
Relative Undecidability in Term Rewriting

Part 2: The Confluence Hierarchy

Alfons Geser

ICASE, Mail Stop 132C
NASA Langley Research Center

Hampton VA 23681, USA

Aart Middeldorp

Institute of Information Sciences and Electronics
University of Tsukuba

Tsukuba 305-8573, Japan

Enno Ohlebusch

Faculty of Technology
University of Bielefeld

P.O. Box 10 01 31, 33501 Bielefeld, Germany

Hans Zantema

Department of Computing Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

April 24, 2002

Abstract

For a hierarchy of properties of term rewriting systems related to confluence
we prove relative undecidability, i.e., for implications X ⇒ Y in the hierarchy the
property X is undecidable for term rewriting systems satisfying Y . For some of
the implications either X or ¬X is semi-decidable, for others neither X nor ¬X is
semi-decidable. We prove most of these results for linear term rewrite systems.

1



1 Introduction

Termination and confluence are fundamental properties of term rewriting systems (TRSs)
which are often very hard to prove. Classical results ([7, 8]) state that they are undecid-
able. Besides termination and confluence, a number of related properties are of interest.
In our companion paper ([4]) properties related to termination have been studied ex-
tensively. In the present paper we study properties connected to confluence, mutually
related in the confluence hierarchy :

GCR
⇑

SCR ⇒ CR ⇒ NF ⇒ UN ⇒ UN→

⇓ ⇓ ⇓
WCR CON ⇒ CON→

The acronyms stand for strong confluence (SCR), confluence (or the Church-Rosser
property, CR), local confluence (or weak Church-Rosser, WCR), ground confluence (or
ground Church-Rosser, GCR), the normal form property (NF), unique normal forms
(UN), unique normal forms with respect to reduction (UN→), consistency (CON), and
consistency with respect to reduction (CON→). Precise definitions are given in Section 2.
For weakly normalizing systems the properties CR, NF, UN, and UN→ coincide. For
terminating systems also WCR and CR coincide and are decidable.

Undecidability of confluence is well-known ([8]), for the other properties in the con-
fluence hierarchy it is easy to see too. Ground confluence is known to be undecidable
for terminating systems (Kapur et al. [9]). In this paper we show the stronger result of
relative undecidability : For all implications X ⇒ Y in the confluence hierarchy we prove
that the property X is undecidable for TRSs satisfying Y .

It is well-known that a property X is undecidable if and only if X is not semi-
decidable or ¬X is not semi-decidable. In the latter case we also say that X is not
co-semi-decidable. Hence we can distinguish the following three possibilities for an
implication X ⇒ Y :

1. Both X and ¬X are not semi-decidable for TRSs satisfying Y . This is the case
for the implications CR⇒WCR, CR⇒ GCR, CR⇒ NF, and NF⇒ UN.

2. Property X is semi-decidable and ¬X is not semi-decidable for TRSs satisfying
Y . This is the case for the implication SCR⇒ CR.

3. Property ¬X is semi-decidable and X is not semi-decidable for TRSs satisfying
Y . This is the case for the remaining implications UN ⇒ UN→, UN ⇒ CON,
UN→ ⇒ CON→, and CON⇒ CON→.

We prove all non-semi-decidability results for linear TRSs. We prove the non-semi-
decidability of CON for TRSs satisfying CON→ for linear terminating TRSs. We prove
the semi-decidability results for arbitrary (finite) TRSs, except that we need linearity for
the semi-decidability of SCR. We also consider (non-)semi-decidability for the properties

2



WCR, GCR, and CON→ that do not appear in an X position of an implication X ⇒ Y
in the confluence hierarchy.

The paper is organized in such a way that it can be read independently of the com-
panion paper [4] on the termination hierarchy. In Section 2 we give the main definitions
and present some basic tools that we use in the sequel. In the next nine sections we
treat the nine implications of the confluence hierarchy. In Section 12 we investigate
(semi-)decidability issues for the three properties in the confluence hierarchy that do
not appear in an X position of an implication X ⇒ Y . Finally, in Section 13 we sum-
marize our results and point to further research. Some of the results in this paper were
first reported in our earlier paper [5].

2 Preliminaries

For all our undecidability proofs we use Post’s Correspondence Problem (PCP), which
can be stated as follows:

given a finite alphabet Γ and a finite list P = (α1, β1), . . . , (αn, βn) of pairs
of non-empty strings over Γ, is there some natural number m > 0 and indices
1 6 i1, . . . , im 6 n such that αi1 · · ·αim = βi1 · · ·βim?

The list P is called an instance of PCP, the string αi1 · · ·αim = βi1 · · ·βim a solution
for P . We write (α, β) ∈ P if (α, β) = (αi, βi) for some 1 6 i 6 n. Without loss of
generality we require P to be non-empty. PCP is known to be undecidable even in
the case of a two-letter alphabet (Post [15]). Matiyasevich and Senizergues [12] showed
that PCP is undecidable even when restricted to instances consisting of seven pairs. An
obvious breadth-first search procedure yields the semi-decidability of PCP and hence
the complement of PCP is not semi-decidable.

For preliminaries on rewriting the reader is referred to [2, 3, 10]. Here we define the
properties in the confluence hierarchy and recall some definitions of other properties of
TRSs. All our TRSs are assumed to be finite.

A TRS R is called confluent (or Church-Rosser, CR) if ∗
R← · →∗R ⊆ →∗R · ∗R←.

Confluence is equivalent to the the property stating that every two convertible terms
have a common reduct. A TRS R is called locally confluent (or weakly Church-Rosser,
WCR) if R← · →R ⊆ →∗R · ∗R←. A TRS R is called strongly confluent (or strongly
Church-Rosser, SCR) if R← · →R ⊆ →=

R · ∗R←. A TRS is said to have the normal form
property (NF) if every term convertible to a normal form rewrites to that normal form.
The normal form property is equivalent to the property stating that every term that
has a normal form is confluent. A TRS is said to have unique normal forms (UN) if
different normal forms are not convertible. A TRS is said to have unique normal forms
with respect to reduction (UN→) if every term has at most one normal form. A TRS is
called consistent (CON) if distinct variables are not convertible. A TRS is consistent
if and only if not all terms are convertible. A TRS is called consistent with respect to
reduction (CON→) if no term rewrites to two distinct variables. All properties in the
confluence hierarchy, except UN and CON, can be defined for individual terms in the

3



obvious way. For instance, a term t in a TRS R is confluent if and only if s and u have
a common reduct whenever s ∗

R← t →∗R u. A TRS R is called ground confluent (or
ground Church-Rosser, GCR) if all its ground terms are confluent.

The above definition of strong confluence originates from Huet [6] and is different
from the one in Dershowitz and Jouannaud [3]. They call a TRS R strongly confluent if
R← · →R ⊆ →=

R · =
R←. Klop [10] calls the latter property subcommutativity (WCR61).

The definitions of CR and WCR are standard [10, 2]. For the definitions of UN, UN→,
and NF we follow Klop [10]. The notion of CON goes back to Schmidt-Schauß [17]; for
the notion CON→ modularity has been studied [18].

A rewrite rule l→ r is called variable preserving if the sets of variables in l and r are
the same. We call l→ r collapsing if r is a variable and linear if both l and r are linear
terms; a term is linear if no variable occurs more than once in it. A TRS is variable
preserving (linear) if all its rewrite rules are so. A TRS is collapsing if it contains a
collapsing rewrite rule.

Next we illustrate how we relate PCP to rewriting. An arbitrary PCP instance P
admits a solution if and only if A→∗R0(P ) B for the TRS

R0(P ) =





A → f(α(c), β(c)) for all (α, β) ∈ P
f(x, y) → f(α(x), β(y)) for all (α, β) ∈ P
f(x, x) → B

This observation is quite simple: B can be reached if and only if a term of the shape
f(t, t) can be reached, and this can be reached from A if and only if a PCP solution for
P exists. To arrive at results for linear TRSs and for some technical convenience the
basic system R0(P ) is replaced by the TRS R1(P ) that consists of the rules

A → f(α(c), β(c))
f(x, y) → f(α(x), β(y)) g(x, y) → A
f(x, y) → g(x, y) g(a(x), a(y)) → g(x, y)
f(x, y) → A g(c, c) → B

The signature of R1(P ) consists of the constants A, B, and c, binary function symbols
f and g, and for every symbol a from the alphabet Γ of the PCP instance P a unary
function symbol a. So all terms must be constructed from the function symbols occurring
in the rewrite rules of R1(P ). This convention is also adopted for the TRSs defined in
later sections. We use sans serif font for fixed function symbols like A and c but not for
function symbols that range over elements of certain sets (like a ∈ Γ). Moreover, we
drop the quantification in rule schemata by adopting the following conventions:

• α and β range over all pairs (α, β) in P ,

• a ranges over all elements of Γ.

So A→ f(α(c), β(c)) stands for the n rules A→ f(α1(c), β1(c)), . . . , A→ f(αn(c), βn(c)).
The TRS R1(P ) is the basis for many of our relative undecidability results. We show

that it shares the desired key property with R0(P ).

4



Lemma 2.1 A→∗R1(P ) B if and only if P admits a solution.

Proof Suppose γ ∈ Γ+ is a solution for P . So γ = αi1 · · ·αim = βi1 · · ·βim for some
m > 1 and 1 6 i1, . . . , im 6 n. We have the following rewrite sequence in R1(P ):

A→ f(αim(c), βim(c))→∗ f(αi1 · · ·αim(c), βi1 · · ·βim(c)) = f(γ(c), γ(c))
→ g(γ(c), γ(c))→+ g(c, c)→ B.

Conversely, suppose that A →∗R1(P ) B. Beyond the last A occurring in this rewrite
sequence it is of the form

A→ f(αim(c), βim(c))→∗ f(αi1 · · ·αim(c), βi1 · · ·βim(c))
→ g(αi1 · · ·αim(c), βi1 · · ·βim(c))→∗ g(c, c)︸ ︷︷ ︸→ B

for some m > 1 with 1 6 i1, . . . , im 6 n. In the underbraced part only rewrite rules of
the form g(a(x), a(y))→ g(x, y) are used. Hence αi1 · · ·αim(c) = βi1 · · ·βim(c), giving a
solution for P . �

Next we mention two theorems that will be used a number of times in the sequel.
The first one is a result of Huet [6].

Theorem 2.2 A linear TRS is strongly confluent if and only if it is strongly closed. �

Here a TRS R is called strongly closed if both s →=
R · ∗R← t and t →=

R · ∗R← s for
every critical pair 〈s, t〉 of R.

We use the preceding result to relate R1(P ) to some properties in the confluence
hierarchy.

Lemma 2.3 The following statements are equivalent:

1. The TRS R1(P ) has the normal form property.

2. The TRS R1(P ) is locally confluent.

3. The TRS R1(P ) is ground confluent.

4. The TRS R1(P ) is confluent.

5. The PCP instance P admits a solution.

Proof Since confluence implies the normal form property, local confluence, and ground
confluence, according to Lemma 2.1 it suffices to show that (i) A →∗R1(P ) B whenever
R1(P ) has the normal form property, is locally confluent, or is ground confluent, and
(ii) R1(P ) is confluent whenever A →∗R1(P ) B. For (i) we note that A ← g(c, c) → B

in R1(P ) with B a normal form, hence A →∗R1(P ) B by definition of the normal form
property, local confluence, or ground confluence. For (ii) we consider the TRS R′1(P ) =
R1(P ) ∪ {A → B, f(x, y) → B, g(x, y) → B}. Since A →∗R1(P ) B, the relations →∗R1(P )

and →∗R′1(P ) coincide. The TRS R′1(P ) is linear and strongly closed and thus (strongly)
confluent by Theorem 2.2. Hence R1(P ) is confluent too. �

5



The second theorem states that proving confluence is equivalent to proving confluence
of the well-typed terms according to any many-sorted type discipline which is compatible
with the rewrite system under consideration. This is known as the persistence ([20]) of
confluence.

Theorem 2.4 Confluence is a persistent property. �

For instance, to prove confluence of TRS R0(P ) above it suffices to prove confluence
of every well-typed term according to the many-sorted type declarations: A,B : 1, f : 2×
2→ 1, c : 2, and a : 2→ 2 for every a of the alphabet of P . Note that these declarations
are compatible with R0(P ) since for every rewrite rule l → r both terms l and r are
well-typed (by assigning type 2 to each variable) and have the same type 1. So in a
confluence proof we do not have to consider ill-typed terms like f(f(c,A),B).

Persistence is closely related to modularity. A property of TRSs is said to be modular
if the union of two TRSs with the property and disjoint signatures has the property.
Van de Pol [14] showed that a component closed property is persistent if and only if
it is modular for many-sorted TRSs. (A property P of TRSs is component closed if a
TRS R satisfies P if and only if every equivalence class of ↔∗R has the property P .) So
proving persistence amounts to type-checking modularity proofs. For the special case of
confluence this is done in [1] for the modularity proof in [11].

To prove some of the relative undecidability results for properties dealing with con-
version (UN and CON), we need to relate solvability of P to the existence of a conversion
between A and B. TRS R1(P ) is not suitable for this purpose because in R1(P ) the
terms A and B may be convertible even if P admits no solution. For instance, in
R1({(100, 10), (10, 1)}) we have A→ f(100(c), 10(c))← f(0(c), 0(c))→∗ B.

Let R2(P ) = R1
2(P ) ∪R2

2(P ) with R1
2(P ) consisting of the rules

f(c, c, c, c) → A
f(c, c, c, i(w)) → f(c, c, c, w)

and R2
2(P ) consisting of the rules

f(αi(x), βi(y), i(z), w) → f(x, y, z, i(w)) g(a(x), a(y), z) → g(x, y, z)
f(x, y, i(z), c) → g(x, y, i(z)) g(c, c, i(z)) → g(c, c, z)

g(c, c, c) → B

where i ranges over 1, . . . , n. Note that R2(P ) is terminating for all PCP instances P .

Lemma 2.5 A↔∗R2(P ) B if and only if P admits a solution.
Proof First suppose that P admits a solution γ = αi1 · · ·αim = βi1 · · ·βim for some
m > 1 and 1 6 i1, . . . , im 6 n. Then we have the following conversion between A and B:

A← f(c, c, c, c) ∗← f(c, c, c, im · · · i1(c)) ∗← f(γ(c), γ(c), i1 · · · im(c), c)
→ g(γ(c), γ(c), i1 · · · im(c))→∗ g(c, c, i1 · · · im(c))→∗ g(c, c, c)→ B.

6



Next suppose that A and B are convertible. Because R2(P ) is variable preserving and
non-collapsing, it follows that all steps in a conversion between A and B take place
at the root position. It is also easy to see that any term of the form f(t1, t2, t3, t4)
in a conversion between A and B satisfies t4 = im · · · i1(c) with 1 6 i1, . . . , im 6 n
for some m > 0. Furthermore, there exists a conversion in R1

2(P ) between A and
f(c, c, c, im · · · i1(c)) for all m > 0 and 1 6 i1, . . . , im 6 n. We claim that there exists a
conversion

A↔∗R1
2(P ) t↔∗R2

2(P ) B

for some term t = f(c, c, c, im · · · i1(c)). This easily follows from the preceding obser-
vations by considering the last application of a rewrite rule of R1

2(P ) in a shortest
conversion between A and B. Let R3

2(P ) be the TRS obtained from R2
2(P ) by orienting

all

f(αi(x), βi(y), i(z), w)→ f(x, y, z, i(w))

rules from right to left. Clearly,R2
2(P ) andR3

2(P ) generate the same conversion relation.
The crucial observation is that R1

2(P ) and R3
2(P ) are orthogonal and thus confluent.

Because A and B are normal forms, the above conversion between A and B has the form

A ∗
R1

2(P )← t→∗R3
2(P ) B.

It follows that

A← f(c, c, c, c) ∗← f(c, c, c, im · · · i1(c))→∗ f(γ1(c), γ2(c), i1 · · · im(c), c)
→ g(γ1(c), γ2(c), i1 · · · im(c))→∗ g(c, c, i1 · · · im(c))→∗ g(c, c, c)→ B

with γ1 = αi1 · · ·αim and γ2 = βi1 · · ·βim . The step f(· · · ) → g(· · · ) is possible only
if m > 1 and the sequence from g(γ1(c), γ2(c), i1 · · · im(c)) to g(c, c, i1 · · · im(c)) entails
that γ1 = γ2. We conclude that P admits a solution. �

3 SCR ⇒ CR

Let R3(P ) = R1(P ) ∪ {B→ C,C→ A}.

Lemma 3.1 The TRS R3(P ) is confluent for every PCP instance P .
Proof One easily checks that the linear TRS R′3(P ) = R3(P ) ∪ {B → A} is strongly
closed hence (strongly) confluent by Theorem 2.2. Since the relations →∗R3(P ) and
→∗R′3(P ) coincide, R3(P ) is confluent. �

Lemma 3.2 The TRS R3(P ) is strongly confluent if and only if P admits a solution.
Proof In a shortest rewrite sequence from A to B the rules B → C and C → A are not
used. Hence A →∗R3(P ) B if and only if A →∗R1(P ) B. According to Lemma 2.1 we have
to show that R3(P ) is strongly confluent if and only if A→∗R3(P ) B. In R3(P ) we have

7



B← g(c, c)→ A. If R3(P ) is strongly confluent then B→= · ∗← A, so either B ∗← A or
B→ C ∗← A. Since any reduction sequence from A to C must pass through B, in both
cases we have the desired A→∗ B.

Conversely, if A →∗ B then one easily checks that R3(P ) is strongly closed and
therefore strongly confluent by Theorem 2.2. �

Corollary 3.3 Strong confluence is not co-semi-decidable for linear confluent TRSs. �

In the proofs of semi-decidability in this paper we make use of the observation that
the set of conversions is recursively enumerable. This observation is an easy consequence
of the fact that there are only countable infinitely many terms (because the set of
variables is assumed to be countably infinite) and conversions.

Theorem 3.4 Strong confluence is semi-decidable for linear TRSs.
Proof Let R be an arbitrary finite linear TRS. According to Theorem 2.2 R is strongly
confluent if and only if s →=

R · ∗R← t and t →=
R · ∗R← s for every critical pair 〈s, t〉 of

R. By enumerating and inspecting all conversions between s and t we easily obtain a
semi-decision procedure for the problem whether both s→=

R · ∗R← t and t→=
R · ∗R← s.

Since R has finitely many critical pairs we obtain a semi-decision procedure for strong
confluence by applying the previous procedure to all critical pairs in parallel. �

Linearity is essential in the above proof. We conjecture that for arbitrary TRSs
strong confluence is not semi-decidable.

4 CR ⇒ WCR

Let R4(P ) = R1(P ) ∪ {B→ f(c, c),B→ C}.

Lemma 4.1 The TRS R4(P ) is locally confluent for every PCP instance P .
Proof One easily checks that all critical pairs of R4(P ) are joinable. �

Lemma 4.2 The TRS R4(P ) is confluent if and only if P admits a solution.
Proof In a shortest R4(P )-reduction sequence from A to B the rewrite rules B→ f(c, c)
and B → C are not used. Hence A →∗R4(P ) B if and only if A →∗R1(P ) B. According
to Lemma 2.1 we have to show that R4(P ) is confluent if and only if A →∗R4(P ) B. In
R4(P ) we have A ← f(c, c) ← B → C. If R4(P ) is confluent then A →∗ C which is
equivalent to A→∗ B.

Conversely, if A →∗ B then we obtain confluence by considering the TRS R′4(P ) =
R4(P ) ∪ {A → C, f(x, y) → C, g(x, y) → C}. One easily shows that R′4(P ) is linear
and strongly closed and thus (strongly) confluent by Theorem 2.2. Since the relations
→∗R4(P ) and →∗R′4(P ) coincide, R4(P ) is confluent. �

Corollary 4.3 Confluence is not co-semi-decidable for linear locally confluent TRSs.
�

8



To show the non-semi-decidability of confluence for the class of linear locally conflu-
ent TRSs we need a different construction. Let R5(P ) consist of the rules

(1) f(c, c, i(z)) → A (4) g(a(x), a(y)) → g(x, y)
(2) f(x, y, i(z)) → f(αi(x), βi(y), z) g(a(x), b(y)) → A if a 6= b
(2) f(αi(x), βi(y), z) → f(x, y, i(z)) g(a(x), c) → A
(3) f(x, y, c) → g(x, y) g(c, a(x)) → A

with b ranging over all elements of the alphabet Γ of P . The numbers in front of some
of the rewrite rules are used for reference in the proof of Lemma 4.5 below.

Lemma 4.4 The TRS R5(P ) is locally confluent for every PCP instance P .
Proof One easily checks that all critical pairs of R5(P ) are joinable. �

Lemma 4.5 The TRS R5(P ) is confluent if and only if P admits no solution.
Proof If P admits a solution γ = αi1 · · ·αim = βi1 · · ·βim for some m > 1 and 1 6
i1, . . . , im 6 n then we obtain the diverging reductions in R5(P ) consisting of

f(γ(c), γ(c), c)→+ f(c, c, im · · · i1(c))→ A

and

f(γ(c), γ(c), c)→ g(γ(c), γ(c))→+ g(c, c).

Since A and g(c, c) are different normal forms, R5(P ) is not confluent.
Conversely, assume that R5(P ) is not confluent; we have to prove that P admits

a solution. Consider the many-sorted type declarations A : 1, c : 2, i : 2 → 2 for all
i ∈ {1, . . . , n}, a : 2 → 2 for all a ∈ Γ, f : 2 × 2 × 2 → 1, and g : 2 × 2 → 1, which is
compatible with R5(P ) by assigning type 2 to every variable. From Theorem 2.4 we
conclude that R5(P ) admits diverging well-sorted reductions u ∗← t →∗ v for which u
and v do not have a common reduct. Since well-sorted terms of type 2 are in normal
form, t must have type 1. Hence the root symbol of t is f, g, or A, and t does not contain
any of these symbols below the root. This implies that all rewrite steps in any reduction
starting from t take place at the root position. Since A is in normal form and the TRS
consisting of all g rules is orthogonal and hence confluent, we conclude that the root
symbol of t is f. We have

u ∗← u′ ∗← t→∗ v′︸ ︷︷ ︸→∗ v

such that in the underbraced part only rules of type (2) are used and u′ →∗ u and
v′ →∗ v, if non-empty, start with a rule of type (1) or rule (3). Because rules of type (2)
are reversible we easily obtain u′ →∗ v′ by using only rules of type (2). It follows that
u′ = f(u1, u2, u3), v′ = f(v1, v2, v3), and either v1 = αim · · ·αi1(u1), v2 = βim · · ·βi1(u2),
and u3 = i1 · · · im(v3) or u1 = αim · · ·αi1(v1), u2 = βim · · ·βi1(v2), and v3 = i1 · · · im(u3),
for some m > 0 and indices i1, . . . , im ∈ {1, . . . , n}. Without loss of generality we
consider the former. Now, if u′ →∗ u or v′ →∗ v is empty then u and v have a common

9



reduct, contradicting the assumption. Hence both u′ →∗ u and v′ →∗ v are non-empty.
If both sequences start with an application of a rule of type (1) then u = v = A,
contradicting the assumption. If both sequences start with rule (3) then u3 = v3 = c,
which is only possible if m = 0 and thus u′ = v′. Consequently, one of the sequences
u′ → u and v′ →∗ v starts with a rule of type (1) and the other starts with rule (3).
First suppose that u′ → u starts with a rule of type (1). Then we may write

u = A← f(c, c, i(u′3)) = u′ →∗ v′ = f(v1, v2, c)→ g(v1, v2)→∗ v

for some i ∈ Γ and thus u1 = u2 = v3 = c and u3 = i(u′3). Hence v1 = αim · · ·αi1(c) and
v2 = βim · · ·βi1(c). Because u and v are assumed to have no common reduct, v and thus
also g(v1, v2) do not rewrite to A and this implies that only type (4) rules are applicable.
It follows that v1 = v2 and thus αim · · ·αi1 = βim · · ·βi1 . From i(u′3) = i1 · · · im(c) we
infer that m > 1. So P has a solution. Next suppose that u′ → u starts with a rule of
type (3). Then we may write

u ∗← g(u1, u2)← f(u1, u2, c) = u′ →∗ v′ = f(c, c, i(v′3))→ A = v

for some i ∈ Γ and thus u3 = v1 = v2 = c and v3 = i(v′3). This is only possible if m = 0
but then v3 = u3 contradicts v3 = i(v′3) and u3 = c. �

Corollary 4.6 Confluence is not semi-decidable for linear locally confluent TRSs. �

5 CR ⇒ GCR

Let R6(P ) = R1
6(P ) ∪R2

6 with R1
6(P ) consisting of the rules

A(z) → f(α(c), β(c), z)
f(x, y, z) → f(α(x), β(y), z) g(x, y, z) → A(z)
f(x, y, z) → g(x, y, z) g(a(x), a(y), z) → g(x, y, z)
f(x, y, z) → A(z) g(c, c, z) → B(z)

and R2
6 of the rules

f(D,D,D) → D c → D
g(D,D,D) → D A(D) → D

a(D) → D B(D) → D

Note that the only difference between R1
6(P ) and R1(P ) is the addition of an extra

argument which is simply propagated.

Lemma 5.1 The TRS R6(P ) is ground confluent for every PCP instance P .
Proof In R2

6 ⊆ R6(P ) every ground term rewrites to D. (As usual we assume that the
signature of a TRS consists of all function symbols occurring in its rewrite rules.) Hence
R6(P ) is ground confluent. �

10



Lemma 5.2 The TRS R6(P ) is confluent if and only if P admits a solution.
Proof It is not difficult to see that the statements A(z) →∗R6(P ) B(z) and A →∗R1(P ) B

are equivalent. According to Lemma 2.1 we have to show that R6(P ) is confluent if
and only if A(z)→∗R6(P ) B(z). In R6(P ) we have A(z)← g(c, c, z)→ B(z) with B(z) in
normal form. So if R6(P ) is confluent then necessarily A(z)→∗ B(z).

Conversely, if A(z)→∗ B(z) then we obtain confluence by considering the linear and
strongly closed TRS R′6(P ) = R6(P ) ∪ {A(z) → B(z), f(x, y, z) → B(z), g(x, y, z) →
B(z)}. �

Corollary 5.3 Confluence is not co-semi-decidable for linear ground-confluent TRSs.
�

In order to show that confluence is not semi-decidable for ground confluent TRSs,
we consider the TRS R7(P ) = R1

7(P ) ∪R2
7 with R1

7(P ) consisting of the rules

(1) f(c(x), c(y), i(z)) → A(x, y, z) A(a(x), y, z) → A(x, y, z)
(2) f(x, y, i(z)) → f(αi(x), βi(y), z) A(i(x), y, z) → A(x, y, z)
(2) f(αi(x), βi(y), z) → f(x, y, i(z)) A(c(x), y, z) → A(x, y, z)
(3) f(x, y, c(z)) → g(x, y, z) A(x, a(y), z) → A(x, y, z)
(4) g(a(x), a(y), z) → g(x, y, z) A(x, i(y), z) → A(x, y, z)

g(a(x), b(y), z) → A(x, y, z) if a 6= b A(x, c(y), z) → A(x, y, z)
g(a(x), c(y), z) → A(x, y, z) A(x, y, a(z)) → A(x, y, z)
g(c(x), a(y), z) → A(x, y, z) A(x, y, i(z)) → A(x, y, z)

A(x, y, c(z)) → A(x, y, z)

and R2
7 of the rules

c(D) → D f(D, y, z) → D g(D, y, z) → D A(D, y, z) → D
a(D) → D f(x,D, z) → D g(x,D, z) → D A(x,D, z) → D
i(D) → D g(x, y,D) → D f(x, y,D) → D A(x, y,D) → D

Lemma 5.4 The TRS R7(P ) is ground confluent for every PCP instance P .
Proof An easy induction proof reveals that every ground term rewrites to D. �

Lemma 5.5 The TRS R1
7(P ) is confluent if P admits no solution.

Proof The proof is similar to the “if” direction in the proof of Lemma 4.5. Suppose that
R1

7(P ) is not confluent. Consider the many-sorted type declarations f, g,A : 2×2×2→ 1,
c : 2→ 2, i : 2→ 2 for all i ∈ {1, . . . , n}, and a : 2→ 2 for all a ∈ Γ, which is compatible
with R1

7(P ) by assigning type 2 to every variable. From Theorem 2.4 we conclude that
R1

7(P ) admits diverging well-sorted reductions u ∗← t →∗ v for which u and v do not
have a common reduct.

Since well-sorted terms of type 2 are in normal form, t must have type 1. Hence
the root symbol of t is f, g, or A, and t does not have any of these symbols below the
root. This implies that all rewrite steps in any reduction starting from t take place at
the root position. Because the TRS consisting of all g and A rules is confluent, the

11



root symbol of t must be f and hence we may write t = f(t1, t2, t3). Note that every ti
contains a single variable xi and every reduct of t contains xi in its i-th argument. We
have u ∗← u′ ∗← t→∗ v′ →∗ v such that in u′ ∗← t→∗ v′ only rules of type (2) are used
and u′ →∗ u and v′ →∗ v, if non-empty, start with a rule of type (1) or rule (3). Because
rules of type (2) are reversible we easily obtain u′ →∗ v′ by using only rules of type
(2). It follows that u′ = f(u1, u2, u3), v′ = f(v1, v2, v3), and either v1 = αim · · ·αi1(u1),
v2 = βim · · ·βi1(u2), and u3 = i1 · · · im(v3) or u1 = αim · · ·αi1(v1), u2 = βim · · ·βi1(v2),
and v3 = i1 · · · im(u3), for some m > 0 and indices i1, . . . , im ∈ {1, . . . , n}. Without
loss of generality we consider the former. Now, if u′ →∗ u or v′ →∗ v is empty then
t is confluent, contradicting the assumption. Hence both u′ →∗ u and v′ →∗ v are
non-empty. If both sequences start with an application of a rule of type (1) then, due to
the shape of the A rules, u′ and v′ reduce to the common reduct A(x1, x2, x3). If both
sequences start with rule (3) then u3 = c(u′3) and v3 = c(v′3), which is only possible
if m = 0 and thus u′ = v′. We already observed that the TRS consisting of all g
and A rules is confluent and hence u′ and v′ have a common reduct. Consequently,
one of the sequences u′ → u′′ →∗ u and v′ → v′′ →∗ v starts with a rule of type (1)
and the other starts with rule (3). First suppose that u′ → u′′ →∗ u starts with a
rule of type (1). This implies that u′′ = A(u′1, u

′
2, u
′
3) with u1 = c(u′1), u2 = c(u′2), and

u3 = i(u′3) for some i ∈ {1, . . . , n}. Moreover, v′′ = g(v1, v2, v
′
3) with v3 = c(v′3). We have

u′′ →∗ A(x1, x2, x3). Because t is non-confluent, v′′ cannot reduce to A(x1, x2, x3) which
implies that only rules of type (4) can be applied to v′′. It follows that v1 = γ(c(v′1))
and v2 = γ(c(v′2)) for some string γ ∈ Γ∗. Hence γ = αim · · ·αi1 = βim · · ·βi1 with
m > 1. So P has a solution. In the remaining case we have u′′ = g(u1, u2, u

′
3) with

u3 = c(u′3) and v′′ = A(v′1, v
′
2, v
′
3) with v1 = c(v′1), v2 = c(v′2), and v3 = i(v′3) for some

i ∈ {1, . . . , n}. This is only possible if m = 0 but then v3 = u3, which contradicts
v3 = i(v′3) and u3 = c(u′3). �

Lemma 5.6 The TRS R7(P ) is confluent if and only if P admits no solution.
Proof First suppose that P admits a solution γ = αi1 · · ·αim = βi1 · · ·βim for some
m > 1 and 1 6 i1, . . . , im 6 n. Then we have the following diverging reductions starting
from t = f(γ(c(x)), γ(c(y)), c(z)):

t→+ f(c(x), c(y), im · · · i1(c(z)))→ A(x, y, im−1 · · · i1(c(z)))→+ A(x, y, z)

and

t→ g(γ(c(x)), γ(c(y)), c(z))→+ g(c(x), c(y), c(z)).

Since A(x, y, z) and g(c(x), c(y), c(z)) are different normal forms, R7(P ) is not confluent.
Conversely, suppose that R7(P ) is not confluent. If we can show that R1

7(P ) is not
confluent then the result follows from the preceding lemma. From an inspection of the
rewrite rules of R7(P ) we easily infer that the set of terms that contain an occurrence
of D is closed under conversion. Moreover, it is easy to prove by induction on t that
every such term rewrites to D. Hence, if t is a non-confluent term then t contains no
occurrences of D and rules of R2

7 are never applied in any rewrite sequence starting from
t. It follows that R1

7(P ) is not confluent. �

12



Corollary 5.7 Confluence is not semi-decidable for linear ground-confluent TRSs. �

6 CR ⇒ NF

Let R8(P ) = R1(P ) ∪ {B→ B}.

Lemma 6.1 The TRS R8(P ) has the normal form property for every PCP instance P .
Proof The set of normal forms of R8(P ) coincides with the set of terms that rewrite to
a normal form. In other words, reducible terms in R8(P ) have no normal form. Hence
the normal form property is trivially satisfied. �

Lemma 6.2 The TRS R8(P ) is confluent if and only if P admits a solution.
Proof Since the relations →∗R8(P ) and →∗R1(P ) coincide, R8(P ) is confluent if and only
if R1(P ) is confluent. Hence the result follows from Lemma 2.3. �

Corollary 6.3 Confluence is not co-semi-decidable for linear TRSs with the normal
form property. �

Let R9(P ) be the union of R5(P ) and the rules

f(x, y, z) → f(x, y, z) a(x) → a(x) A → A
g(x, y) → g(x, y) i(x) → i(x) c → c

Lemma 6.4 The TRS R9(P ) has the normal form property for every PCP instance P .
Proof Only variables are in normal form. Since R9(P ) is non-collapsing, a variable is
convertible only with itself. Hence the normal form property is trivially satisfied. �

Lemma 6.5 The TRS R9(P ) is confluent if and only if P admits no solution.
Proof Since →∗R9(P ) =→∗R5(P ), the result follows from Lemma 4.5. �

Corollary 6.6 Confluence is not semi-decidable for linear TRSs with the normal form
property. �

7 NF ⇒ UN

Lemma 7.1 The TRS R1(P ) has unique normal forms for every PCP instance P .
Proof Consider the confluent TRS R′1(P ) defined in the proof of Lemma 2.3. The
relations ↔∗R1(P ) and ↔∗R′1(P ) clearly coincide. Also the normal forms of the two TRSs
are the same. It follows that R1(P ) has unique normal forms. �

We already observed (Lemma 2.3) that the TRSR1(P ) has the normal form property
if and only if P has a solution.

Corollary 7.2 The normal form property is not co-semi-decidable for linear TRSs with
unique normal forms. �

13



Let R10(P ) be the union of R5(P ) and the two rules

f(x, y, z) → f(x, y, z)
g(x, y) → g(x, y)

Lemma 7.3 The TRS R10(P ) has unique normal forms for every PCP instance P .
Proof Assume n1 ↔∗R10(P ) n2 for two normal forms n1, n2; we have to prove n1 = n2.
For a term t, let φ(t) denote the result of replacing all maximal subterms in t with root
symbol f or g by A. An inspection of the rewrite rules of R10(P ) reveals that φ(s) = φ(t)
if s →R10(P ) t. It follows that φ(n1) = φ(n2). Since n1, n2 are normal forms, they do
not contain the symbols f and g, and thus n1 = φ(n1) = φ(n2) = n2. �

Lemma 7.4 The TRS R10(P ) has the normal form property if and only if P admits
no solution.
Proof Assume that P admits a solution. Then we have a conversion g(c, c) ↔∗R10(P ) A

as in the first part of the proof of Lemma 4.5. Since g(c, c) does not rewrite to A and A
is a normal form, we conclude that R10(P ) does not have the normal form property.

Conversely, assume that P admits no solution. Then according to Lemma 4.5 R5(P )
is confluent. Since →∗R10(P ) = →∗R5(P ) the TRS R10(P ) is confluent and hence has the
normal form property. �

Corollary 7.5 The normal form property is not semi-decidable for linear TRSs with
unique normal forms. �

8 UN ⇒ CON

Let R11(P ) be the union of R2(P ) and the rules

f(x, y, z, w) → f(x, y, z, w) a(x) → a(x) c → c
g(x, y, z) → g(x, y, z) i(x) → i(x)

Lemma 8.1 A↔∗R11(P ) B if and only if P admits a solution.
Proof Immediate consequence of Lemma 2.5 as ↔∗R11(P ) =↔∗R2(P ). �

Lemma 8.2 The TRS R11(P ) is consistent for every PCP instance P .
Proof Trivial, as R11(P ) lacks collapsing rules. �

Lemma 8.3 The TRS R11(P ) has unique normal forms if and only if P does not have
a solution.
Proof According to Lemma 8.1 we have to show that R11(P ) admits two different
convertible normal forms if and only if A and B are convertible. Since A and B are
normal forms, the “if” direction is trivial.

Conversely, suppose that R11(P ) admits two different convertible normal forms t1,
t2. The only normal forms of R11(P ) are A, B, and variables. Because R11(P ) is non-
collapsing, variables are convertible only to themselves. Hence t1 = A and t2 = B or
vice-versa. �

14



Corollary 8.4 The property of having unique normal forms is not semi-decidable for
linear consistent TRSs. �

Theorem 8.5 The property of having unique normal forms is co-semi-decidable for
TRSs.
Proof By enumerating all conversions we can easily find out if there exists a conversion
between different normal forms. Hence the property of not having unique normal forms
is semi-decidable. �

9 CON ⇒ CON→

Let R12(P ) = R2(P ) ∪R1
12 with R1

12 consisting of the two rules

e(A, x) → C
e(B, x) → x

Lemma 9.1 A↔∗R12(P ) B if and only if P admits a solution.

Proof We show that in a shortest conversion between A and B rules of R1
12 are not used.

The desired result then follows from Lemma 2.5. Suppose to the contrary that in a
shortest conversion between A and B rules of R1

12 are used. It is not difficult to see that
this is only possible if the conversion contains an outermost e symbol that is introduced
and eliminated by a rule of R1

12. In other words, there exists a fragment

C[t]← C[e(t1, t2)]↔∗ C ′[e(t′1, t
′
2)]︸ ︷︷ ︸→ C ′[t′] (1)

such that every step in the underbraced part is of the form C1[e(s1, s2)]↔ C2[e(s′1, s
′
2)]

with no occurrences of e above the displayed ones and either (i) a rewrite rule of R2(P )
is applied above the displayed occurrences of e, (ii) a rewrite rule is applied to a subterm
of C1[e(s1, s2)] (C2[e(s′1, s

′
2)]) disjoint from e(s1, s2) (e(s′1, s

′
2)), or (iii) a rewrite rule is

applied to one the arguments of the displayed occurrences of e. Because R2(P ) is linear
and variable preserving, we can shift all (i) steps in the underbraced part in front of
C[t]. We do the same with all (ii) steps. The result is a new fragment

C[t]↔∗ C ′[t]← C ′[e(t1, t2)]↔∗ C ′[e(t′1, t
′
2)]︸ ︷︷ ︸→ C ′[t′] (2)

of the same length as (1) such that all steps in the underbraced part take place below
the displayed occurrences of e. So t1 ↔∗ t′1 and t2 ↔∗ t′2. There are four possibilities:

1. t1 = t′1 = B, t = t2, and t′ = t′2,

2. t1 = t′1 = A and t = t′ = C,

3. t1 = B, t′1 = A, t = t2, and t′ = C,

4. t1 = A, t′1 = B, t = C, and t′ = t′2.

15



In the first case we obtain the shorter fragment

C[t]↔∗ C ′[t] = C ′[t2]↔∗ C ′[t′2] = C ′[t′]

contradicting the fact that the given conversion between A and B is shortest. In the
second case we obtain the shorter fragment

C[t]↔∗ C ′[t] = C ′[C] = C ′[t′].

In the third case we have the shorter conversion B = t1 ↔∗ t′1 = A between A and
B, again contradicting the fact that the given conversion between A and B is shortest.
Finally, in the fourth case we obtain a contradiction in the same way. �

Lemma 9.2 The TRS R12(P ) is consistent with respect to reduction.
Proof If R12(P ) is not consistent with respect to reduction then there must be different
variables x and y and a term t such that

x← e(B, x) ∗← t→∗ e(B, y)→ y

because e(B, x)→ x is the only collapsing rule in R8(P ). Only terms in the set

Sx = {e(t1, x), e(t1, e(t2, x)), e(t1, e(t2, e(t3, x))), · · · | ti →∗ B}

rewrite to e(B, x). Similarly, only terms in the set

Sy = {e(t1, y), e(t1, e(t2, y)), e(t1, e(t2, e(t3, y))), · · · | ti →∗ B}

rewrite to e(B, y). However, as Sx ∩ Sy = ∅, term t does not exist. �

Lemma 9.3 The TRS R12(P ) is consistent if and only if P does not have a solution.
Proof According to Lemma 9.1 we have to show that R12(P ) is inconsistent if and only
if A and B are convertible. If A↔∗R12(P ) B then R12(P ) is inconsistent as

x← e(B, x)↔∗ e(A, x)→ C← e(A, y)↔∗ e(B, y)→ y

for different variables x and y. If R12(P ) is inconsistent then all terms are convertible.
In particular, A↔∗R12(P ) B. �

Corollary 9.4 Consistency is not semi-decidable for linear terminating TRSs that are
consistent with respect to reduction. �

Theorem 9.5 Consistency is co-semi-decidable for TRSs.
Proof By enumerating and inspecting all conversions we easily obtain a semi-decision
procedure for the problem whether there exists a conversion between different variables.
Hence inconsistency is semi-decidable. �

16



10 UN ⇒ UN→

Let R13(P ) = R11(P ) ∪R1
12 ∪ {e(x, y)→ e(x, y),C→ C}.

Lemma 10.1 A↔∗R13(P ) B if and only if P admits a solution.
Proof Immediate consequence of Lemma 9.1 as ↔∗R13(P ) =↔∗R12(P ). �

Lemma 10.2 The TRS R13(P ) has unique normal forms with respect to reduction for
every PCP instance P .
Proof By induction on the structure of terms we can easily prove that every term has
at most one normal form. �

Lemma 10.3 The TRS R13(P ) has unique normal forms if and only if P does not have
a solution.
Proof Since the normal forms of R13(P ) and R11(P ) coincide, the “if” direction follows
from Lemma 8.3. Suppose that R13(P ) admits two different convertible normal forms
t1, t2. According to Lemma 10.1 it suffices to show that A and B are convertible. The
only normal forms of R13(P ) are A, B, and variables. If t1 and t2 are different variables
then we obtain a conversion between A and B by substituting A for all occurrences of t1
and B for all occurrences of A in the conversion t1 ↔∗ t2. If one of the normal forms t1,
t2 is a variable and the other is A (B) then we obtain a conversion between A and B by
substituting B (A) for all occurrences of the variable in the conversion t1 ↔∗ t2. �

Corollary 10.4 The property of having unique normal forms is not semi-decidable for
linear TRSs that have unique normal forms with respect to reduction. �

In Section 8 we already observed that the the property of having unique normal
forms is co-semi-decidable.

11 UN→ ⇒ CON→

Let R14(P ) = R1(P ) ∪ {A→ C}.
Lemma 11.1 The TRS R14(P ) is consistent with respect to reduction for every PCP
instance P .
Proof Trivial, as R14(P ) lacks collapsing rules. �

Lemma 11.2 The TRS R14(P ) has unique normal forms with respect to reduction if
and only if P does not have a solution.
Proof If P admits a solution then A →∗R1(P ) B and thus A →∗R14(P ) B by Lemma 2.1.
Since A →R14(P ) C and both B and C are normal forms, R14(P ) does not have unique
normal forms with respect to reduction.

Conversely, suppose that P does not have a solution. Then, by Lemma 2.1, A→∗R1(P )
B does not hold. This immediately implies that A →∗R14(P ) B does not hold. Now one
easily shows by structural induction that every term has at most one normal form.
Hence R14(P ) has unique normal forms with respect to reduction. �

17



Corollary 11.3 The property of having unique normal forms with respect to reduction
is not semi-decidable for linear TRSs that are consistent with respect to reduction. �

Theorem 11.4 The property of having unique normal forms with respect to reduction
is co-semi-decidable for TRSs.
Proof By enumerating and inspecting all conversions we easily obtain a semi-decision
procedure for the problem whether there exists a conversion of the form s ∗← · →∗ t
with s and t different normal forms. Hence the property of not having unique normal
forms with respect to reduction is semi-decidable. �

12 WCR, GCR, CON→

In this section we investigate (semi-)decidability issues for the three properties in the
confluence hierarchy that do not appear in an X position of an implication X ⇒ Y .

We start with local confluence. From Lemma 2.3 we obtain the following result.

Corollary 12.1 Local confluence is not co-semi-decidable for linear TRSs. �

Theorem 12.2 Local confluence is semi-decidable for TRSs.
Proof Let R be an arbitrary finite TRS. By enumerating and inspecting all conversions
between two terms s and t we easily obtain a semi-decision procedure for the problem
whether s and t are joinable. Applying this procedure in parallel to the finitely many
critical pairs of R yields a semi-decision procedure for local confluence. �

Next we consider ground confluence. In the introduction we already mentioned that
ground confluence is undecidable for terminating TRSs. Actually from the proof in [9,
Theorem 3.3] it follows that ground confluence is not semi-decidable. From Lemma 2.3
we obtain the following result.

Corollary 12.3 Ground confluence is not co-semi-decidable for linear TRSs. �

Finally, we consider consistency with respect to reduction.

Theorem 12.4 Consistency with respect to reduction is co-semi-decidable for TRSs.
Proof By enumerating and inspecting all conversions we easily obtain a semi-decision
procedure for the problem whether there exists a conversion of the form s ∗← · →∗ t
with s and t different variables. Hence the property of not being consistent with respect
to reduction is semi-decidable. �

Let the TRS R15(P ) consist of the rules

f(α(x), β(y), z) → f(x, y, z) g(a(x), a(y), z) → g(x, y, z)
f(c, c, z) → z g(c, c, z) → z

h(x, y, z, w) → f(x, y, z) h(a(x), a(y), z, w) → g(x, y, w)

Note that R15(P ) is terminating for every PCP instance P .

18



Lemma 12.5 The TRS R15(P ) is consistent with respect to reduction if and only P
admits a solution.
Proof If P admits a solution γ = αi1 · · ·αim = βi1 · · ·βim for some m > 1 and 1 6
i1, . . . , im 6 n then we have the following diverging reductions in R15(P ) starting from
the term t = h(γ(c), γ(c), x, y):

x← f(c, c, x) ∗← f(γ(c), γ(c), x)← t→ g(γ′(c), γ′(c), y)→∗ g(c, c, y)→ y.

Here γ′ is the string γ minus its first symbol. Hence R15(P ) is not consistent with
respect to reduction.

Conversely, assume that R15(P ) is not consistent with respect to reduction. Then
x ∗← t→∗ y for some term t and distinct variables x and y. Without loss of generality
we assume that the size of t is minimal. This immediately implies that the root symbol of
t must be f, g, or h. We show that it must be h. If t = f(t1, t2, t3) then the reduction from
t to x must be of the form t→∗ f(c, c, t′3)→ t′3 →∗ x with t3 →∗ t′3. Hence t3 →∗ x. The
same reasoning yields t3 →∗ y, contradicting the minimality of t. A similar argument
reveals that the root symbol of t cannot be g. Hence t = h(t1, t2, t3, t4). We must have

x ∗← u ∗← h(t1, t2, t3, t4)→∗ u′ →∗ y (3)

with t3 →∗ u or t4 →∗ u and t3 →∗ u′ or t4 →∗ u′. If t3 →∗ u and t3 →∗ u′ then t is
not minimal as x ∗← u ∗← t3 →∗ u′ → y. Likewise, t is not minimal if t4 →∗ u and
t4 →∗ u′. Now suppose that t3 →∗ u and t4 →∗ u′. (In the remaining case t4 →∗ u
and t3 →∗ u′ we obtain a PCP solution in exactly the same way.) Then we obtain the
divergence

x ∗← h(t1, t2, x, y)→∗ y (4)

from (3) by replacing t3 by x and t4 by y. We claim that t1 and t2 contain no occurrences
of f, g, and h. The reason is that any subterm in t1 or t2 with one of these function
symbols at its root position can be replaced by a fresh variable without affecting the
possibility to perform the above diverging reductions; just drop all rewrite steps that
took place at or below the replaced subterm. It follows that all steps in (4) take place
at the root position. We may therefore write (4) as

x← f(c, c, x) ∗← f(t1, t2, x)← h(t1, t2, x, y)→ g(t′1, t
′
2, y)→∗ g(c, c, y)→ y

with t1 = a(t′1) and t2 = a(t′2) for some a ∈ Γ. Now αi1 · · ·αim(c) = t1 = t2 =
βi1 · · ·βim(c) for some m > 1 and 1 6 i1, . . . , im 6 n. Hence P admits a solution. �

Corollary 12.6 Consistency with respect to reduction is not semi-decidable for linear
terminating TRSs. �

13 Conclusions and Further Research

The results proved in this paper are summarized in the following tables:

19



X ⇒ Y (1) (2) (3) (4)

SCR ⇒ CR 3.4a 3.3

CR ⇒ WCR 4.6 4.3

CR ⇒ GCR 5.7 5.3

CR ⇒ NF 6.6 6.3

NF ⇒ UN 7.5 7.2

UN ⇒ CON 8.4 8.5

CON ⇒ CON→ 9.4b 9.5

UN ⇒ UN→ 10.4 8.5

UN→ ⇒ CON→ 11.3 11.4

X (1′) (2) (3′) (4)

WCR 12.2 12.1

GCR [9]b 12.3

CON→ 12.6b 12.4

aonly for linear TRSs
beven for terminating TRSs

Here (1) means that X is not a semi-decidable property of linear TRSs that satisfy
property Y , (2) means that X is semi-decidable, (3) means that X is not a co-semi-
decidable property of linear TRSs that satisfy property Y , (4) means that X is co-semi-
decidable, and (1′) and (3′) mean the same as (1) and (3) without the qualification “that
satisfy property Y ”.

In Section 3 we already mentioned the open problem whether strong confluence is
semi-decidable for arbitrary (finite) TRSs. Even for terminating TRSs it is unknown
whether strong confluence is (semi-)decidable. All other properties in the confluence
hierarchy, except GCR, CON and CON→, are equivalent and decidable in the presence
of termination. We do not know whether Corollary 12.3 can be strengthened to (linear)
terminating TRSs.

In our companion paper [4] we present relative undecidability results for properties
related to termination. Most of these results are obtained for TRSs consisting of a single
rewrite rule. For the confluence hierarchy we do not have results for single rewrite rules.

Another problem is whether the results obtained in this paper can be strengthened
to string rewriting systems. The papers [13, 16, 19] contain some kind of relative un-
decidability results for string rewriting. In [16] it is proved that a number of properties
are undecidable for string rewriting systems for which the word problem is decidable.
One of these properties is the negation of CON, meaning that all strings are convertible.
In [13] it is proved that the property of having finite derivation type is undecidable for
string rewriting systems for which the word problem is polynomially decidable. In [19]
it is shown that confluence is undecidable for string rewriting systems which have a
decidable word problem.

Besides ground confluence, one can extend the confluence hierarchy by introducing a
property ground-X for every other X, except CON and CON→. Ground-X is obtained

20



from X by replacing the quantification over terms by quantification over ground terms.
This gives rise to many new relative undecidability questions.

Acknowledgements

We are grateful to an anonymous referee for the suggestion to expand our results by
investigating semi-decidability. Aart Middeldorp is partially supported by the Grant-in-
Aid for Scientific Research C(2) 11680338 of the Ministry of Education, Science, Sports
and Culture of Japan.

References

[1] T. Aoto and Y. Toyama. Persistency of confluence. Journal of Universal Computer
Science, 3(11):1134–1147, 1997.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[3] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 243–320. Elsevier,
1990.

[4] A. Geser, A. Middeldorp, E. Ohlebusch, and H. Zantema. Relative undecidability in
term rewriting. Part 1: The termination hierarchy. Information and Computation.
To appear.

[5] A. Geser, A. Middeldorp, E. Ohlebusch, and H. Zantema. Relative undecidability
in term rewriting. In Proceedings of the 10th Annual Conference of the European
Association for Computer Science Logic, volume 1258 of Lecture Notes in Computer
Science, pages 150–166, Berlin, 1997. Springer-Verlag.

[6] G. Huet. Confluent reductions: Abstract properties and applications to term rewrit-
ing systems. Journal of the ACM, 27:797–821, 1980.

[7] G. Huet and D.S. Lankford. On the uniform halting problem for term rewriting
systems. Rapport Laboria 283, INRIA, 1978.

[8] G. Huet and D.C. Oppen. Equations and rewrite rules: A survey. In R. Book,
editor, Formal Language Theory: Perspectives and Open Problems, pages 349–405.
Academic Press, 1980.

[9] D. Kapur, P. Narendran, and F. Otto. On ground-confluence of term rewriting
systems. Information and Computation, 86(1):14–31, 1980.

[10] J.W. Klop. Term rewriting systems. In S. Abramski, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume 2, pages 1–116. Oxford
University Press, 1992.

21



[11] J.W. Klop, A. Middeldorp, Y. Toyama, and R. de Vrijer. Modularity of confluence:
A simplified proof. Information Processing Letters, 49:101–109, 1994.

[12] Y. Matiyasevich and G. Senizergues. Decision problems for semi-Thue systems
with a few rules. In Proceedings of the 11th IEEE Annual Symposium on Logic in
Computer Science, pages 523–531, 1996.

[13] F. Otto and A. Sattler-Klein. The property FDT is undecidable for finitely pre-
sented monoids that have polynomial-time decidable word problems. International
Journal of Algebra and Computation, 10(3):285–307, 2000.

[14] J. van de Pol. Modularity in many-sorted term rewriting systems. Master’s thesis,
report INF/SCR-92-37, Utrecht University, 1992.

[15] E. Post. A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society, 52:264–268, 1946.

[16] A. Sattler-Klein. New undecidability results for finitely presented monoids. In
Proceedings of the 8th International Conference on Rewriting Techniques and Ap-
plications, volume 1232 of Lecture Notes in Computer Science, pages 68–82, Berlin,
1997. Springer-Verlag.

[17] M. Schmidt-Schauß. Unification in a combination of arbitrary disjoint equational
theories. Journal of Symbolic Computation, 8:51–99, 1989.

[18] M. Schmidt-Schauß, M. Marchiori, and S. E. Panitz. Modular termination of r-
consistent and left-linear term rewriting systems. Theoretical Computer Science,
149:361–374, 1995.

[19] R.M. Verma, M. Rusinowitch, and D. Lugiez. Algorithms and reductions for rewrit-
ing problems. In Proceedings of the 9th International Conference on Rewriting
Techniques and Applications, volume 1379 of Lecture Notes in Computer Science,
pages 166–180, Berlin, 1998. Springer-Verlag.

[20] H. Zantema. Termination of term rewriting: Interpretation and type elimination.
Journal of Symbolic Computation, 17:23–50, 1994.

22


