceding theorem, U ′(P,Q) is compatible with
(A,>) and thus ω-terminating by definition. �

Corollary 5.19 The TRS U(P,Q) is ω-terminating if P has no solution. �

Corollary 5.20 The TRS U−(P,Q) is ω-terminating for every PCP instance P . �

6 One-Rule Term Rewriting Systems

Transforming U(P,Q) into a single-rule TRS S(P,Q) is easy: We define S(P,Q) as the
rule

l→ B(r1, . . . , rn+2m+3)

where B is a fresh function symbol of arity n+ 2m+ 3.
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The transformation from S(P,Q) to U(P,Q) is an instance of the distribution elimi-
nation technique of Zantema [25]. Below we make use of the following results. (Actually,
the right-linearity requirement can be dropped from the first [20] and third [25] state-
ments.)

Lemma 6.1 Let Q be a right-linear TRS.

1. If U(P,Q) is terminating then S(P,Q) is terminating.

2. U(P,Q) is simply terminating if and only if S(P,Q) is simply terminating.

3. U(P,Q) is totally terminating if and only if S(P,Q) is totally terminating.

Proof Since U(P,Q) inherits right-linearity from Q, this is an immediate consequence
of [25, Theorem 12] (by noting that U(P,Q) = EB(S(P,Q))). �

We would like to strengthen the last statement of the preceding lemma to ω-termination.
One direction is easy.

Lemma 6.2 If S(P,Q) is ω-terminating then U(P,Q) is ω-terminating.
Proof By definition l >A B(r1, . . . , rn+2m+3) for some monotone algebra A = (A,>)
with A ⊆ N. In [25, Proposition 7] it is shown that every well-founded monotone
algebra A = (A,>) with the property that the order > is total on A is simple. Hence
B(r1, . . . , rn+2m+3) >A ri and thus l >A ri for every 1 6 i 6 n+ 2m+ 3. We conclude
that A is compatible with U(P,Q). In other words, U(P,Q) is ω-terminating. �

We do not know whether the reverse direction holds for ω-termination. The following
partial result however suffices for our purposes.

Lemma 6.3 The TRS S(P,Q) is ω-terminating if P does not have a solution.
Proof We refine the interpretation [ ] that was used in the previous section to show
ω-termination of U(P,Q) into an interpretation [[ ]] in the positive integers that orients
S(P,Q). The interpretation of every k-ary function symbol f ∈ FU \ {A} is unchanged:

[[f ]](x1, . . . , xk) = [f ](x1, . . . , xk)

The interpretation [[A]] of A is given by

[[A]](x1, . . . , x2n+15) = λ([A](x1, . . . , x2n+15))

where λ : N+ → N+ is the strictly monotonic function inductively defined by

λ(x) =

{
1 if x = 1
10 · (n+ 2m+ 3)2 · λ(x− 1)2 if x > 1

and the interpretation [[B]] of B is defined as

[[B]](x1, . . . , xn+2m+3) = 10 · code

(
n+2m+3∑

i=1

xi

)
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The interpretation of A is chosen in such a way that the inequality [[lσ]] > [[rσ]] is
easily proved for every ground substitution σ. The definition of [[B]] ensures that the
interpretation [[t]] of every ground term t with root symbol B ends with a 0 and does
not contain the digits 5 and 6. This is essential for the extension of Theorem 5.17
mentioned below. Using Lemma 5.13 we easily obtain the strict monotonicity of every
interpretation function in all arguments. Let

lσ = A(t1, . . . , t2n+15)→ B(r1σ, . . . , rn+2m+3σ) = rσ

be a ground instance of the only rewrite rule of S(P,Q). We have to show that [[lσ]] >
[[rσ]]. Write ri = A(ui1, . . . , u

i
2n+15). By definition

[[lσ]] = λ([A]([[t1]], . . . , [[t2n+15]]))

and

[[rσ]] = 10 · code

(
n+2m+3∑

i=1

λ([A]([[ui1]], . . . , [[ui2n+15]]))

)

After extending the congruence relation∼ of Definition 5.9 by defining t ∼ t′ if root(t), root(t′) ∈
{A,B} ∪ FQ, the proof of Theorem 5.17 can be reused to obtain

p = [A]([[t1]], . . . , [[t2n+15]]) > [A]([[ui1]], . . . , [[ui2n+15]]) = qi

Hence
n+2m+3∑

i=1

λ(qi) 6
n+2m+3∑

i=1

λ(p− 1) = (n+ 2m+ 3) · λ(p− 1)

and thus

[[rσ]] 6 10 · code((n+ 2m+ 3) · λ(p− 1))

< 10 · (n+ 2m+ 3)2 · λ(p− 1)2

= λ(p)
= [[lσ]]

because code(x) < x2 for every integer x > 1, which we show by induction on x as follows.
For x < 8 one directly verifies that code(x) < x2. Suppose x > 8. Let y be the natural
number uniquely determined by 8(y− 1) 6 x < 8y. We have code(x) < code(8y) by the
strict monotonicity of code. Since (8y)8 = 10(y)8 it follows that code(8y) = 10 · code(y)
and hence code(x) < 10 · y2 by the induction hypothesis. From y > 2 we infer that
y/(y − 1) 6 2 and thus y2/(y − 1)2 6 4 < 64/10. Therefore code(x) < 64 · (y − 1)2 =
(8 · (y − 1))2 6 x2 as desired. �

In the following we also need results about the relation between U(P,Q) and S(P,Q)
for the other properties in the termination hierarchy. These results will be stated and
proved in the respective sections.

The final result of this section will be used to transform rewrite sequences in U(P,Q)
to rewrite sequences in S(P,Q) for PCP instances P that admit a solution.
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Lemma 6.4 If W and t do not contain A symbols and A(V,W, t)→+
U(P,Q) A(V ′,W ′, t′)

then A(V,W, t)→+
S(P,Q) C[A(V ′,W ′, t)] for some context C.

Proof Straightforward induction on the length of A(V,W, t)→+
U(P,Q) A(V ′,W ′, t′). �

7 NL ⇒ AC

Let Q1 = {d→ d}.
Lemma 7.1 The TRS S(P,Q1) is acyclic for every PCP instance P .
Proof Since every rewrite step in S(P,Q1) increases the size of terms, acyclicity is
obvious. �

Lemma 7.2 The TRS S(P,Q1) is non-looping if and only if P admits no solution.
Proof If P admits a solution then there exists a sextupleW such thatA(V,W, d)→+

U(P,Q1)

A(V,W, d) according to Lemma 4.2 and thus A(V,W, d)→+
S(P,Q1) C[A(V,W, d)] for some

context C by Lemma 6.4, hence S(P,Q1) is looping. On the other hand, if P has no
solution then S(P,Q1) is ω-terminating by Lemma 6.3 and thus also non-looping. �

8 SN ⇒ NL

Before defining the TRS Q2 used for the relative undecidability of SN ⇒ NL, we will
present two simple but useful facts about non-loopingness.

Lemma 8.1 Every term in a loop is looping.
Proof Let t→∗ u→∗ C[tσ] be a non-empty rewrite sequence. Since rewriting is closed
under substitution, we obtain u→∗ C[tσ]→∗ C[uσ], which shows that u is looping. �

Lemma 8.2 Every looping TRS admits a loop that starts with a root rewrite step.
Proof Let t→+ C[tσ] be any loop. We show by induction on the structure of t that there
exists a loop (not necessarily starting at t) which contains a root rewrite step. In the base
case (t is a constant) the first step of the given loop must take place at the root position.
For the induction step, suppose t = f(t1, . . . , tk) with k > 1 and no step in t→+ C[tσ]
takes place at the root position. So C[tσ] = f(u1, . . . , uk) with ti →∗ ui for all 1 6 i 6 k
and tj →+ uj for at least one 1 6 j 6 k. If the context C is empty then uj = tjσ and we
obtain the desired loop from the induction hypothesis (applied to tj). Otherwise there
exist a context C ′ and an index 1 6 l 6 k such that C = f(v1, . . . , vl−1, C

′, vl+1, . . . , vk)
and tl →∗ C ′[tσ] = C ′[f(. . . , tlσ, . . . )]. Since tl 6= C ′[f(. . . , tlσ, . . . )] we can apply the
induction hypothesis to tl, yielding a loop which contains a root rewrite step. Now the
result follows from the preceding lemma. �

Let

Q2 =
{
f(d, b(x), y) → f(d, x, b(y))
f(d, b(x), y) → f(x, y, b(b(d)))
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Lemma 8.3 ([27]) The TRS Q2 is non-looping and not terminating.
Proof First we show that Q2 is not terminating. Define terms ti = f(d, b(d), bi(d)) for
all i > 1. We have ti →+ ti+1 by one application of the second rewrite rule followed
by i − 1 applications of the first rewrite rule. Hence Q2 admits the infinite rewrite
sequence t1 →+ t2 →+ t3 →+ · · · . Next we show that Q2 is non-looping. For a proof
by contradiction suppose that Q2 is looping. According to Lemma 8.2 there must be a
loop that starts with a root rewrite step, which is only possible if the loop is of the form

f(d, b(t1), t2)→+ C[f(d, b(t1σ), t2σ)] (19)

Since rewrite steps do not change the number of f symbols, the context C must be
empty. Moreover, the substitution σ does not assign terms that contain any f symbols
to the variables in t1 and t2. We may assume that t1 and t2 do not contain f symbols.
(If they do, we replace their outermost f symbols by a fresh variable, resulting in a loop
that has the desired property.) Consequently, all rewrite steps in (19) take place at the
root position. We claim that t1 and t2 are ground terms. First note that the second
rule of Q2 must be used in (19) as the first rule constitutes a terminating (and hence
non-looping) TRS. Hence we can render (19) as follows:

f(d, b(t1), t2)→∗ f(d, b(u1), u2)→ f(u1, u2, b(b(d)))→∗ f(d, b(t1σ), t2σ) (20)

such that t1 = bk(u1) and bk(t2) = u2 for some k > 0. Because of the form of the
left-hand sides of the rules of Q2 we must have u1 = d and hence t1 = bk(d) is a ground
term. Repeating the same reasoning for the loop

f(d, u2, b(b(d)))→+ f(d, u2σ, b(b(d))) (21)

whose existence is guaranteed by (the proof of) Lemma 8.1 shows that u2, and thus also
t2, is a ground term. Hence t1σ = t1, t2σ = t2, and thus (19) is actually a cycle. Since
applications of the second rewrite rule increase the size of terms whereas applications of
the first rewrite rule do not change the size of terms, only the first rewrite rule can be
used. However, we have already observed that the first rule constitutes a terminating
(and thus acyclic) TRS. Therefore Q2 is non-looping. �

We want to show that S(P,Q2) is non-looping for every PCP instance P . Since it is
easier to reason about U(P,Q2), we will show how to transform a loop in S(P,Q2) into
a loop in U(P,Q2). Actually, we present a more general statement which will also be
used in Section 10.

Definition 8.4 We define two (partial) mappings φ and ψ as follows:

φ(A(t1, . . . , t2n+15)) = A(ψ(t1), . . . , ψ(t2n+15)),
φ(B(t1, . . . , tn+2m+3)) = B(φ(t1), . . . , φ(tn+2m+3)),
ψ(A(t1, . . . , t2n+15)) = ψ(B(t1, . . . , tn+2m+3)) = z,

ψ(g(t1, . . . , tk)) = g(ψ(t1), . . . , ψ(tk)) for all function symbols g different from A and B,
and ψ(x) = x for all variables x. Here z is a designated fresh variable.
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The purpose of these mappings is to simplify the structure of S(P,Q) rewrite se-
quences by replacing all descendants of non-outermost A symbols by the variable z.

Lemma 8.5 If t→+
S(P,Q) u with root(t) = A contains a root rewrite step then φ(t)→+

S(P,Q)

φ(u). Moreover, if v is a maximal subterm of u with root symbol A then φ(v) is a subterm
of φ(u) and φ(t)→+

U(P,Q) φ(v).

Proof It is easy to see that for every step t′ →S(P,Q2) u
′ in the given rewrite sequence we

get φ(t′)→S(P,Q2) φ(u′) if the contracted redex is outermost and φ(t′) = φ(u′) otherwise.
Hence φ(t) →+

S(P,Q) φ(u). The term u can be (uniquely) written as C[v1, . . . , vk] such
that C is a context consisting of B symbols and every vi starts with an A symbol. So
v1, . . ., vk are the maximal subterms of u with root symbol A. By definition φ(u) =
C[φ(v1), . . . , φ(vk)]. A straightforward induction on the length of t →∗S(P,Q) u yields
φ(t)→∗U(P,Q) φ(vi) for every 1 6 i 6 k. �

Lemma 8.6 If U(P,Q2) is non-looping then S(P,Q2) is non-looping.
Proof Suppose on the contrary that S(P,Q2) is looping. According to Lemma 8.2 there
exists a loop t →+

S(P,Q2) C[tσ] that starts with a root rewrite step. This implies that
root(t) = A. Since the maximum nesting of A symbols does not change by S(P,Q2)
rewrite steps, there cannot be A symbols above the position of the hole in the context
C. In other words, tσ is a maximal subterm of C[tσ] with root symbol A. Lemma 8.5
yields

φ(t)→+
U(P,Q2) φ(tσ) (22)

Note that φ(tσ) = φ(t)σ′ where the substitution σ′ is defined as the composition of σ
and ψ. Hence (22) is a loop, which contradicts the assumption. �

Lemma 8.7 The TRS S(P,Q2) is non-looping for every PCP instance P .
Proof Assume S(P,Q2) admits a loop. From Lemma 8.6 we obtain a loop, t→+ C[tσ],
in U(P,Q2). According to Lemma 8.2 we may assume that this loop starts with a root-
rewrite step. This is only possible if t is a redex and hence we may write t = A(V,W, t′).
The linear interpretation φ is defined by φ(b(t)) = φ(t) and φ(g(t1, . . . , tk)) = φ(t1) +
· · · + φ(tk) + 1 for every other function symbol g of arity k. Clearly, s →U(P,Q2) s

′

implies φ(s) = φ(s′) for all terms s and s′, hence C consists of b symbols only. Another
linear interpretation ψ is defined by ψ(b(t)) = ψ(t) + 1 and ψ(g(t1, . . . , tk)) = 0 for
every other function symbol g of arity k. For all terms s and s′, if s →U(P,Q2) s′

then ψ(s) = ψ(s′), hence C is empty. We conclude that the loop must be of the form
A(V,W, t′)→+ A(V,Wσ, t′σ). Since A(V,W, t′)→+

U−(P,Q) A(V,Wσ, t′σ) contradicts the
(ω-)termination of U−(P,Q) (Corollary 5.20), we obtain t′ →+

Q2
t′σ from Lemma 4.3.

This is impossible as Q2 is non-looping (Lemma 8.3). �

Lemma 8.8 The TRS S(P,Q2) is terminating if and only if P admits no solution.
Proof Suppose P has a solution. From (the proof of) Lemma 8.3 we know there exists
an infinite rewrite sequence t1 →Q2 t2 →Q2 t3 →Q2 · · · in which all steps take place at
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the root position. According to Lemmata 4.2 and 6.4 this sequence can be transformed
into an infinite rewrite sequence in S(P,Q2):

A(V,W, t1)→+ C1[A(V,W, t2)]→+ C1[C2[A(V,W, t3)]]→ · · ·
Note that for the applicability of Lemma 4.2 it is essential that all steps in the infinite
Q2-rewrite sequence take place at the root position. Conversely, if P has no solution
then S(P,Q2) is ω-terminating by Lemma 6.3 and therefore also terminating. �

9 NSE ⇒ SN

Let Q3 = {f(d)→ f(g(d))}. This TRS is terminating and self-embedding.

Lemma 9.1 The TRS S(P,Q3) is terminating for every PCP instance P .
Proof According to Lemma 6.1(1) it suffices to show that U(P,Q3) is terminating. There
are several ways to achieve this. We use type introduction ([25]), which is possible
since U(P,Q3) lacks collapsing (and duplicating) rules. Hence we may assume that the
function symbols come from a many-sorted signature such that the left and right-hand
side of any rewrite rule are well-typed and of the same type. We use two sorts 1 and 2
with A of type 1× · · · × 1→ 2 and all other function symbols of type 1× · · · × 1→ 1.
Terms of type 1 are in normal form. So if U(P,Q3) is not terminating then there exists
an infinite rewrite sequence consisting of terms of type 2. Hence all steps take place at
the root position. Since terms of type 2 do not contain occurrences of A below the root
position, Lemma 4.3 applies. Because U−(P,Q) is (simply) terminating (Lemma 5.20),
we obtain an infinite rewrite sequence in Q3, contradicting its termination. �

Lemma 9.2 The TRS S(P,Q3) is non-self-embedding if and only if P admits no solu-
tion.
Proof If P admits a solution then we obtain

A(V,W, f(d))→+
S(P,Q3) C[A(V,W, f(g(d)))]

from Lemmata 4.2 and 6.4. Since A(V,W, f(d)) is embedded in C[A(V,W, f(g(d)))], this
shows that S(P,Q3) is self-embedding. Conversely, if P has no solution then S(P,Q3)
is ω-terminating and thus non-self-embedding by Lemma 6.3. �

10 ST ⇒ NSE

Before defining the TRSQ4 used for the relative undecidability of ST⇒ NSE, we present
a simple fact about non-self-embeddingness.

Lemma 10.1 If a TRS R is self-embedding then it admits a rewrite sequence t →+
R

u→∗Emb t such that the subsequence from t to u contains a root rewrite step.
Proof Similar to the proof of Lemma 8.2, but note that we cannot prove that there
exists a rewrite sequence t →+

R u →∗Emb t that starts with root rewrite step: consider
the TRS {f(a)→ f(g(h(b))), g(b)→ a}. �
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We define

Q4 =
{
f(d, e, x) → f(x, g(e), e)
f(d, e, x) → f(g(d), x, d)

Lemma 10.2 The TRS Q4 is non-self-embedding.
Proof If Q4 is self-embedding then by Lemma 10.1 there exists a rewrite sequence
t →+

Q4
u →∗Emb t such that the subsequence from t to u contains a root rewrite step.

By the form of the rules in Q4, the latter condition requires that the first step in the
subsequence from t to u is a root rewrite step. Moreover, later steps must take place
below the root. It follows that t = f(d, e, s), s →∗Q4

s′ and either u = f(s′, g(e), e) or
u = f(g(d), s′, d). But then t can only be embedded in u if s = e and s′ →∗Emb d or s = d
and s′ →∗Emb e. Note that t cannot be embedded in s′ as t contains one more f symbol
than s′. However, both cases contradict s→∗Q4

s′. Hence Q4 is non-self-embedding. �

Lemma 10.3 The TRS S(P,Q4) is non-self-embedding for every PCP instance P .
Proof Suppose on the contrary that S(P,Q4) is self-embedding. According to Lemma 10.1
there exists a rewrite sequence

t→+
S(P,Q4) u→∗Emb t (23)

such that its first part contains a step at the root position. By the form of the rules in
S(P,Q4) this implies that t is a redex, so we may write t = A(V,W, f(d, e, t′)). The term
u can be written (cf. the proof of Lemma 8.5) as C[v1, . . . , vk] such that C is a non-empty
context consisting of B symbols and every vi starts with an A symbol. We can rear-
range the second part of (23) into u→+

Emb vi →∗Emb t for suitable 1 6 i 6 k. Lemma 8.5
yields φ(t) →+

U(P,Q4) φ(vi). Since Q4 is non-duplicating and variable-preserving, vi has
the same number of A symbols as t and hence no A symbol is erased in vi →∗Emb t.
This implies that φ(vi) →∗Emb φ(t). We have φ(t) = A(V, φ(W ), f(d, e, φ(t′))) and
φ(vi) = A(φ(V ′), φ(W ′), φ(u′)) for a certain 2n + 8-tuple V ′, sextuple W ′, and term
u′. We must have φ(V ′) →∗Emb V , φ(W ′) →∗Emb φ(W ), and φ(u′) →∗Emb f(d, e, φ(t′)).
From Lemma 4.3 we infer that either f(d, e, φ(t′))→+

Q4
φ(u′) or φ(t)→+

U−(P,Q) φ(vi) (and
f(d, e, φ(t′)) = φ(u′)). The former contradicts the fact that Q4 is non-self-embedding
(Lemma 10.2), the latter the simple termination of U−(P,Q) (which follows from Corol-
lary 5.20). �

Lemma 10.4 The TRS S(P,Q4) is simply terminating if and only if P admits no
solution.
Proof If P admits a solution then with the help of Lemmata 4.2 and 6.4 we obtain the
following cycle in S(P,Q4) ∪ Emb:

A(V,W, f(d, e, d))→+ C1[A(V,W, f(d, g(e), e))] →+ A(V,W, f(d, e, e))
→+ C2[A(V,W, f(g(d), e, d))]→+ A(V,W, f(d, e, d))

So S(P,Q4) is not simply terminating. Conversely, if P has no solution, then S(P,Q4)
is ω-terminating and thus simply terminating by Lemma 6.3. �
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11 TT ⇒ ST

Let

Q5 =
{
f(d, e) → f(e, e)
f(d, e) → f(d, d)

This TRS is simply terminating (because it is terminating and length-preserving) but
not totally terminating (as d and e are incomparable).

Lemma 11.1 The TRS S(P,Q5) is simply terminating for every PCP instance P .
Proof According to Lemma 6.1(2) it is sufficient to show that U(P,Q5) is simply termi-
nating. Since U(P,Q5) is length-preserving, simple termination follows from termina-
tion. By using typing, the termination of U(P,Q5) follows from the termination of Q5,
just as in the proof of Lemma 9.1. �

Lemma 11.2 The TRS S(P,Q5) is totally terminating if and only if P admits no
solution.
Proof If P has no solution then ω-termination, and thus also total termination, of
S(P,Q5) follows from Lemma 6.3. Let P have a solution. We show that S(P,Q5) is
not totally terminating. According to Lemma 6.1(3) this is equivalent to showing that
U(P,Q5) is not totally terminating. Suppose on the contrary that U(P,Q5) is totally ter-
minating. So there exists a compatible total reduction order >. Because by Lemma 4.2
both A(V,W, f(d, e)) →+ A(V,W, f(e, e)) and A(V,W, f(d, e)) →+ A(V,W, f(d, d)), we
have A(V,W, f(d, e)) > A(V,W, f(e, e)) and A(V,W, f(d, e)) > A(V,W, f(d, d)) by com-
patibility. By the truncation rule for total reduction orders ([25, Proposition 9]) one
may remove a context C from an inequation C[t] > C[t′]. By removing A(V,W, f( , e))
and A(V,W, f(d, )), respectively, we obtain the impossible d > e and e > d. �

12 ωT ⇒ TT

Geser [7] showed the undecidability of ω-termination for totally terminating TRSs. In
this section we will show that ω-termination is an undecidable property of one-rule
totally terminating TRSs.

Let Q6 = {f(g(x)) → g(f(f(x)))}. This TRS is totally terminating but not ω-
terminating (Zantema [25, Proposition 11]).

Lemma 12.1 The TRS S(P,Q6) is totally terminating for every PCP instance P .
Proof First we show that U(P,Q6) is totally terminating. Let the interpretation [ ]′ in
N2

+ be defined by [f ]′(x, y) = (x, x+ y), [g]′(x, y) = (2x+ 1, y), and

[h]′(x1, y1), . . . , (xn, yn)) = (1 +
n∑

i=1

xi, 1 +
n∑

i=1

yi)

34



for every function symbol h ∈ FU \ {f, g}. We claim that the interpretation [[ ]] in
N3

+ (ordered lexicographically) defined by [[ ]] = ([ ]′, [ ]) proves total termination of
U(P,Q6). For rules l→ r of type (III) and ground substitutions σ we have [lσ]′ > [rσ]′.
For the rules in U−(P,Q6) we have [lσ]′ = [rσ]′ and [lσ] > [rσ] by Theorem 5.17. From
Lemma 6.1(3) it follows that S(P,Q6) is totally terminating. �

Lemma 12.2 The TRS S(P,Q6) is ω-terminating if and only if P admits no solution.
Proof If P has no solution then ω-termination of S(P,Q6) follows from Lemma 6.3.
Let P have a solution. We show that S(P,Q6) is not ω-terminating. According to
Lemma 6.2 it is sufficient to show that U(P,Q6) is not ω-terminating. Suppose on
the contrary that U(P,Q6) is ω-terminating. So there exists a compatible well-founded
monotone algebra A = (N, >). According to Lemma 4.2 we have

A(V,W, f(g(t)))→+ A(V,W, g(f(f(t))))

and thus A(V,W, f(g(t))) >A A(V,W, g(f(f(t)))) for every ground term t. Because the
interpretation of A is strictly monotone in its final argument, this is only possible if
f(g(t)) >A g(f(f(t))) for every ground term t, which contradicts the fact that Q6 is not
ω-terminating. �

13 PT ⇒ ωT

At present it is unknown as to whether polynomial termination is an undecidable prop-
erty of (ω-terminating) TRSs. The following TRS is ω-terminating but not polynomially
terminating (Zantema [25, Proposition 10]):

f(g(h(x))) → g(f(h(g(x))))

So the polynomially terminating TRSs form a proper subclass of the ω-terminating
TRSs. We conjecture that the implication PT ⇒ ωT is relative undecidable, even for
one-rule TRSs.

14 SN ⇒ WN

Lemma 14.1 The TRS U(P,Q) is weakly normalizing for every PCP instance P and
TRS Q.
Proof We show that every term t has a normal form by induction on the structure of t.
The only interesting case is t = A(t1, . . . , t2n+15). According to the induction hypothesis
every ti has a normal form ui. So t rewrites to t′ = A(u1, . . . , u2n+15). If t′ is a not redex
then we are done. If t′ is a redex then we consider u2n+9 and u2n+10. If u2n+9 = 0 and
u2n+10 = 1 then we apply any rewrite rule of type (III). If u2n+9 = 1 and u2n+10 = 0
then we apply the only rewrite rule of type (I). Otherwise, we apply an arbitrary rewrite
rule. In all cases we obtain a term of the form A(1, 0, . . . ) which does not match the
unique left-hand side l of U(P,Q), in other words, a normal form. �
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Since U(P,Q2) is terminating if and only if P admits no solution—this follows from
the proof of Lemma 8.8—we obtain the relative undecidability of the implication SN⇒
WN. (Instead of Q2 the simpler Q7 = {a → a, a → b} also works.) However, with the
constructions given in this paper we cannot strengthen this result to one-rule systems.
The reason is that weak normalization of U(P,Q) does not imply weak normalization of
S(P,Q). As a matter of fact, for all TRSs Q presented so far the TRS S(P,Q) is both
orthogonal and non-erasing. According to the following well-known result (see [13]) such
systems can never be used for obtaining the relative undecidability of the implication
SN ⇒ WN. (Note that unlike S(P,Q) the TRS U(P,Q) is not orthogonal.)

Theorem 14.2 An orthogonal and non-erasing TRS is weakly normalizing if and only
if it is strongly normalizing. �

The implication SN⇒WN is known to be strict even for one-rule TRSs. An example
of a weakly but not strongly normalizing one-rule TRS is the system

Q8 = {f(a, f(x, y))→ f(x, f(x, f(b, b)))}

of Akkerman (see [13]). Note that this TRS is neither orthogonal nor non-erasing.
However, Q8 cannot be used either: Since U(P,Q) and S(P,Q) only simulate root
rewrite sequences in Q (for PCP instances P that admit a solution) and root rewriting
in Q8 is not weakly normalizing, viz. f(a, f(a, f(b, b))) → f(a, f(a, f(b, b))), it follows
that S(P,Q8) is not weakly normalizing for solvable P .

Conclusion

The results proved in this paper are summarized below.

Theorem 14.3 For the following implications X ⇒ Y , X is an undecidable property
of one-rule TRSs that satisfy property Y :

ωT ⇒ TT ⇒ ST ⇒ NSE ⇒ SN ⇒ NL ⇒ AC

In addition, SN is an undecidable property of TRSs that satisfy WN. �

We already identified the following open problems: Is the implication SN⇒WN rel-
ative undecidable for one-rule TRSs? Is the implication PT⇒ ωT relative undecidable?
Another problem is whether the results obtained in this paper can be strengthened to
string rewriting systems.

In part 2 of this paper [8] we present relative undecidability results for properties
related to confluence.
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